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This paper dealt with the study of the analysis and interpretation of spatial variability 

using the Kriging technique in geostatistics. The objectives of this work are; to 

interpolate the values of regionalized variables; to express the spatial variation after 

using the logarithmic transformed for the original scale; observations for two groups of 

soil data; To reduce the level of pollution in the soil by studying the characteristics of 

the estimates. The ordinary kriging procedure is used to estimate the best linear 

unbiased estimator. The experimental semi-variogram function is applied as a tool to 

give the idea of spatial distribution after using the logarithmic transformations of the 

origin data. This method assumes the isotropy. Also, a robust estimate (Matheron's and 

Haslett's, Cressie-Hawkins) was applied to minimize some prediction scores. Data 

adopted in this work is taken from Mosul city in Iraq, for some soil spatial real data. 

Each data contains (100) real soil data of (PH) and (NO3). Our finding results illustrate 

the variance is itself for all directions of the compass: East-west, North-south, 

Northeast, and Northwest. The model describes (94%) nearest the Gaussian model of 

(PH), and (92%) nearest the spherical model of the total variability of (NO3) after 

comparing the results models between the original scale and the lognormal data by 

obtain the fitting model of soil data with the formulas of kriging. In conclusion, we 

show the qualities of the estimation rely on the ratio distances. Behaviors of continues 

of the phenomenon or observations and low coefficient of variation, which leads to 

improved efficiency in spatial distribution The support of results show that Matheron's 

and Haslett's robust estimators had better performance than Cressie Hawkins's robust 

soil data comparison with the curves of variogram function, because the small effect of 

outlier values on the estimates it is clear from this effect that pollution may be large by 

correctly knowing the weight restrictions for the level of pollution, and reducing the 

level of pollution depends practically and for a long period on the stationarity of some 

estimates. All computations are carried out in Matlab language. 
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1. INTRODUCTION

Spatial statistics studies the values of the spatial data 

obtained from the areas where metal ores, underground water, 

or plants are called statistical geological geostatistical or 

mining engineering. Spatial statistics is a kind of applied 

statistics used to solve many of the issues that their data is a 

subset of the spatial random process. The French mathematical 

scientist Georges Matheron, is the first work in the 

geostatistics field, based on the thesis of the South African 

mining engineer Daniel G. Krige and the famous Kriging. 

Kriging is one of the most common techniques used to 

interpolate the values of spatial data including the outliers 

(very large data or very small data) [1].  

Geology began applying the theory of variables to solve 

regional problems of geology and mining. The methods used 

in hydrology, meteorology, environmental science, and 

structural engineering. In addition, Rendu [2] and Dowd [3] 

deal with the estimated value of ordinary kriging of transform 

with estimated variance of the original regionalized variables. 

The lognormal kriging is optimal when the data are normally 

distributed. Saito et al. [4] selected the multi-normal of 

kriging. Not all outliers give ate rateinaccur  results or high 

errors, but some outliers get the best idea (as a boundary) with 

kind of outliers [5]. If the measurement of data contains large 

data or very small data corresponding with the rest data, the 

model of estimation is robust in parameters. The variogram 

function is used to create the parameters to work prediction by 

spatial data (with outliers) [6] The drawn maps showed a high 

spatial variance of the main components of organic matter, 

nitrogen, phosphorous, available potassium, and sodium in the 

many studies of soil properties. Continuous soil properties can 

be predicted by the geostatic method. Kriging Methods for 

Surface Estimation Soil (PH). Studies have shown that all of 

these interpolation methods contain errors for estimating 

parameters, many auxiliary parameters have been tested, using 

the kriging method. Kriging regular also shows similar value 

maps of soil potassium and phosphorous content. The results 

showed that the ordinary logarithms method had a more 

accurate prediction estimation. Many studies dealt with the 
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robust regression with error scale and robust variable with 

models [7-10]. Robust estimation using the modified function 

with new tails taken from Jiang et al. [11]. Another study took 

a comparison of different statistical approaches to evaluate the 

performance of prediction [12]. The interpolation techniques 

have been developed for analyzing variability data 

transformation and uncertainty in the geostatistical 

combination of radar [13]. Geostatistical relies on the 

regionalized variable or spatial real variable in the mining field 

[14]. 

 

 

2. METHODOLOGY 

 

Spatial data obtained from applications of environment, 

agriculture, and earth sciences are defined as regional spatial 

variables that differ from ordinary variables in statistics, as 

each spatial variable represents that it has a real value for the 

phenomenon or observations (such as the degree of raw metal, 

air pollution, or the level of gases and groundwater). Each 

spatial variable has its location (two or three dimensions). 

Suppose it represents the spatial variable  T(v) at location  (v) 

within region D. In Euclid space. 

And number of regionalized spatial variables defied as T(vi) 

at the location, i=1, 2, …, h. 

The hypotheses of intrinsically stationary and isotropic for 

all v and v+h the region D. 
 

𝐸[𝑇(𝑣)] = 𝜇 

𝑉𝑎𝑟[𝑇(𝑣 + ℎ) − 𝑇(𝑣)] = 2𝛾(ℎ) 
𝛾(ℎ) = 𝛾(‖ℎ‖) Isotropy 

 

Let we have a finite number of points {𝑇(𝑣𝑖), 𝑣𝑖 ∈ 𝐷}, for 

i=1, ..., n. and let 𝑣0 ∈ 𝐷  and T(v0) is spatial variable at 

location v0. 
 

2.1 The empirical variorum function 
 

The analysis of the empirical variorum function is 

calculated from the real spatial data, The um function is 

defined by averaging one-half the difference squared of spatial 

variable values over all pairs of observations with the serrated 

distance and direction. Spatial variable expressed a function of 

spatial location T(v) where v is a location of real variable T the 

properties an intrinsically stationary random function T(v) 

with known the semi-variogram function: 𝛾(ℎ) =
1

2
𝑣𝑎𝑟[𝑇(𝑣 + ℎ) − 𝑇(𝑣)] , 𝛾(ℎ) =

1

2
𝐸[(𝑇(𝑣 + ℎ) − 𝑇(𝑣))2] . 

where h is the log along for direction. Then we can write: 
 

𝛾(ℎ) =
1

2𝑚(ℎ)
∑ [(𝑇(𝑣𝑖 + ℎ) − 𝑇(𝑣𝑖))]

2

𝑚(ℎ)

𝑖=1

 (1) 

 

where, γ(h) is the variogram function n  lag(h) of the sample 

points and (vi+h), (vi), where i=1, 2, …, h, m(h) is the number 

of pairs. 

The theoretical semi-variogram function has some basic 

properties. Let T(v) be variable be an interracially stationary, 

then the semi-variogram function denoted as γ(h) satisfies the 

following conditions: 

 

·γ(0)=0 

·γ(h)≥0 

·γ(-h)=γ(h) 

·lim
ℎ→∞

𝛾(ℎ)

|ℎ|2
≠ 0 

·Semi-variogram defined as negatives 

i.e., for any finite sequence of points (vi), i=1, 2, …, h and 

for any finite of real numbers (λi), i=1, 2, …, h such that 

∑ 𝜆𝑖 = 0
𝑛
𝑖=1 , then ∑ ∑ 𝜆𝑖𝜆𝑗𝛾(𝑣𝑖 − 𝑣𝑗) ≤ 0𝑛

𝑗=1
𝑛
𝑖=1 . 

 

2.2 Kriging techniques 

 

The kriging technique is used to estimate a value at a point 

of real spatial data of the study area. The variables satisfy the 

second-order stationarity. In ordinary kriging, we want to 

estimate a value of (v0) using the data values from neighboring 

sample point (v0). The predictor of ordinary kriging linearly 

with weights can be written as: 

 

�̂�𝑜𝑘(𝑣) = ∑𝜆𝑖 ∗ 𝑇(𝑣0)

𝑛

𝑖=1

 (2) 

 

where, λi, i=1, 2, …, h is the weights, the estimate variance is 

defined by 𝜎𝐸
2: 

 

𝜎𝐸
2 = 𝐸 (�̂�(𝑣) − 𝑇(𝑣 ))

2

= −𝛾(𝑣𝑖

− 𝑣𝑗)∑∑𝜆𝑖𝜆𝑗𝛾(𝑣𝑖 − 𝑣𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

+ 2∑𝜆𝑖𝛾(𝑣𝑖 − 𝑣0)

𝑛

𝑖=1

 

(3) 

 

By minimizing the estimate variance with the condition on 

the weight, the ordinary kriging system: 

 

(

 
 

𝛾(𝑣1−𝑣1)…𝛾(𝑣1−𝑣𝑛)…
.
.

𝛾(𝑣𝑛−𝑣1)…𝛾(𝑣2−𝑣𝑛)…

1                        …

1
.
.
1
0)

 
 

(

 
 

𝜆1
.
.
𝜆𝑛
𝜇0𝑘)

 
 
=

(

 
 

𝛾(𝑣1−𝑣0)
.
.

𝛾(𝑣𝑛−𝑣0)
1 )

 
 

 (4) 

 

where, μ0k is the Lagrange parameter and λi are the weights the 

ordinary kriging system can be defined in the form: 

 

{
 
 

 
 ∑𝜆𝑖𝛾(𝑣𝑖−𝑣𝛼) + 𝜇0𝑘 =

𝑛

𝛼=1

𝛾(𝑣1−𝑣0) , 𝑖 = 1,2, …𝑛

∑𝜆𝛼 = 1

𝑛

𝛼=1 }
 
 

 
 

 (5) 

 

The estimated variance is defined as: 

 

𝜎0𝑘
2 = 𝜇0𝑘 − 𝛾(𝑣0−𝑣0) +∑𝜆𝛼𝛾(𝑣𝛼−𝑣0)

𝑛

𝛼=1

 (6) 

 

where, v0 is the location of the real data, then �̂�(𝑣0) = 𝑇(𝑣𝛼) 
if v0=vα [15]. 

 

2.3 Simple kriging with an estimated mean 

 

Let T(v) a second-order stationery with o(h) known 

covariance function the mean of kriging using the linear 

combination: 
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{∑𝜆𝑖
𝑘𝑚

𝑛

𝑖=1

𝑇(𝑣𝑖), with ∑𝜆𝑖
𝑘𝑚

𝑛

𝑖=1

= 1} (7) 

 

where, 𝜆𝑖
𝑘𝑚

 are the weight of kriging of the mean and T(vi) 

the data at location (vi) then: 

 

�̂�𝑠𝑘𝑚(𝑣0) = ∑𝜆𝑖
𝑘𝑚

𝑛

𝑖=1

𝑇(𝑣𝑖) +∑𝜆𝑖
𝑠𝑘

𝑛

𝑖=1

𝑇(𝑣𝑖)

−∑𝜆𝑖
𝑠𝑘

𝑛

𝑖=1

∑𝜆𝑗
𝑘𝑚𝑇(𝑣𝑗)

𝑛

𝑗=1

 

=∑[𝜆𝑖
𝑠𝑘 + 𝜆𝑖

𝑘𝑚(1 −∑𝜆𝑗
𝑠𝑘

𝑛

𝑗=1

]

𝑛

𝑖=1

𝑇(𝑣𝑖) 

(8) 

 
Then the weight means: 

 

𝑤 = 1 −∑𝜆𝑖
𝑠𝑘

𝑛

𝑖=1

 

�̂�𝑠𝑘𝑚(𝑣0) =∑[𝜆𝑖
𝑠𝑘 +𝑤𝜆𝑖

𝑘𝑚]𝑇(𝑣𝑖)

𝑛

𝑖=1

=∑𝜆𝑖
′

𝑛

𝑖=1

𝑇(𝑣𝑖) 

(9) 

 

where, ∑ 𝜆𝑖
′𝑛

𝑖=1 = 1 from an ordinary known system by the 

weight 𝜆𝑖
′
:  

 

∑𝜆𝑗
′𝐶

𝑛

𝑗=1

(𝑣𝑖 − 𝑣𝑗) =∑𝜆𝑖
𝑠𝑘𝐶

𝑛

𝑗=1

(𝑣𝑖 − 𝑣𝑗) + 𝑤∑𝜆𝑖
𝑘𝑚𝐶

𝑛

𝑗=1

(𝑣𝑖 − 𝑣𝑗)

= 𝐶(𝑣𝑖 − 𝑣𝑗) + 𝑤𝜇𝑚𝑘  

 

We denote μ' as a product of the mean weight with the 𝜆𝑖
′
, 

Then the ordinary known system: 

 

{
 
 

 
 ∑𝜆𝑗

′𝐶

𝑛

𝑗=1

(𝑣𝑖 − 𝑣𝑗) = 𝐶(𝑣𝑖 − 𝑣0) + 𝜇
′   𝑓𝑜𝑟 𝑖 = 1,2,… 𝑛 

∑𝜆𝑗
′ = 1

𝑛

𝑗=1 }
 
 

 
 

 (10) 

 
Then the estimated mean is �̂�𝑠𝑘𝑚(𝑣0) = �̂�𝑜𝑘(𝑣0)  and the 

variance of the ordinary known can be written as: 

 
𝜎0𝑘

2 = 𝜎𝑠𝑘
2 − 𝑤𝜎𝑘𝑚

2 (11) 

 

When the mean weight is small the sum of simple weights 

is close to one, also the variance of kriging near is small. 

Predictor of ordinarily known we denote �̂�𝑠𝑘𝑚(𝑣0) to ordinary 

Predictor of the value at (v0) is the linear combination of T(v) 

at each sample vi, i=1, 2, …, n. 

 

�̂�𝜆(𝑣0) =∑𝜆𝑖

𝑛

𝑖=1

𝑇(𝑣𝑖) = 𝜆𝑇𝑇  

 

where, 𝜆 = (𝜆1, … 𝜆𝑛)
𝑇 ∈ 𝑅𝑛. 

The unbiasedness combination of linear Predictor �̂�𝜆. 

 

∑𝜆𝑖

𝑛

𝑖=1

= 1 ↔ 𝜆𝑇1 = 1 

And the express over definer as: 

 

𝐸 (�̂�𝜆(𝑣0) − 𝑇(𝑣0)) = 𝐸 (∑𝜆𝑖

𝑛

𝑖=1

𝑇(𝑣𝑖) − 𝑇(𝑣0)∑𝜆𝑖

𝑛

𝑇=1

)

=∑𝜆𝑖𝐸(𝑇(𝑣𝑖) − 𝑇(𝑣0)) = 0

𝑛

𝑖=1

 

 

Spatiality the value o 𝐸 (�̂�𝜆(𝑣0) − 𝑇(𝑣0)) equal to zero, 

where, T(v) to be intrinsically stationary Cressie according to 

Cressie [14]. (Since any second-order stationary random 

process is automatically intrinsically stationary, i.e. the set of 

all second-order stationary random functions is a subset of the 

set of all intrinsically stationary functions) [16]. 

Then variance 

 

𝜎𝐸
2 = 𝑉𝑎𝑟 (�̂�𝜆(𝑣0) − 𝑇(𝑣0)) = 𝐸 (�̂�𝜆(𝑣0) − 𝑇(𝑣0))

2

= −𝜆𝑇Γ𝜆 + 2𝜆𝑇𝛾0 

𝜎𝐸
2 = −𝜆𝑇(2𝛾0 − Γ𝜆) ≥ 0 

(12) 

 

where, γ is the variance  of T, Γ is the variance matrix and 

γ0=γ(v1- v1), …γ(vn-v0)T [15]. 

 

2.4 Variogram estimates 

 

Experimental variogram function or so-called variogram 

estimate to compare between the following estimators. 

 

2.4.1 Median classical variogram estimates 

Matheson proposed the estimates based on the moments by 

defined: 

 

2𝛾(ℎ) =
1

𝑁(ℎ)
∑(𝑣𝑖 − 𝑣𝑗)

2
𝑛

𝑖=1

 (13) 

 

is the best linear unbiased estimator of real observations? 

 

2.4.2 Cressie-Hawkins robustness 

Cressie proposed the formula: 

 

2𝛾(ℎ) =
1

𝑝ℎ
[
1

𝑁(ℎ)
∑(𝑇𝑣𝑖 − 𝑇𝑣𝑗)

1
2

𝑛

𝑁=𝑛

] (14) 

 

where, 𝑝ℎ = 0.457 +
0.457

𝑁(ℎ)
+

0.457

𝑁(ℎ)2
. 

This estimation is robust given to others of non-normality. 

 

2.4.3 Median variogram estimator 

Defined the median variorum as: 

 

2𝛾(ℎ) =
1

𝐵ℎ
[𝑚𝑒𝑑(𝑇𝑣𝑖 − 𝑇𝑣𝑗)

1
2, (𝑣𝑖 , 𝑣𝑗) ∈ 𝑁(ℎ)]

4

 (15) 

 

where, med is median and Bh=0. To 457 is according to factor 

where the distribution is normal [17]. 

 

2.5 Kriging on transformed data 

 

The transformation of data is used to normalize the data, to 

define the outliers, and to know the statesman of data and 

impose it. Also, transform data gives clearer of data and more 
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stationary variorum by using the log others become the 

skewers of observations lognormal order of log transform of 

data i.e. 

 

𝑦(𝑣𝑖) =  log (𝑇(𝑣𝑖)) (16) 

 

where, T(vi) is the original data at the location vi, and y(vi) is 

data taking the logarithms. 

The transformed data have the uniform dis tn on [0, 1] is a 

practical side, and the transformed [18]. 

 

1. Simple agreement in according to order, T(r) is called the 

rth order statistics. 
 

𝑇(1) ≤ ⋯𝑟 ≤ 𝑇(𝑟) ≤ ⋯ ≤ 𝑇(𝑛) (17) 

 

2. Calculate the value y(r) of the sample 

 

𝑦(𝑟) =
𝑟

𝑛
 (18) 

 

3. The value of y(r) is between 
1

𝑛
 and 1. 

 

4. Calculate kriging on the values 

 

𝑇∗(𝑣) = 𝐹( 𝑦∗(𝑣)) (19) 

 

where, T(.) is the random variable and y(.) is the lognormal of 

T. The value for y*(v) usually falls between two adjacent ranks, 

then T*(v) will be between T(γ) and T(r+1), i.e., T is put off 

mid-point [19]. 

 

2𝛾(ℎ) =
1

2
[𝑇(𝑟) + 𝑇(𝑟+1)] (20) 

 

If  𝑦∗(𝑣) =
𝑟

𝑛
   (𝑣) = 𝑇(𝑟) (21) 

 

Sometimes the value y*(v) by kriging estimation. Falls 

outside the range of the minimum and the maximum 

acceptable limits, in case we reassigned (
𝑏1

𝑛
) to equal (

1

𝑛
) and 

N1≠0 equal 1, then back than function and normal order 

kriging are similarity, and the denotes Gaussian G(y) the 

normal store transform steps as the following. 

 

1. Similar to order statistics, the n simple data in a section 

order 

 

𝑇(1) ≤ ⋯𝑟 ≤ 𝑇(𝑘) ≤ ⋯ ≤ 𝑇(𝑛) (22) 

 

k is rank of data T(k). 

The simple frequency is computed as: 𝑝𝑘 =
𝑘

𝑛
. 

 

2. The normal transform of T(k) is matched to pk and  

 

𝑦𝑘 = 𝐺−1[𝐹𝑍
(𝐾)] = 𝐺−1(𝑝𝑘) (23) 

 

3. Kriging is performed on the transform data. 
 

𝑇∗(𝑣) = 𝐹−1 (𝐺( 𝑦∗(𝑣))) (24) 

 

where, F(.) is the CDF of original data, let T(v1), T(v2) …, T(vn) 

a sample of variable and 𝑁(ℎ) = (𝑣𝑖 , 𝑣𝑗): ‖𝑣𝑖 − 𝑣𝑗‖ = ℎ [20]. 

3. RESULTS AND DISCUSSION  

 

This study depends on the soil variables data in Mosul city 

in Iraq. The data adopted in this work contains two soil data 

(PH, and NO3). Each data of soil has (100) real spatial data 

with its locations.  

We use these data to illustrate the effect of pollution, and 

how and how to reduce this pollution . Figure 1 below 

describes the results of the variogram function for soil data 

NO3, where Figure 1(a) is for all theta of the compass, East-

west (theta 0), North-south (theta 90), Northeast (theta 45), 

Northwest (theta135), while Figure 1(b) gives the average of 

the semi-variogram for two thetas based on the lag(h) 

according to Eq. (1). 

 

 
 

Figure 1. Results of the semi-variogram of (NO3) data 

 

 
 

Figure 2. Results of the semi-variogram function after taking 

the logarithm of (NO3) data 
 

Table 1 shows the results of the semi-variogram for all theta 

(G1 of that 0, G2 for that 90, G3 for that 45, and G4 for theta 

of 135), according to Eq. (1), while G5 for average (0.90), and 

G6 for average (45,135). 

Table 2 illustrates the properties of the semi-variogram of 

(NO3) data for=0°,90°,45°,135°, and the average of the semi-

variogram for two theta (0°, 90°), and (45°, 135°). Where (co 
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=0.002989), (c+co=0.02843), and a=8), the curve of theta 

(0°, 90°) is nearest to the covariance model (spherical model): 
 

𝛾(ℎ) = (

𝑐𝑜 + 𝑐 , ℎ > 𝑎

𝑐𝑜 + 𝑐[
3

2
(
ℎ

𝑎
) −

1

2
(
ℎ

𝑎
)
3
] , ℎ < 𝑎

𝑐𝑜 , ℎ = 𝑎

)  

 

where, a is the range, co is the Nugget effect and co+c is the sill 

[20]. 

Figure 2 shows the results of the semi-variogram after 

taking the logarithm of the original data of (NO3). The curves 

of the semi-variogram describe the function of theta of the (0o, 

90o, 45o, and 135o). 

Table 3 illustrates the properties of the semi-variogram after 

taking the logarithm of origin data of NO3. Properties of the 

semi-variogram include (nugget effect, sill, range, mean, 

median, and mode) with a theta of compass according the 

properties of semi-variogram. 

Figure 3 shows the curves of the semi-variogram function 

of soil data (PH), Figure 3(a) describes the results for all theta 

of the compass, and Figure 3(b) illustrates the semi-average of 

the semi-variogram for two thetas based on the lag (h). 

 

Table 1. Results of the semi-variogram with their average for (NO3) data 
 

G1 0.0357 0.0448 0.0494 0.0484 0.0400  0.0309 0.0196 0.0097 0.0035 

G2 0.0212 0.0112 0.0065 0.0054 0.0042 0.0040 0.0029 0.0023 0.0025 

G3 0.0818 0.0681 0.0685 0.0677 0.0541 0.0414 0.0272 0.0145 0.0063 

G4 0.0234 0.0330 0.0375 0.0375 0.0315 0.0232 0.0154 0.0083 0.0037 

G5 0.0284 0.0280 0.0279 0.0269 0.0221 0.0174 0.0112 0.0060 0.0030 

G6 0.0526 0.0506 0.0530 0.0526 0.0428 0.0323 0.0213 0.0114 0.0050 
 

Table 2. Properties of the semi-variogram for (NO3) data 
 

Prop. θ Nugget Effect Sill Range Mean Median Median 

0° 0.003495 0.04935 8 0.03131 0.03566 0.03566 

90° 0.002282 0.0212 8 0.006694 0.004195 0.004195 

45° 0.006284 0.0818 11.31 0.04773 0.05411 0.05411 

135° 0.003687 0.03756 11.31 0.02373 0.02341 0.02341 

(0°, 90°) 0.002989 0.02843 8 0.019 0.02209 0.02209 

(45°, 

135°) 
0.004986 0.053 11.31 0.03573 0.04282 0.04282 

 

Table 3. Properties of the semi-variogram for log (NO3) 
 

Mode Median Mean Range Sill 
Nugget 

Effect 

Prop. 

Theta 

0.1542 0.6046 0.7842 7 2.166 0.1542 θ=0° 

0.0648 0.2317 0.2143 7 0.3214 0.0648 θ=90° 

0.08217 0.5762 0.82 7 2.562 0.08217 θ=45° 

0.02687 0.158 0.1483 7 0.2432 0.02687 θ=135° 
 

Table 4. Properties of the average semi-variogram function of (PH) data 
 

Prop. 
Nugget Effect Sill Range Mean Median Mode 

Theta 

θ=0°, 90° 0.001787 0.02963 8 0.01175 0.008449 0.001787 

θ=45°, 135° 0.002715 0.04429 11.31 0.01904 0.01474 0.002715 
 

 
 

Figure 3. Results of the semi-variogram function of (PH) 

data 

 
 

Figure 4. Results of semi-variogram function of log (PH) in 

all thetas 
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Table 4 shows the properties of the average variogram 

function of (PH) data for two thetas of compass based on lag 

(h).  

Figure 4 illustrates the results of the semi-variogram 

function of log (PH) data with the x-axis represented the lag 

(h), and the y-axis is a semi-variogram function in thetas 

(0o,90o,45o, and 135o).  

 

 
 

Figure 5. Three methods of robust variogram function 

 

Figure 5 illustrates three methods of variogram (Matheron's 

classical, Cressie Hawkins robust, and Cressie Hawkins 

median) for theta 0 of soil data (NO3). According to the Eqs. 

(13)-(15). 

 

 
 

Figure 6. Three methods of variogram (Matheron's classical, 

Cressie Hawkins robust, and Cressie Hawkins median) for 

theta 45 of soil data (NO3) 

 

Figure 6 illustrates three methods of variogram (Matheron's 

classical, Cressie Hawkins robust, and Cressie Hawkins 

median) for theta 45 of soil data (NO3). 

 

 

4. CONCLUSIONS 

 

Because of the small effect of extreme values on the 

estimates, it is clear from this effect that pollution may be large 

by properly knowing the weight restrictions for the level of 

pollution, and reducing the level of pollution depends 

practically and for a long period whenever some estimates lose 

their stability or constancy. The characteristics of robustness 

methods are studied using a prediction study and the results 

indicate several factors that affect the efficiency of the 

analyzed methods. In particular, the methods depend on: 

whether the data set is multivariate normal or not; the 

Dimension of the data set; Type of outliers. The proportion of 

outliers in the data set; and the degree of contamination of 

outliers (dimension). The study prompted the authors to 

recommend the use of “a combination of multivariate 

methods” on the data set to detect potential outliers. We fully 

adopt this recommendation and consider that the combination 

of methods should depend, but also on other factors such as 

the dimension and size of the data structure. Masking of one 

outlier by another outlier occurs if the second outlier can be 

considered an outlier in itself only, but not in the presence of 

the first outlier. Thus, because of this masking, a set of 

outlying observations skews the mean and covariance 

estimates toward it. the results showed the outliers Matheron 

median of variogram predict as corresponding to the 

theoretical model. For data without outliers, Matheson's and 

Haslett's robust estimators had better performance than 

Cressie Hawkins's robust soil data comparison with the 

empirical variogram. Soil data showed the spatial dependence 

of the variation at different scales. 
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