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The spread of infectious diseases in Indonesia has become a significant concern in 

health. COVID-19 contagious disease has difficulties in infection because some 

individuals are infected asymptomatically. Infectious diseases are modeled with a SEIR 

model modification with vaccinations 1 and 2, and Quarantine will produce a new 

approach by considering the variables and parameters of prevention so that it can 

suppress the rate of spread of the infectious disease COVID-19. The study will simulate 

a numerical analysis of the transmission model of contagious diseases solved using the 

Runge-Kutta order 4. The results achieved a new model with the SEIAR-V1V2Q 

modification, this model can predict the acceleration of the spread of the COVID-19 

transmitted disease by considering asymptomatic conditions. Based on the research, 

modifying the SEIR model with 2-stage vaccination and quarantine measures can 

reduce the percentage of infection cases of susceptible individuals, especially cases of 

asymptomatic infection, which are cases of infected individuals without showing 

symptoms. Discipline in accelerating 2-stage vaccination will increase the formation of 

individual body immunity to strengthen unique antibodies to minimize infection with 

the COVID-19 virus. It can be a reference in similar cases requiring vaccination and 

Quarantine of infected individuals. 
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1. INTRODUCTION

The increase in infectious diseases in Indonesia has become 

a significant focal point within public health. Indonesia, a 

nation comprised of islands inhabited by a population of over 

270 million individuals, confronts the task of effectively 

managing and mitigating the transmission of infectious 

diseases that pose a significant risk to the general public's well-

being. Various factors, including geography, demography, 

health infrastructure, population mobility, and public 

knowledge, influence the transmission of infectious illnesses 

within a country. Acute respiratory tract infections, such as 

influenza and pneumonia, are among Indonesia's most 

prevalent infectious diseases [1]. The 2019 coronavirus 

infection (COVID-19) pandemic is a problem faced in more 

than 200 countries worldwide. Indonesia has also been 

adversely affected by COVID-19, where the mortality rate 

reached 8.9% at the end of March 2020. The unpreparedness 

of the healthcare services and the great strides taken by the 

government might be changed to eradicate this infection [2]. 

The transmission of the disease can occur by airborne particles 

or through direct physical contact with an individual who is 

sick. The impact of humidity levels and the rainy season on 

disease transmission is significant since there is a tendency for 

peak instances to coincide with the onset of the rainy season. 

Furthermore, within the context of Indonesia, there exists a 

significant level of concern around infectious diseases, namely 

tuberculosis (TB), malaria, diarrhea, and measles. In addition 

to their lesser prevalence, contagious disorders such as dengue 

fever, HIV/AIDS infection, and hepatitis are significant. The 

correlation between the prevalence of infectious diseases in 

Indonesia and the availability of sufficient healthcare services 

is substantial. Specific locations in Indonesia, particularly 

those on remote islands, experience restricted availability of 

healthcare facilities. The complexity associated with detecting 

and treating infectious diseases can be heightened. 

Furthermore, the dissemination of infectious illnesses is 

influenced by the extent of public awareness regarding health 

and disease prevention endeavors. The dissemination of 

knowledge regarding the significance of hand hygiene, 

immunization, and adopting a health-conscious lifestyle 

within the public-school system can contribute to mitigating 

the transmission of infectious illnesses. Population mobility is 

a significant determinant in the transmission dynamics of 
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infectious diseases in Indonesia. The major islands of Java, 

Sumatra, Kalimantan, and Sulawesi exhibit substantial 

mobility due to their dense population and concentration of 

economic activities. The phenomenon could expedite the 

transmission of infectious illnesses across different 

geographical areas. The recognition of the significance of 

preventing and controlling the transmission of contagious 

diseases has been acknowledged by the Indonesian 

government and other health organizations. Efforts have been 

undertaken to mitigate the prevalence of pain and mortality 

resulting from infectious diseases by implementing mass 

immunization initiatives and health awareness programs. 

Furthermore, there have been efforts to enhance laboratory 

infrastructure and establish more robust epidemiological 

surveillance systems to expedite the detection and response to 

infectious disease epidemics. Nevertheless, persistent 

obstacles persist due to recent contagious ailments like the 

COVID-19 epidemic. Since the onset of 2020, Indonesia has 

been confronted with the COVID-19 pandemic, which has 

significantly impacted both the healthcare and economic 

domains. The Indonesian government has implemented many 

strategies to mitigate the transmission of the virus, 

encompassing measures such as imposing limitations on 

mobility, enforcing health norms, and executing large-scale 

vaccine initiatives. Given the prevalence of several infectious 

diseases, collaboration among governments, health 

institutions, and the general populace is increasingly 

paramount. All stakeholders must collaborate to enhance 

public consciousness regarding the significance of preventing, 

managing, and treating infectious diseases. Strengthening the 

health systems and infrastructure in geographically isolated 

regions is equally imperative to enhance the availability and 

accessibility of healthcare services. The dynamics of disease 

transmission in Indonesia are expected to undergo ongoing 

transformations as time progresses. Hence, it is imperative to 

continuously improve prevention, surveillance, and fast 

response initiatives to safeguard public health and alleviate the 

impact of infectious diseases inside the nation. This paper aims 

to address the issue of numerically solving the model of 

infectious disease transmission in human populations by 

employing the high-order Runge-Kutta method [3, 4].  

The urgency of employing the Runge-Kutta order 4 method 

for the numerical solution of the transmission model of 

infectious diseases is substantiated by existing research. This 

urgency stems from the significant implications that accurate 

prediction and effective control of infection outbreaks, 

particularly those of a widespread or pandemic nature, can 

have on public health and the economy. By employing 

mathematical models and numerical techniques such as the 

Runge-Kutta order 4 method, researchers can make 

predictions regarding the propagation of diseases within a 

population and ascertain the efficacy of various control 

measures. This information holds significant importance for 

governmental bodies and health authorities, as it necessitates 

prompt action to mitigate its adverse consequences. Using the 

Runge-Kutta order 4 method in research enables the 

evaluation of the effects of adopted health policies, such as 

mass vaccination campaigns, movement restrictions, and the 

adoption of facial masks. The effectiveness of policies to 

prevent the spread of infectious illnesses can be assessed 

through simulations and experiments involving mathematical 

models. During a pandemic or epidemic scenario, there may 

be constraints on health resources, including hospital beds, 

medical personnel, and medical equipment. Numerical models 

facilitate enhanced resource planning to optimize utilization 

and mitigate the most severe consequences associated with 

disease transmission. The movement of populations can 

impact the transmission of infectious illnesses between 

different geographical areas. By utilizing numerical models 

that depict mobility, researchers can discern transmission 

patterns and gain insights into the influence of mobility on the 

propagation of diseases. The investigation of the numerical 

solution of the Susceptible-Exposed-Infectious-Recovered 

(SEIR) model using the Runge-Kutta order 4 method can yield 

valuable insights into diverse categories of infectious diseases. 

Various diseases exhibit distinct patterns of dissemination, and 

by employing this approach, we may adapt models to capture 

the unique traits associated with each disease accurately.  

The mathematical representation of the COVID-19 virus 

propagation problem is formulated as a system of ordinary 

differential equations (ODEs) concerning time. This model 

elucidates the dynamics of virus transmission within the 

human body. The Susceptible-Exposed-Infectious 

Asymptomatic-Recovered (SEIAR)-VQ mathematical model 

has a series of seven equations that represent the variables 

involved, namely Susceptible in humans (𝑆ℎ ), Exposed in 

Humans (𝐸ℎ), Infected in humans, Asymptomatic Infected in 

Humans (𝐴ℎ), Recovered in Humans, Vaccinated in human, 

and Quarantine for human (𝑄ℎ) . The SEIAR-VQ  model 

incorporates the occurrence of asymptomatic infected 

individuals who do not exhibit symptoms. This variable holds 

significant importance within the context of the spread model 

[5]. 

Implementing the Runge-Kutta order 4 method to solve the 

SEIAR-V1V2Q model numerically was an initial milestone in 

epidemiology and applied mathematical investigation. 

Subsequent investigations may encompass the utilization of 

more intricate models, which take into account variables such 

as vaccination rates, collective immunity, and more accurate 

representations of human mobility. Given the pressing and 

complex nature of contemporary global health issues, there is 

significant pertinence and significance in researching 

numerical solutions to the transmission model of infectious 

illnesses using the Runge-Kutta order 4 method. The research 

contribution would enhance comprehension of disease 

transmission patterns, aiding the public and governments in 

making informed decisions during future outbreaks and 

epidemics. This study uses the high-order Runge-Kutta 

method to conduct a numerical analysis of the model about the 

transmission of infectious diseases within the human 

population [6, 7]. 

 

1.1 Related works 

 

Numerous prior investigations have employed the SEIR 

model to comprehend and evaluate the propagation of 

infectious ailments. This model has been utilized in the context 

of various diseases, including influenza, TB, HIV/AIDS, 

Ebola, COVID-19, and numerous others [8, 9]. The following 

examples illustrate pertinent research studies. The study on the 

transmission of influenza in human populations utilizing the 

SEIR model encompasses an examination of the dissemination 

of the flu within human communities by employing SEIR 

models to forecast infection rates and evaluate the 

effectiveness of interventions, such as vaccination campaigns 

and quarantine measures [10-12].  

Using the SEIR model in tuberculosis research aims to 

comprehend tuberculosis transmission dynamics within a 
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community and ascertain the various factors influencing its 

dissemination [13, 14]. The SEIR model is integrated with 

other epidemiological models in certain instances to facilitate 

a comprehensive examination. The SEIR model is a focal 

point of research concerning the utilization of SEIR models to 

comprehend the transmission dynamics of HIV/AIDS across 

diverse demographic cohorts while also discerning efficacious 

intervention approaches for disease control. The analysis of 

Ebola spread uses the SEIR Model to forecast the 

dissemination of Ebola outbreaks within a population and 

assess the effects of different preventative measures and 

countermeasures [15, 16]. The investigation of the 

transmission dynamics of COVID-19 utilizing SEIR models. 

Since the onset of the COVID-19 pandemic in 2019, numerous 

studies have employed the SEIR model to forecast the 

transmission of the virus, assess the magnitude of infections, 

and appraise the efficacy of preventive measures [17].  

The research demonstrates the effectiveness of utilizing the 

SEIR model as a valuable instrument for comprehending the 

intricacies associated with transmitting infectious illnesses 

within populations, facilitating informed decision-making 

during outbreaks and epidemics. Mathematical models, such 

as the SEIR model, have shown to be valuable tools for 

scientists and researchers in enhancing our comprehension of 

infectious illnesses and devising more efficient prevention and 

management methods [10, 18, 19]. Nevertheless, it is crucial 

to bear in mind that this model relies on specific assumptions, 

and hence, the outcomes should be cautiously interpreted 

within the framework of pertinent empirical evidence. 

 

1.2 Epidemic SEIR model 

 

The SEIR epidemic model is one of the mathematical 

models used to model the spread of infectious diseases by the 

population. The SEIR abbreviation comes from four 

compartments considered in this model: Susceptible, Exposed, 

Infectious, and Recovered [20, 21]. This model divides the 

population into four groups based on the infection status and 

describes how individuals move from one group to another 

over time.  

1-Susceptible (S): This group includes individuals exposed 

to infection. 

2-Exposed (E): This group includes individuals exposed to 

the disease but have not shown symptoms and cannot transmit 

the disease to other individuals. The incubation period usually 

occurs during individuals in this group. 

3-Infectious (I): This group includes actively infected 

people who can transmit disease to others. This period of 

infection lasts as long as individuals are in the group. 

4-Recovered (R): These groups include individuals who 

recover from the infection and gain immunity against the 

disease. Once healed, this individual can no longer be infected 

and cannot transmit the disease. 

The SEIR model uses a system of differential equations to 

describe the movement of individuals between these groups 

over time [22, 23]. In this model, several parameters affect the 

dynamics of disease spread, such as introductory reproduction 

rate (basic reproduction number/R0), transition rate from 

exposed to infected (α), and healing rate (γ). 

 

 
 

Figure 1. Modification of SEIAR-V1V2Q model 

 

 

2. RESEARCH METHODOLOGY 

 

2.1 Modification of SEIR model  

 

The disease spread model is subject to modification by 

including vaccine and quarantine treatment to assess the rate 

of change in disease transmission [24, 25]. Figure 1 shows the 

modified SEIAR model, and the variables used will be 

explained in Table 1. 

 

Table 1. Variables and parameters on SEIAR-V1V2Q model modification 
 

 Symbol Information 

Variable 

S Number of susceptible individuals in the interval 𝑡 

E Number of individuals exposed in the interval 𝑡 

I Number of infected individuals in the interval 𝑡 

𝑉1 Number of individuals vaccinated 1 in the interval 𝑡 

𝑉2 Number of individuals vaccinated 2 in the interval 𝑡 

Q The number of exposed individuals is quarantined in the interval 𝑡 

R Number of individuals recovering from COVID-19 in the interval 𝑡 

Parameter 

A Vulnerable population growth 

𝛽1 Rate of transmission of COVID-19 from infected individuals 

𝛽2 Rate of transmission of COVID-19 from exposed individuals 

𝜃 The average rate at which individuals are exposed becomes infected individuals. 

𝜇1 Natural mortality rate 

𝜇2 Natural mortality rate caused by COVID-19 

𝜀 
The average rate of exposed individuals who are quarantined and have no symptoms who return 

to being vulnerable individuals. 

𝜂 The average rate of infected individuals and stage 2 vaccination in Quarantine (isolation). 

𝑣1 The average rate at which individuals are exposed to vaccination 1. 

𝑣2 The average rate at which infected individuals perform vaccination 2. 

𝛿 Average rate of recovery from COVID-19 

d Rate of administration of phase 2 vaccine 
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When there is a change in the entire variable over a certain 

time interval Δ𝑡, it is reasonable to suppose that, 

 

( )( ) ( )( ), , , , , ,S E I R t t S E I R t+ =  (1) 

 

where a change of value (𝑆, 𝐸, 𝐼, 𝑅) is a change susceptible, 

exposed, infectious, recovered that changes against a change 

Δ𝑡 then it can be written that, 

 

1 1 2 1

( )
( ) ( ) ( ) ( ) ( )   

dS t
A V S t I t S t E t S t

dt
   = + − − −  

1 2

1 1

( )
( ) ( ) ( ) ( )

           ( ) ( ) ( )

  

  

dE t
S t I t S t E t

dt

v E t E t E t

 

 

= +

− − −

 

2 1 2

( )
( ) ( ) ( ) ( )( )

dI t
E t v I t I t t

dt
   = − − − +  

( )1
1 1 1 1 1

( )
( ) ( ) ( ) 

dV t
v E t V t dV t V t

dt
 = − − −  

( )2
1 2 2 1 2 2

( )
( ) ( ) ( ) ( )

dV t
dV t v I t V t V t

dt
  = + − − +  

2 1 2

( )
( ) ( ) ( ) ( ) ( )

dQ t
V t I t Q t Q t

dt
    = + − − +  

1

( )
( ) ( ) 

dR t
Q t R t

dt
 = −  

(2) 

 
The model of (2) is a model of disease spread with 

𝑙𝑖𝑚𝛥𝑡→0
𝛥(𝑆,𝐸,𝐼,𝑉1,𝑉2,𝑄,𝑅)

𝛥𝑡
. So that the form of the differential 

equation of the modification model can be obtained, 

 

1 1 2 1

( )dS t
A V SI SE S

dt
   = + − − −  

1 2 1 1

( )dE t
SI SE v E E E

dt
   = + − − −  

( )2 1 2

( )dI t
E v I I I

dt
   = − − − +  

1
1 1 1 1 1

( )dV t
v E V dV V

dt
 = − − −  

( )2
1 2 2 1 2 2

( )dV t
dV v I V V

dt
  = + − − +  

( )2 1 2

( )dQ t
V I Q Q

dt
    = + − − +  

1

( )dR t
Q R

dt
 = −  

(3) 

 

where the total population N is a combination of all variables 

in the modified model, 

 

1 2N S E I V V Q R= + + + + + +  (4) 

 

2.2 Analysis of SEIAR-V1V2Q model 
 

In analyzing the modification model that has been formed, 

positivity analysis is carried out to determine the meaning of 

epidemic. The proof is done by proving the variable is a 

positive value where the value of each equation is positive for 

each 𝑡 > 0. 

Theorem 1. Suppose then the solution of model (6) is 

positive for each 

 

1 2

1 2
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0
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( ) ( ) ( ) (
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,
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(

,

)

S E I V V

Q R S t E t I t V t

R t

t

t

V

    





  

 

Proof. Known initial values will indicate the solution of 

each variable. If taken the 
 

1 20 0,  0 0,  0 0,  0 0,  0 0,  

0 0,  0 0,  0

( ) ( ) ( ) ( ) ( )

( ) ( )

S E I V V

Q R t

    

  
  

 

susceptible equation is as follows, 
 

1 1 2 1

1 1 2 1( )

   

  

dS
A V SI SE S

dt

dS
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dt

   

   

+ − −

−= − −
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The equation can be written as, 

 

1

( )
( ( ) ,)

dS t
pS t A S t A V

dt
+ = + = +  

 

where 𝑝 = 𝛽1 𝐼 − 𝛽2 𝐸 − 𝜇1. 

By using the integral factor method, obtained: 
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Further obtained the value that, 
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 (5) 

 

Using the same method will be obtained the value of 

𝐸(0) > 0 , 𝐼(0) > 0 , 𝑉1(0) > 0 , 𝑉2(0) > 0 , 𝑄(0) > 0 , 

𝑅(0) > 0, for each 𝑡 > 0. 

 

2.3 Stability analysis R0 

 

The base reproduction number, or 𝑅0 , is a population's 

average number of new infection cases. If value 𝑹𝟎 < 𝟏, the 

spread of the disease is a controllable case and will not become 

an epidemic, so the non-endemic equilibrium point will be 

assigned K to be locally asymptotic stable. However, if 𝑹𝟎 >
𝟏, then for every individual infected with COVID-19, it will 

spread the disease to vulnerable individuals in a population, 
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impacting the occurrence of epidemics within a period t so that 

K is unstable. The equilibrium point for endemic cases occurs 

if an individual can infect another individual, especially in 

asymptomatic infectious conditions. Then, the endemic 

equilibrium point is, 

 
* * * * * * *

1 2( , , , , , )K S E I V V Q=  (6) 

 

where and satisfy the system of equations: 

 
* * * *

1

* *

2

(0) 0,  (0) 0,  (0) 0,  (0) 0,

(0) 0,  (0) 0

S E I V

V Q

   

 
 

 
* * * * * *

1 1 2 1 0A V S I S E S   + − − − =  

* * * * * * *

1 2 1 1 0S I S E v E E E   + − − − =  

( )* * *

2

*

2 1 0E v I I I   +− − − =  

* * * *

1 1 1 1 1 0v E V dV V − − − =  

( )* * * *

1 2 2 21 2dV v I V V  + − − +  

( )* * *

2 2

*

1 0V I Q Q    ++ − − =  

(7) 

 

The stability of the endemic equilibrium point is determined 

from the value 𝑅0 < 1 , and then the case is said to be 

asymptotic stable; otherwise, if 𝑅0 < 1 , the condition is 

assumed to be unstable. 

 

 

3. DISCUSSIONS  

 

3.1 Experimental simulation 

 

The case of the spread of COVID-19 in North Sumatra, 

Indonesia, recorded that as of October 16, 2023, there were 

6.811.945 cases infected with COVID-19, as many as 

6.641.275 recovered, and 170.670 died due to COVID-19, 

Based on the formulation set out above Eqs. (6) and (7), we 

will be able to obtain the coefficients value of the equation as 

shown in Table 2. 

By substituting the parameter values on the model will be 

obtained, 

( ) ( ) ( )

( ) ( )

8 8

1

8 5
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       8,24 10  0,2873 10

dS
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SE S
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− −
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−  − 
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8 8 3

1 5
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dE
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E E

− − −

− −
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1 14

1 5 3
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2
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       0,2873 10 0 3( , 0 )187 1

dV
V I V
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− − −

− −
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1 1

2

3 5 3
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       8,5 10 0,2873 10 0,187

( )
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dQ t
V I
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=  + 
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By using Python, experimental simulations are obtained 

from modified models SEIAR-V1V2Q. 

 

Table 2. Coefficient result 

 
Parameter Value 

𝐴 5,99999 

𝛽1 2,84×10-8 

𝛽2 8,24×10-8 

𝜃 5,23×10-1 

𝜇1 2,873×10-6 

𝜇2 1,873×10-4 

𝜀 2,84×10-8 

𝜂 4,71×10-1 

𝑣1 9,83×10-3 

𝑣2 3,723×10-14 

𝛿 8,5×10-3 

 
 

Figure 2. Model modification simulation SEIAR-V1V2Q 

 

Based on Figure 2, it is known that the spread of infectious 

diseases with 2-stage vaccination treatment and Quarantine for 

infected cases can improve individuals' recovery process. If 

the 2-stage vaccination rate is increased, it will provide a pretty 

good representation of recovery, with exposed cases getting 

sloping, as in Figure 3. 
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Figure 3. Model modification simulation with 2-stage vaccination rate increase 

 

 
 

Figure 4. Simulated model modification with descent S0 

 

After the implementation of preventive measures of 2-stage 

vaccination of the entire population, which has implications 

for the decrease in the susceptibility rate, the reduction in cases 

will be swift. Figure 3 shows a simulated representation of 

model modification if the condition with S=0,2 a rate where S 

is the percentage of the susceptible rate. 

Figure 4 shows that increasing the percentage of 2-stage 

vaccination rates and preventive measures or health protocols 

will reduce the number of susceptible cases. 

 

 

4. CONCLUSIONS  

 

Based on the research, modifying the SEIR model with 2-

stage vaccination and quarantine measures can reduce the 

percentage of infection cases of susceptible individuals, 

especially cases of asymptomatic infection, which are cases of 

infected individuals without showing symptoms. Discipline in 

accelerating 2-stage vaccination will increase the formation of 

individual body immunity to strengthen unique antibodies to 

minimize infection with the COVID-19 virus. 

If the individual is infected after the second vaccination, 

measures are taken to limit social interaction (social 

distancing) by isolating or quarantining until entering the 

recovery phase. The modified model SEIAR-V1V2Q can be a 

reference in similar cases requiring vaccination and quarantine 

measures of infected individuals. 
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