
Seismicity Pattern Recognition in the Sumatra Megathrust Zone Through Mathematical 

Modeling of the Maximum Earthquake Magnitude Using Gaussian Mixture Models 

Jose Rizal1* , Agus Y. Gunawan2 , Siska Yosmar1 , Aang Nuryaman3

1 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu 38371, 

Indonesia 
2 Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi 

Bandung, Bandung 40132, Indonesia 
3 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung 35145, 

Indonesia 

Corresponding Author Email: jrizal04@unib.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.110506 ABSTRACT 

Received: 22 November 2023 

Revised: 7 February 2024 

Accepted: 20 February 2024 

Available online: 30 May 2024 

The research area of the present study is the Sumatra megathrust zone, which can be 

partitioned into five segments based on the large earthquake sources, including the Aceh 

Andaman, Nias Simeulue, Mentawai Siberut, Mentawai Pagai, and Enggano segments. 

This work presents the recognition of seismicity patterns in the research area from 

January 1970 to December 2022 using segmental and zonal mathematical modeling of 

the annual maximum earthquake magnitude. To achieve this, we use two kinds of 

Gaussian mixture models: G-group Gaussian independent mixture models (G-group 

GMMs) and N-state Gaussian hidden Markov models (N-state GHMMs) to determine 

the appropriate probability density function of the seismicity data (ePDF). The fit model 

is selected based on the smallest Bayes information criterion. For the segment analysis, 

the results show that the ePDF of the Mentawai-Pagai segment fits the 2-state GHMM, 

whereas, for the four remaining segments, it tends to fit the 2-group GMM. 

Subsequently, for the zone analysis, the ePDF of the data fits the 2-state GHMM. Thus, 

from a segmental and zoning point of view, seismicity patterns fluctuate at two levels. 

From a seismic risk management aspect, these findings can be used to evaluate the risk 

vulnerability of an area to destructive earthquakes. That is, the patterns of seismicity 

sequences in all segments of the Sumatra megathrust zone all fluctuate within the range 

of moderate to strong earthquakes. Furthermore, the seismicity pattern in the Mentawai-

Pagai segment and the Sumatra megathrust zone has Markov properties. 
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maximum earthquake magnitude, 
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1. INTRODUCTION

The seismicity pattern is a variation of sensitive stress 

indicators of underground dynamics due to earthquake events. 

The estimation model of seismicity pattern, especially for a 

subduction zone, can be analyzed based on geodetic strain 

level, geomechanical parameters, and the earthquake catalog 

[1]. Whereas the methods used are very varied, to name a few: 

the Region-Time-Length (RTL) method [2], the Epidemic-

Type Aftershock-Sequences (ETAS) model [3], the Pattern 

Informatics (PI) method [4], the Z-value method [5], and 

probabilistic methods [6-14]. 

The probabilistic methods to identify the Sumatra 

seismicity patterns have been previously provided by 

Orfanogiannaki et al. [6] and Rizal et al. [12] using the Poisson 

Hidden Markov Models (PHMMs) that correspond to the 

earthquake catalog, i.e., earthquake frequency. Their study 

was motivated by two major earthquake events, 26 December 

2004 and 28 March 2005, with moment magnitudes of Mw 9.1 

and Mw 8.6, respectively. Orfanogiannaki et al. [6] presented 

seismic patterns both segmentally and zonally (in 23-day 

periods) in their article, where the optimum number of seismic 

levels for each subregion was found to be different from two 

to four categories. The same study of seismic patterns in the 

Sumatra megathrust zone after the occurrence of two 

earthquakes on December 26, 2004 and March 28, 2005, has 

also been carried out by Mignan et al. [15], Dasgupta et al. [16], 

and Dewey et al. [17]. 

In our previous study, Rizal et al. [12], we implemented the 

same procedure as in Orfanogiannaki et al. [6] to observe 

seismicity patterns in the Sumatra megathrust subduction zone 

by taking different earthquake data and observation periods. 

Notice that, in Rizal et al. [12], the characteristics of 

earthquake data were magnitude thresholds Mw=5 with time of 

observation 1973-2018, and results showed that the optimum 

number of levels of local seismic patterns varied from two to 

six categories due to strong overdispersion relative to Poisson 

distribution. However, Orfanogiannaki et al. [6] and Rizal et 

al. [12] assumed that the data were spatially independent. Here, 

an interesting research question to examine is whether the 

frequency data from those two selected segments considered 

by Orfanogiannaki et al. [6] and Rizal et al. [12] may have 
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spatial dependencies. If that happens, the analysis may not be 

carried out segmentally. Therefore, to overcome this issue, we 

need to provide alternative seismic data along with its 

modeling that can be used to identify seismic patterns and does 

not contain spatial dependencies. 

As we know, the method of Kendall’s rank correlation is 

used to analyze the spatial dependency of two variables. This 

method is more appropriate for bivariate discrete variable due 

to adjustments for ties condition, as stated by Denuit and 

Lambert [18], and will be applied to the pairs of segmentation 

data modeled (see Table 1). There are three types of Kendall’s 

rank correlation, namely τa, τb, and τc. A brief explanation of 

the three types is as follows. Kendall’s rank correlation τa and 

τb are typically applied to square tables and τb will adjust for 

tied ranks. Additionally, rectangular tables are frequently 

utilized with τc. A detailed explanation of the three types of 

Kendall’s rank correlation can be seen by Somers [19].  

The hypothesis for testing the dependence of two data pairs 

of discrete variables is as follows: H0: τb=0 (independent) vs 

H1: τb≠0 (dependent), where we reject H0 if the p-value <0.05. 

As we can see in Table 1, the ten tested data pairs have a p-

value <0.05. Accordingly, it can be concluded that H0 is 

rejected or that there is a spatial dependency between each pair 

of data. This condition has the consequence that we cannot 

analyze seismicity patterns segmentally. 

The frequency of earthquake data is commonly used by 

many researchers as an object for dealing with seismicity 

patterns. We note, however, that the frequency data may give 

no information concerning earthquake coordinates or their 

magnitude, which may become important for further 

earthquake prediction. In this study, we propose an alternative 

earthquake catalog, that is, the maximum observed earthquake 

magnitude, as an object to analyze seismicity patterns since it 

maintains earthquake information such as its coordinates and 

magnitude. Another benefit is that the characteristics of the 

data are not too heterogeneous due to the fact that the 

maximum observed earthquake magnitude data range is 

narrower than earthquake frequency data. The maximum 

observed earthquake magnitude data has already been 

suggested by Tsapanos and Christova [20] and Tsapanos [21] 

to evaluate the seismicity patterns and seismic hazards. 

In this paper, we use the maximum observed earthquake 

magnitude to identify seismic patterns in the Sumatra 

megathrust zone and at the sources of large earthquakes in that 

zone. This study has not been included in the Indonesian 

national seismic hazard map compiled by Irsyam et al. [22].
 

Table 1. Dependence measure for two pairs of earthquake frequency data in the Sumatra megathrust zone 
 

Segments 
Nias Simeulue (NS) Mentawai Siberut (MS) Mentawai Pagai (MP) Enggano (EO) 

�̂�𝒃 𝒑 − 𝐯𝐚𝐥𝐮𝐞 �̂�𝒃 𝒑 − 𝐯𝐚𝐥𝐮𝐞 �̂�𝒃 𝒑 − 𝐯𝐚𝐥𝐮𝐞 �̂�𝒃 𝒑 − 𝐯𝐚𝐥𝐮𝐞 

Aceh Andaman (AA) 0.683 0.000 0.565 0.000 0.391 0.000 0.339 0.001 

Nias Simeulue (NS)   0.524 0.000 0.570 0.000 0.413 0.000 

Mentawai Siberut (MS)     0.285 0.008 0.249 0.019 

Mentawai Pagai (MP)       0.323 0.002 

 

Since the maximum earthquake magnitude data gives 

continuous data, the Gaussian distribution can be applied to 

identify the seismicity patterns. However, we have to realize 

that in some cases, the Gaussian distribution cannot properly 

capture the dynamics of the probability of empirical data due 

to heterogeneity in the main data, in which the heterogeneity 

can be related to the dynamic of seismic activity, as stated by 

Orfanogiannaki et al. [6], Votsi et al. [7], Orfanogiannaki et al. 

[8], Yip et al. [11], and Rizal et al. [12-14]. To deal with 

heterogeneity, the G-group Gaussian independent mixture 

models (G-group GMMs) [23] and N-state Gaussian Hidden 

Markov mixture models (N-state GHMMs) [24, 25] can be 

applied, where the parameters of the models are estimated 

using the Expectation-Maximization (EM) algorithm provided 

by Dempster et al. [26].  

Subsequently, we note that some other mathematical 

models can be used in pattern recognition issues, namely K-

Nearest Neighbor (K-NN) [27], Pearson mixture modeling 

[28], and linear mixture models [29]. However, we do not use 

these three models due to the weaknesses in each model. A 

few disadvantages and difficulties associated with K-NN 

include high processing costs, sluggish performance, memory 

and storage problems for large datasets, sensitivity to the 

choice of “K”, and vulnerability to the curse of dimensionality. 

Meanwhile, some disadvantages for Pearson and linear 

mixture models are issues that come with utilizing the standard 

correlation structure, interpretation of the model parameters, 

and computational problems [30].  

The purpose of this study is to recognize and analyze 

seismicity patterns in the Sumatra megathrust zone, which 

includes the Aceh-Andaman, Nias-Simeulue, Mentawai-

Siberut, Mentawai-Pagai, and Enggano segments, using 

mathematical modeling of the annual maximum earthquake 

magnitude. To do so, we employ two mixture models: G-group 

GMMs and N-state GHMMs, to determine the appropriate 

probability density function of the study data. 

The paper is organized as follows: In Section 2, we explain 

the data and the mixture models used in this work. A general 

description of G-group GMMs and N-state GHMMs, 

including the EM algorithm for estimating the parameters of 

the models, is presented in Subsections 2.1 and 2.2. 

Furthermore, to assist seismologists in comprehending our 

study, we discuss the research methodology in Section 3. 

Meanwhile, in Section 4, we report the results of the data 

analysis and some discussions concerning the relevancy of the 

present results to other studies. In the last section, conclusions 

and future research are written. 

 

 

2. DATA USED AND MODELS APPLIED 
 

Let the random variable ℳmax
obs  be the maximum observed 

earthquake magnitude (in Mw) occurring in sequential time 

intervals of duration one year. The historical realization data 

of {ℳmax
obs

𝑡
∶ 𝑡 ∈ [1970,1974, ⋯ , 2022]}  was obtained from 

earthquake catalog data published online by the United States 

Geological Survey (USGS). There are several variations of the 

type magnitude in the earthquake catalog that we use, namely: 

body magnitude (mb), surface-wave magnitude (Ms), and 

magnitude momen (Mw). Therefore, before analyzing the data, 

it is necessary to convert the earthquake magnitude into Mw 

type. Here, the type conversion magnitude refers to Irsyam et 

al. [22], where the conversion method used is analogous to the 

method applied by Kadirioğlu and Kartal [31]. 
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(a)                                                                                                 (b) 

 

Figure 1. (a) A map of the Andaman and the Sumatra megathrust zones (marked by an orange box), meanwhile; (b) A map of the 

five large earthquake sources in these zones, with the potential of a magnitude-maximum earthquake (Mmax) 

 

Our research area is the Sumatra megathrust zone (see 

Figure 1(a)). This region is part of the Sunda megathrust 

subduction zone, which includes the Andaman megathrust, 

Sumatra megathrust, and Java megathrust [32]. According to 

Irsyam et al. [22], there are five subduction segments in the 

research area. Therefore, to obtain the pattern of seismicity, 

we analyze data in two scenarios: segmentally and zonally. 

Additionally, Figure 1(b) represents the identity and potential 

of the maximum earthquake magnitude of the five subduction 

segments. For the next discussion, we elaborate G-group 

GMMs and N-state GHMMs, including the implementation of 

the EM algorithm to estimate the parameters of the model in 

subsections 2.1 and 2.2, respectively. In this paper, the 

resulting number of groups in GMMs and the number of states 

in GHMMs will be associated with the number of seismicity 

patterns that are classified into six categories, referring to 

Duda and Nuttli [33], namely minor (3≤Mw<3.9), light (4≤Mw 

<4.9), moderate (5≤Mw<5.9), strong (6≤Mw<6.9), major (7 

≤Mw<7.9), and great (Mw≥8.0). 

 
2.1 Gaussian independent mixture models (GMMs) 

 
Let us assume that the random variable 𝑀max

obs  follows the 

distribution of GMMs with the number of groups G, which is 

abbreviated as G-group GMMs. The probability density 

function (PDF) 𝑀max
obs  can be formulated as follows: 

 

Pr(𝑀max
obs = 𝑚𝑡) = ∑ 𝛿𝑔Ν𝑔 (𝑚𝑡; (𝜇𝑔, 𝜎𝑔))G

𝑔=1   (1) 

 
The parameter δg is the weight of the g component satisfying 

0≤δg≤1 and ∑ 𝛿𝑔 = 1G
𝑔=1 .  The notation Νg (mt;(μg, σg)) is a 

probability density of the Gaussian distribution, with the 

parameters expressing the average μg and variance σg of the g 

component.  

The parameters estimation (θ={δg, μg, σg, g=1, 2, …, G}) 

are obtained by solving the problem of maximizing the log-

likelihood function for complete data of Eq. (1), which can be 

written as follows:  
 

ℒ𝐸𝑀(𝜽)=∑ log Pr((𝑚𝑡 , 𝓏𝑡); 𝜽)Τ
𝑡=1  

=∑ log (∑ 𝛿𝑔Ν𝑔 ((𝑚𝑡 , 𝓏𝑡); (𝜇𝑔, 𝜎𝑔))G
𝑔=1 )Τ

𝑡=1  
(2) 

 

the unobserved variable 𝒵𝑡 in Eq. (2) is define as follows: 
 

𝓏𝑡(𝑔) = {
1 if 𝑚𝑡  is in the group 𝑔
0 others.                              

 (3) 

 

where, 𝒵𝑡(𝑔) is assumed to be mutually independent and has 

an identical distribution which places the t observation data 

belongs to the group g. 

The EM index on ℒ𝐸𝑀(𝜽) in Eq. (2) means that the method 

used to obtain the estimated parameter θ is the EM algorithm 

due to the presence of unobserved variables in the main data 

[26]. The estimation of the parameter θ of GMMs is obtained 

by calculating the expectation of Eq. (2) as follows: 
 

ℋ𝐸𝑀(𝜽, 𝜽𝑙−1) =
E[ℒ𝐸𝑀(𝜽|𝑚𝑡 , 𝜽𝑙−1)]=∑ ∑ 𝑟𝑡𝑔 log 𝛿𝑔

G
𝑔=1

Τ
𝑡=1 +

∑ ∑ 𝑟𝑡𝑔 log Ν (𝑚𝑡; (𝜇𝑔, 𝜎𝑔))G
𝑔=1

Τ
𝑡=1 , 

(4) 

 

where, l expresses the iteration and 𝑟𝑡𝑔 = 𝑃𝑟(𝓏𝑡 = 𝑔|𝑚𝑡) is 

the maximum posterior probability value of mt on group g. At 

the E-step of the EM algorithm, it is sufficient to calculate the 

rtg, while for M-step we maximize the objective function of 

ℋ𝐸𝑀(𝜽, 𝜽𝑙−1) on the parameter δg, μg, σg.  

In the next subsection, we proceed with an explanation of 

the GHMMs and estimation model parameters using the EM 

algorithm. Since the unobserved variable from the random 

variable 𝑀max
obs  has Markov properties, the structures of 

GHMMs are more complex than GMMs. Thus, a more 

detailed explanation to this model is required. 
 

2.2 Gaussian hidden Markov models (GHMMs) 
 

The Hidden Markov Models (HMMs) used in this study 

consist of two parts. Adapted to the problem of this research, 

the first part {𝐶𝑡: 𝑡 ∈ Τ} is a parameter process where the state 

space is unobserved, namely the seismicity patterns, and has 
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Markov properties. The second part {𝑀max
obs

𝑡
: 𝑡 ∈ Τ}  is a 

continuous process that is observed, and the 𝑀max
obs

𝑡
 

distribution depends only on Ct. More formally, HMMs can be 

formulated as in Eqs. (5) and (6) [34]. 

 

Pr(𝐶𝑡 = 𝑐𝑡|𝑪(𝑡−1) = 𝒄(𝑡−1))

= Pr(𝐶𝑡 = 𝑐𝑡|𝐶𝑡−1 = 𝑐𝑡−1) 
(5) 

 

Pr (𝑀max
obs

𝑡
= 𝑚𝑡|𝑀max

obs (𝑡−1)
= 𝒎(𝑡−1), 𝑪(𝑡) = 𝒄(𝑡)) 

= Pr(𝑀max
obs

𝑡
= 𝑚𝑡|𝐶𝑡 = 𝑐𝑡)  

(6) 

 

In the present paper, m(t)=(m1, m2, …, mt) and c(t)=(c1, c2, …, 

ct) express the vector realization value of random variables 

𝑴max
obs (𝑡)

= (𝑀max
obs

1
, 𝑀max

obs
2

, ⋯ , 𝑀max
obs

𝑡
) and C(t)=(C1, C2, ⋯, Ct), 

respectively. Accordingly, if the Markov chain {Ct} has a 

finite number of values {1, 2, …, N} and each observation of 

𝑀max
obs  is generated by one of N Gaussian distribution, then we 

call {𝑀max
obs

𝑡
} an N-state GHMMs. 

Previously, we define pi as the probability density function 

of 𝑀max
obs

𝑡
 if the Markov chain at time 𝑡 is in state 𝑖, which is 

𝑝𝑖(𝑚) = Pr(𝑀max
obs

𝑡
= 𝑚|𝐶𝑡 = 𝑖).  Subsequently, we also 

define P(m) as the diagonal matrix with i th diagonal element 

pi(m). Suppose that {m1, m2, …, mΤ} follow the N-state 

GHMMs with initial distribution δ, P(m), and Γ transition 

probability matrix from the state space {Ct}, the likelihood 

function of the GHMMs with N state is formulated as follows: 

 

𝒬Τ=(𝑴max
obs (Τ)

= 𝒎(Τ)) 

=𝜹𝐏(𝑚1)𝚪𝐏(𝑚2)𝚪𝐏(𝑚3) ⋯ 𝚪𝐏(𝑚Τ)𝟏′ 
(7) 

 

By using the concept of directed graphical model referring 

to Jordan [35] and consider Eq. (7), the logarithm of the joint 

distribution from set (𝑴max
obs (Τ)

, 𝑪(Τ)) is given by: 

 

log (Pr (𝑴max
obs (Τ)

, 𝓒(Τ))) =

log(𝛿𝑐1
∏ 𝛾𝑐𝑡−1,𝑐𝑡

Τ
𝑡=2  ∏ Pr𝑐𝑡

(𝓂𝑡)Τ
𝑡=1 ) = log 𝛿𝑐1

+

∑ log 𝛾𝑐𝑡−1,𝑐𝑡
Τ
𝑡=2 + ∑ log Pr𝑐𝑡

(𝓂𝑡)Τ
𝑡=1 .  

(8) 

 

In the N-state GHMMs, the EM algorithm treats the 

transition probability matrix and a collection of states as 

missing data. Because of this, we must first define two random 

variables, uj(t) and vjk(t), using the zero-one random variables 

that represent the states c1, c2, …, cn. When the model’s state 

is 𝑗 at time 𝑡, the random variable uj(t) equals 1; otherwise, t=1, 

2, …, Τ. On the other hand, the random variable vjk(t) equals 0 

for t=2, 3, …, Τ, and 1 if ct-1=j and ct=k. Next, we obtain the 

complete log-likelihood data of the GHMMs from Eq. (8) 

using two random variables, uj(t) and vjk(t): 

 

log (Pr ( 𝑴max
obs (Τ)

, 𝑪(Τ))) =  ∑ 𝑢𝑗(1) log 𝛿𝑗
𝑁
𝑗=1 +

∑ ∑ (∑ 𝑣𝑗𝑘(𝑡)Τ
𝑡=2 ) log 𝛾𝑗𝑘

𝑁
𝑘=1

𝑁
𝑗=1 +

∑ ∑ 𝑢𝑗(𝑡)Τ
𝑡=1 log Pr𝑗(𝑚𝑡) .𝑁

𝑗=1   

(9) 

 

At the E-step of the EM algorithm, we calculate the 

conditional expectation of the missing data given an 

observation and determine the estimated initial value for the 

GHMMs model parameters. Technically, replace all the 

quantities uj(t) and vjk(t) by their conditional expectations 

given the observations  𝑴max
obs (Τ)

: 

 

�̂�𝑗(𝑡) = Pr(𝐶𝑡 = 𝑗|𝒎(Τ)) = 𝛼𝑡(𝑗)𝛽𝑡(𝑗) 𝒬Τ⁄  (10) 

 

�̂�𝑗𝑘(𝑡)=Pr(𝐶𝑡−1 = 𝑗, 𝐶𝑡 =

𝑘|𝒎(Τ))=𝛼𝑡−1(𝑗)𝛾𝑗𝑘𝑝𝑘(𝑚𝑡)𝛽𝑡(𝑘) 𝒬Τ⁄  
(11) 

 

where, 𝛼𝑡(𝑗) = Pr (𝑴max
obs (t)

, 𝐶𝑡 = 𝑗)  and 𝛽𝑡(𝑖) =

Pr (𝑴max
obs

𝑡+1

(Τ)
= 𝒎𝑡+1

(Τ)
|𝐶𝑡 = 𝑖).  At the M-step of the EM 

algoritm we maximize the complete data log-likelihood 

function Eq. (9), with respect to the three sets of parameters: 

δ, Γ, and the parameter of the state-dependent distributions 

[34]. 

 

 

3. METHODOLOGY 

 

To help the earthquake researchers better understand our 

work, the methodology of the research is presented here. In 

this section, we explain the procedure to get the maximum 

observed earthquake magnitude (research data), the Gaussian 

mixture models used, and the criteria for model selection. 

The steps listed below can be followed to get the research 

data modeled: 

(1) Obtaining the initial seismicity data from one earthquake 

catalog website, namely https://earthquake.usgs.gov. 

(2) Converting the various type magnitudes in the 

earthquake catalog that we get in point one into Mw type. 

(3) Preparing seismicity data for mathematical modeling 

through the declustering process (i.e., separating the 

mainshock with foreshock and aftershock earthquakes), and 

estimating the magnitude of completeness (Mc).  

(4) Collecting the data from point three to obtain the annual 

maximum earthquake magnitude. 

Subsequently, we apply the GMMs and the GHMMs to 

obtain seismicity patterns for all segments in the Sumatra 

megathrust zone. To achieve this, we use a trial-and-error 

process for several values of the number of groups or states 

that are feasible to be tested.  

The optimum number of groups or states is selected based 

on the smallest Bayes Information Criterion (BIC). The 

formulation of BIC is defined as follows: 

 

BIC = log Pr(𝒎(Τ)|�̂�) −
1

2
𝑛(�̂�) log (Τ). (12) 

 

The variable 𝑛(�̂�) is the number of parameters estimated 

and log Pr(𝒎(Τ)|�̂�) is the maximized log-likelihood function 

for complete data [36]. 
 

 

4. RESULTS AND DISCUSSION 

 

As an illustration of our research, we use the seismicity data 

from January 1970 to December 2022 of the Sumatra 

megathrust zone, published online by the United States 

Geological Survey (USGS). The information related to the 

identity, custom rectangle, instrumental earthquake catalogs 

(i.e., the magnitude of completeness (Mc), the productivity of 

the earthquakes (a), and the proportionate distribution of large 

and small earthquakes (b)) and statistical description (max, 

mean, and variance) of the research data are shown in Table 2. 
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Table 2. Some information related to the identity, coordinates of the research area, and statistical information from historical data 

of the maximum earthquake magnitude from 1970-2022 
 

Identity of Research Area 

Custom Rectangle of 

Research Area  

Estimating the Mc (Mw), a, and b 

for the Earthquake Catalogs 

Studied 

Empirical Earthquake 

Magnitude (Mw) 

Latitude Longitude Mc a b Max Mean Variance 

S
eg

m
en

ts
 Aceh Andaman (AA) [2.2, 7.0] [92, 97] 4.50 8.18 1.07 ± 0.02 9.10 6.09 0.62 

Nias Simeulue (NS) [-0.8, 2.2] [94, 99] 4.40 8.21 1.11 ± 0.02 8.60 5.76 0.57 

Mentawai Siberut (MS) [-1.9, -0.8] [97,100] 4.50 7.28 1.03 ± 0.05 6.70 5.37 0.38 

Mentawai Pagai (MP) [-3.8, -1.9] [97,102] 4.50 6.99 0.90 ± 0.03 7.90 5.75 0.57 

Enggano (EO) [-6.0, -3.8] [99,104] 4.60 7.59 0.97 ± 0.02 8.40 6.03 0.39 

Sumatra megathrust zone (SU) [-6.0, 7.0] [92,104] 4.40 8.19 0.96 ± 0.01 9.10 6.64 0.64 

An essential step in seismicity analysis is determining the 

three parameters instrumental to earthquake catalogs, namely 

the Mc, a, and b values. Rydelek and Sacks [37] define the Mc 

as the minimum magnitude at which all earthquakes in a 

space-time volume can be well detected. The methods to 

determine the Mc fall into two categories: catalog-based 

techniques (Rydelek and Sacks [37], Woessner and Wiemer 

[38]) and network-based techniques (Kvaerna and Ringdal 

[39], and Schorlemmer and Woessner [40]. In this study, the 

Mc is determined using a catalog-based technique, that is, by 

matching the Gutenberg-Richter (G-R) model to the 

Frequency-Magnitude Distribution (FMD) of earthquake data, 

which is written as follows:  
 

𝑙𝑜𝑔10 𝑁 = 𝑎 − 𝑏(𝑠 − 𝑀𝑐) (13) 

 

The description of the variables used in Eq. (13) is as 

follows: N represents the total number of occurrences with a 

minimum magnitude of 𝑠 , 𝑎  represents the productivity of 

earthquakes, and 𝑏 represents the relative distribution of small 

and large earthquakes (Woessner and Wiemer [38]). 

The estimated values of the three instrument parameters of 

the earthquake catalog from the seismicity data that we used 

are presented in columns 4 to 6 in Table 2. According to this, 

two aspects can be discussed. Firstly, we obtain that the Mc 

value of a catalog for the Sumatra megathrust zone, including 

five segments, ranges from 4.40 to 4.60; this means that all 

earthquakes above a magnitude of 4.40 have been well 

recorded in the catalog from January 1970 to December 2022. 

Secondly, due to the fact that the estimated values for 

parameters a and b obtained from each segment are relatively 

the same, we may conclude that the behaviour of seismic 

activity for all segments tends to be similar. 

Firstly, we will check whether there is agreement between 

these findings and the results of seismic activity analysis based 

on mathematical modeling of the maximum earthquake 

magnitude data using the Gaussian mixture models. To do so, 

we check whether the spatial dependency of every two pairs 

of the maximum observed earthquake magnitude data exists. 

The test is carried out using Kendall’s rank correlation τa 

due to the continuous distribution of random variables. Here, 

τa denotes the dependence measure of two variables. The 

recapitulation of the dependence measure is shown in Table 3. 

Similar to the dependency testing procedure for discrete data, 

for continuous data, we can formulate it as follows: H0: τa=0 vs 

H1: τa≠0 (dependent), we reject H0 if the p-value < 0.05. All data 

pairs have results with a p-value > 0.05. It means that each pair 

of data from two major earthquake sources is mutually 

independent. Thus, we can recognize the seismicity pattern in 

the Sumatra megathrust zone, including Aceh-Andaman, 

Nias-Simeulue, Mentawai-Siberut, Mentawai-Pagai, and 

Enggano segments, both segmentally and zonally using the 

maximum earthquake magnitude data. 

The first thing to do before estimating the parameters is to 

train the models to find the optimum number of groups or 

states. Several R packages are available for doing this. In this 

study, the R packages that we used to analyze the data are the 

RHmm package for GHMMs provided by Taramasco and 

Bauer [41] and the Mclust5 package for GMMs provided by 

Scrucca et al. [42], and results are shown in Table 4, where the 

smallest BIC value on each row is denoted by a bold mark. 

 

 

Table 3. Dependence measure for two pairs of the maximum earthquake magnitude in the Sumatra megathrust zone 
 

Segments 
Nias-Simeulue (NS) Mentawai-Siberut (MS) Mentawai-Pagai (MP) Enggano (EO) 

�̂�𝒂 p-value �̂�𝒂 p-value �̂�𝒂 p-value �̂�𝒂 p-value 

Aceh-Andaman (AA) 0.088 0.526 -0.078 0.575 0.164 0.241 -0.016 0.908 

Nias-Simeulue (NS)    0.094 0.503 0.105 0.453 0.175 0.211 

Mentawai-Siberut (MS)     0.224 0.107 0.173 0.217 

Mentawai-Pagai (MP)       0.266 0.053 
 

Table 4. The comparison of Bayesian Information Criterion (BIC) values from three probabilistic models, namely univariate 

Gaussian distribution, G-group GMMs with various numbers of groups, and N-state GHMMs with various numbers of states 
 

Research Area 
Univariate Gaussian  

Distribution 
 

Gaussian Independent Mixture 

Models (G-group GMMs) 

Gaussian Hidden Markov  

Models (N-state GHMMs) 

G=2 G =3 G =4 N=2 N=3 N=4 

S
eg

m
en

ts
 Aceh-Andaman (AA) 131.99  122.54 134.15 137.08 125.92 137.17 165.35 

Nias-Simeulue (NS) 127.64  129.83 136.10 135.81 133.36 152.49 n.a 

Mentawai-Siberut (MS) 105.58  107.29 107.69 117.94 114.22 133.04 157.18 

Mentawai-Pagai (MP) 117.28  114.28 121.36 128.25 109.27 111.00 135.96 

Enggano (EO) 107.41  92.15 102.95 110.89 96.07 109.86 133.83 

Sumatra megathrust zone (SU) 133.51  130.53 131.83 142.87 121.69 131.28 154.87 
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From Table 4, some aspects can be discussed. For the first 

aspect, related to a segment analysis, the results show that 

there are differences in the probability model that fit the ePDF 

for each segment studied. Specifically, the appropriate ePDF 

for two segments, namely the Aceh-Andaman and Enggano 

segments, is the 2-group GMM. Thus, we can conclude that 

the seismic activity for both segments is in the range of two 

levels. Meanwhile, for the Mentawai-Pagai segment, the 

seismic activity is also in the range of two levels; moreover, 

there is a Markov property in the seismic dynamic process. For 

the second aspect, the ePDF for the Nias-Simeulue and 

Mentawai-Siberut segments fits a Gaussian distribution with a 

single peak. However, the difference in BIC values between a 

single peak and two peaks, namely 2-group GMM or 2-state 

GHMM, is relatively small. This condition raises doubts about 

determining the best model. Therefore, we continued the 

process of selecting the best model by testing the normality 

and serial independence of the modeled data. 

In this study, the normality data test uses the Shapiro-Wilk 

test provided by Shapiro et al. [43], that is, the yearly 

magnitude maximum of earthquakes is normally distributed, 

which is the null hypothesis to be investigated. The Shapiro-

Wilk test statistic for a sample (m1, m2, ..., mT) is defined as: 

 

𝑊𝑡𝑒𝑠𝑡 =
∑ 𝑒𝑖(𝑚𝑇−𝑡+1 − 𝑚𝑡)2𝑇

𝑡=1

∑ (𝑚𝑡 − �̅�)2𝑇
𝑡=1

, (14) 

 

where, ei is the Shapiro Wilk test coefficient, T is the sample 

size, and �̅� is the sample mean.  

Subsequently, we perform a serial time dependence test of 

sample (m1, m2, ..., mT) using the Ljung-Box QLB(h) test 

provided by Ljung and Box [44].  

According to this, there are two formulas that will be used, 

namely: 
 

𝑄𝐿𝐵(ℎ) = 𝑇(𝑇 + 2) ∑ �̂�2(𝑡) (𝑇 − 𝑡)−1

ℎ

𝑡=1

, (15) 

 

�̂�2(𝑡) =
𝑇 ∑ (𝑚𝑗(𝑡) − �̅�𝑗)(𝑚𝑗(𝑡 + ℎ) − �̅�𝑗)𝑇−ℎ

𝑡=1

𝑇 − ℎ ∑ (𝑚𝑗(𝑡) − �̅�𝑗)
2𝑇−ℎ

𝑡=1

.  (16) 

 

The used variables in Eqs. (15) and (16) are as follows: h is 

the number of lags, QLB(h) is the Ljung-Box test’s statistical 

test, and �̂�2(𝑡) represents the sample autocorrelation at the lag 

t. 

Subsequently, the null hypothesis to be investigated is that 

the yearly earthquake magnitude maximum is serially time-

independent, formally written as H0: �̂�2(ℎ) = 0. When the p-

value of the statistical test is less than 𝛼, the H0 hypothesis is 

rejected at a significance level of 𝛼 (we choose 𝛼 = 0.05). 

Table 5 shows the outcomes of the normality data and the 

serial time dependence tests for all segments. As can be seen 

in the fourth column of Table 5, it is clear that “H0: the data is 

normally distributed” is rejected for each segment. Thus, we 

can say that the ePDF from each of the five segments does not 

follow a Gaussian distribution with a single peak (Result 1). 

Furthermore, the serial time dependence outcomes test for all 

segments can be seen in the eighth column of Table 5, which 

shows that “H0: the annual earthquake magnitude maximum is 

serially time-independent” is accepted for the Aceh Andaman 

(AA), Nias Simeulue (NS), Mentawai Siberut (MS), and 

Enggano (EO) segments. This means that the data modeled 

from the four previously described segments had the serial 

time independence characteristic (Result 2).  

From the two results obtained, we may conclude that the 

appropriate probability mixture model for the Nias Simeulue 

and Mentawai Siberut segments is the Gaussian independent 

mixture model with two peaks (groups), which can be written 

as the 2-group GMM. 

The summary of each component with its number, 

parameter estimates of selected models, in addition to the 

chosen model mean-variance values and empirical data for 

each case studied, are shown in Table 6. The second and third 

columns of Table 6 describe the grouping of data based on the 

largest posterior probability values. Accordingly, for all 

segments and the Sumatra megathrust zone, two seismicity 

patterns are found, which we denote by 1-level corresponding 

to periods of a moderate earthquake and by 2-level 

corresponding to periods of a strong earthquake.  

Next, we will focus the discussion of the other columns in 

Table 6 only on the Aceh Andaman segment to save space. 

Meanwhile, in other cases, it can be explained in the same way. 

To do so, let us consider the third through sixth columns of 

Table 6. The number of components having a 1-level 

seismicity pattern is 44 with a Gaussian distribution N1(5.85; 

0.14) and the number of components having a 2-level 

seismicity pattern is 9 with a Gaussian distribution N2(6.82; 

1.28) where the weights of the two Gaussian distributions are 

0.75 and 0.25, respectively. 

Subsequently, the mean and variance values between the 

selected model and the empirical data are relatively equal, as 

can be seen in the last four columns of Table 6. In other words, 

the two main statistical parameters (i.e., mean and variance 

values) from the empirical data can be estimated with 

precision by the selected model. In addition, the PDF curves 

of Ν1(5.85; 0.14), Ν2(6.82; 1.28), and the 2-group GMM are 

shown in Figure 2 with different colors, namely blue, green, 

and red, respectively. 

Accordingly, the seismicity patterns of the Aceh Andaman 

and Nias Simeulue segments are relatively more fluctuating 

compared to the other segments, as can be seen in Figure 3. 

We note that this condition is inseparable from two factors, 

that is, the values of a and b of these two segments are 

relatively larger compared to the other three segments (see 

Table 2), and there were two large earthquakes that occurred 

in a relatively close period in the Aceh Andaman (26/12/2004; 

Mw=9.10) and Nias Simeulue (28/03/2005; Mw=8.60).
 

Table 5. The results of normality and serial independence tests  
 

Research Area 

Shapiro-Wilk Normality Test 

H0: The Data is Normally Distributed 

Ljung-Box Serial Independence Test 

𝐇𝟎: The Data is Serially Time-Independent 

W test p-value Decision of H0 �̂�(𝒉)  QLB p-value Decision of H0 

S
eg

m
en

ts
 Aceh-Andaman (AA) 0.860 1.083 × 10-5 Rejected 0.137 7.930 0.160 Accepted 

Nias-Simeulue (NS) 0.916 1.174 × 10-3 Rejected 0.038 2.850 0.723 Accepted 

Mentawai-Siberut (MS) 0.945 1.587 × 10-2 Rejected 0.042 0.669 0.985 Accepted 

Mentawai-Pagai (MP) 0.897 2.478 × 10-4 Rejected 0.432 18.504 0.002 Rejected 

Enggano (EO) 0.825 2.005 × 10-6 Rejected 0.148 5.643 0.343 Accepted 

Sumatra megathrust zone (SU) 0.886 1.128 × 10-4 Rejected 0.210 17.013 0.004 Rejected 
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Table 6. The recapitulation of number of component (comp), parameter estimates of selected models, mean-variance values of 

the selected models and empirical data 

 

Research Area Comp 
Number 

of Comp 

Parameters  Model Empirical 

δi μi 𝝈𝒊
𝟐 Γ Mean Variance Mean Variance 

S
eg

m
en

ts
 

Aceh Andaman  

(AA) 

1 44 0.75 5.85 0.14 
n.a 6.09 0.61 6.09 0.62 

2 9 0.25 6.82 1.28 

Nias Simeulue  

(NS) 

1 44 0.70 5.47 0.19 
n.a 5.77 0.56 5.76 0.57 

2 9 0.30 6.46 0.74 

Mentawai Siberut  

(MS) 

1 43 0.82 5.16 0.18 
n.a 5.37 0.37 5.37 0.38 

2 10 0.18 6.35 0.06 

Mentawai Pagai  

(MP) 

1 30 0.56 5.35 0.30 
[
0.87 0.13
0.15 0.85

] 5.75 0.67 5.75 0.57 
2 23 0.44 6.26 0.68 

Enggano  

(EO) 

1 44 0.76 5.78 0.08 
n.a 6.02 0.38 6.03 0.39 

2 9 0.24 6.80 0.56 

Sumatra megathrust zone 

(SU) 

 40 0.74 6.35 0.43 
[
0.97 0.03
0.08 0.92

] 6.64 0.81 6.64 0.64 
2 13 0.26 7.47 0.98 

 

  
 

   
 

Figure 2. The histograms ePDF of the maximum earthquake magnitude with the PDF curves of the selected model 

 

Next, we discuss the seismicity patterns from a zonal 

analysis point of view. According to this, let us reconsider 

Tables 4 and 5. The model that fits the probability of empirical 

data (ePDF) is the 2-state GHMM, with a BIC value of 121.69. 

Thus, we conclude that the optimum level of seismic activity 

is two levels, with the presence of the Markov property in the 

sequence of seismic dynamics. Notice that the Markov 

properties of the seismic dynamics sequence are investigated 

based on the serial dependency test (with lag h=1) of the 

empirical data using the Ljung-Box test. As can be seen in 

Table 5, it is clear that “H0: The annual earthquake magnitude 

maximum in the Sumatra megathrust zone is serially time-

independent” is rejected. Consequently, there was a one-year 

lag in the serial time dependency feature of the modeled data. 

This result conforms to the selected mixture models for the 

seismicity data in the Sumatra megathrust zone. 

From the 2-state GHMM parameters determined, namely δi, 

μi, 𝜎𝑖
2, and Γ, some aspects can be discussed. We obtain that 

the stationary distribution for two states is δi=(0.74, 0.26), with 

the Gaussian distribution parameters for each state being 

Ν1(6.35; 0.43) and Ν2(7.47; 0.98), respectively. This indicates 

that there is a 74% chance that the maximum earthquake 

magnitude will occur in a year that is far enough away from 

2022 to be considered in a “strong state”, while the remaining 

26% are in a “major state”.  Additionally, from the first row of 

the transition probability matrix (Γ), when seismicity is in a 

“strong state”, as we can see, it either stays in that state with a 

probability of 0.97 or it moves to a “major state” with a 

prediction of 0.03. Using the same method, the second row of 

the 𝜞 can be explained. 

Consider the last row of Figure 3, from a time-dependent 

perspective, the “strong state” was documented by the 

beginning of 1970, and so seismic behavior shifted from 

“strong state” to “major state” between 2000 and 2012. 

Subsequently, it remained in a “strong state” from 2013 to 

2022, as illustrated in Figure 3(f). 

From the results mentioned in the previous paragraphs, we 

can conclude that the seismic phenomena of the five segments 

studied have a response range that tends to be similar for 

maximum earthquakes. However, the seismic dynamics of 

each segment are different from each other. The seismic 

pattern in the Aceh Andaman and Nias Simeulue segments is 

more volatile than the other three segments. This condition 

occurred because of two large megathrust earthquakes that 

occurred relatively close together in the Aceh Andaman 

segment (December 26, 2004) and Nias Simeulue (March 28, 
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2005). Additionally, the earthquake productivity and relative 

distribution of small and large earthquakes in these two 

segments are higher than in the other three segments. Thus, we 

can propose that seismic risk mitigation strategies in the 

Sumatra subduction zone can be structured in two different 

designs adapted to the dynamics of the seismicity patterns. 

 

The Seismicity Patterns of the Aceh-Andaman (AA) Segment 

 
(a) 

The Seismicity Patterns of the Nias-Simeuleu (NS) Segment 

 
(b) 

The Seismicity Patterns of the Mentawai-Siberut (MS) 

Segment 

 
(c) 

The Seismicity Patterns of the Mentawai-Siberut (MS) 

Segment 

 
(d) 

The Seismicity Patterns of the Enggano (EO) Segment 

 
(e) 

The Seismicity Patterns of the Sumatra Megathrust Zone 

 
(f) 

 

Figure 3. The step plot of the seismicity patterns 

 

 
(a) 

 
(b) 

 

Figure 4. The maximum earthquake magnitude from 1970-

2022 in the Sumatra megathrust zone: (a) The plot of a 95% 

confidence interval of simulations of 2-state GHMM; (b) The 

plots of observations (blue solid line) and simulations (red 

dotted line) of the annual maximum earthquake magnitudes 

 

To get simulated yearly maximum earthquake magnitude 

data, a bootstrap sample of size 100 is generated using the 2-

state GHMM. The resulting sample of parameters then 

produced the 95% confidence intervals that are displayed in 

Figure 4(a). Subsequently, we also provided a visualization of 

the plot of observations and simulations for the annual 

earthquake magnitude maximum data in the Sumatra 

megathrust, as can be seen in Figure 4(b). The vertical axis in 

Figure 4 is associated with the magnitude of earthquakes, 

while the horizontal axis is the time period (in years). 

The relevance of our results to other studies can be 

presented as follows: As mentioned in the introduction, 

Orfanogiannaki et al. [6] and Rizal et al. [12] have provided 

the seismicity patterns in the Sumatra megathrust zone using 

PHMM, where the number of seismicity levels for each 

segment studied is two to four categories. Meanwhile, in this 

study, the number of seismicity levels for each subregion is 

limited to two categories. However, from the seismic pattern 

dynamics perspective, our results are in line with their findings, 

that is, the dynamics of seismic patterns in the Aceh Andaman 

and Nias Simeuleu segments fluctuate more than the 

remaining three segments of the megathrust zone in Sumatra. 

 
 

5. CONCLUSIONS 

 

The research area of the present study is the Sumatra 

megathrust zone, that has historically experienced frequent 

earthquakes, some of these have resulted in a significant 

number of deaths and severe infrastructure damage. Therefore, 

a comprehensive study of earthquake risk management 

through seismic modelling and pattern recognition in the 

research area has become a critical issue must be addressed. 

We have successfully implemented two kinds mixture 

models of Gaussian distribution, namely G-group Gaussian 

independent mixture models (G-group GMMs) and N-state 

Gaussian hidden Markov models (N-state GHMMs), to 

determine seismicity patterns in the Sumatra megathrust zone, 

which contains five major earthquake sources, i.e., the Aceh-

Andaman, Nias-Simeulue, Mentawai-Siberut, Mentawai-

Pagai, and Enggano segments. In this study, the analysis is 

carried out from segmentally and zonally points of view. 

Two results are obtained as follows. Firstly, from a segment 

analysis point of view, the results showed that the fluctuate of 

seismic patterns in the five segments is two levels due to the 

ePDF for those regions fits to Gaussian mixture model with 

two peaks, that is, the 2-group GMM for the Aceh-Andaman, 

Nias-Simeulue, Mentawai-Siberut, and Enggano segments, 

whereas the 2-state GHMM for the Mentawai-Pagai segment. 

The number of groups or states represents the earthquake 

magnitude scales, namely moderate and strong categories. 

Furthermore, we found that the seismic patterns of the Aceh-

Andaman and Nias-Simeulue segments are more fluctuating 

than those of other segments. These conditions are inseparable 

from two factors, namely (1) two large megathrust earthquakes 

that was occurred in the Aceh-Andaman (December 26, 2004; 

with Mw=9.10) and Nias-Simeulue (March 28, 2005; with 

Mw=8.60) segments, and (2) the earthquake productivity and 

the relative distribution of small and large earthquakes in these 

two segments are relatively larger compared to the other three 

segments. Secondly, from a zonal analysis point of view, the 

appropriate probabilistic mixture model for the ePDF global 

modeled data is the 2-state GHMM. As a result, there were 

only two seismic levels: the moderate and strong categories. 

Moreover, the sequence of seismic patterns has the Markov 

property due to the modeled data had serial temporal 

dependence, which was present with a one-year lag. 

We hope that these findings can improve seismic risk 
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management, specifically for the area’s vulnerability to 

destructive earthquakes in the Sumatra megathrust zone, 

encompassing five seismic segments. The reason is that the 

model that we propose can not only recognize the pattern of a 

series of observations but can also be used to predict 

earthquake events in the future. Thus, we can say that there is 

an opportunity to integrate our results with early warning 

systems for earthquakes or urban planning on the coast of the 

Sumatra megathrust zone. However, in this current paper, we 

have not done this due to three limitations of this research: the 

observation range for modeled seismic data is relatively short 

for earthquake prediction studies; no investigations regarding 

the errors of the chosen models have been conducted; and the 

research assumptions still do not accurately reflect the ideal 

conditions of the seismicity phenomenon under study. As a 

future research direction, some limitations of this work that 

were mentioned in the previous paragraph can be worked out 

by researchers to improve this research.  
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