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The objective of this study was the definition of estimation domains through the 

application of an artificial neural network Autoencoders and K-Means clustering. The 

study was based on the analysis of 5,654 composites obtained from an exploratory 

drilling campaign in a copper deposit. The specific architecture of the autoencoder 

included an encoder and a decoder, each composed of multiple layers and ReLU 

activation functions. The encoder, with four hidden layers of 600, 600, 800 and 10 

neurons, respectively, was complemented by a decoder that replicated this structure. 

Application of the K-Means algorithm, with 30 initializations on these encoded 

representations, culminated in a silhouette score of 0.261 and an inertia of 17,447.44, 

revealing the optimal formation of two distinct estimation domains: domain 1, with 

4,204 samples and an average copper grade of 0.44%, and domain 2 with 1450 samples 

and an average grade of 0.41% copper. Compared to the geochemical modeling 

approach in definition of estimation domains, a significant reduction in the mean error 

(0.29 vs. 0.05) and in the error variance (0.04 vs. 17.36) was observed. In conclusion, 

this approach not only complements geostatistical estimation techniques, but also 

improves accuracy and reliability in geological resource estimation. 
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1. INTRODUCTION

In the field of mineral resource estimation, the accurate 

determination of estimation domains, understood as spatially 

consistent, statistically comparable, and geologically coherent, 

is essential [1-4]. These domains, as described in geostatistical 

literature, are designed to optimize the efficiency of estimation 

methods, and establish a clear difference from the surrounding 

volumes in their environment [5, 6]. 

In this study, a dataset comprising 5,654 composite samples 

collected from a 185-hole exploration drilling campaign at a 

copper deposit in Peru was used, focusing on the percentage 

of measured copper linked to rock types. This dataset provides 

a practical context for applying and evaluating the proposed 

Autoencoder and K-Means methods. 

These domains are commonly defined based on geological 

features such as alteration [7], mineralization, and lithological 

properties [8], which form the basis for their identification. 

However, in addition to these aspects, domains are often 

conceptualized as statistically stationary regions. This idea of 

stationarity, advocated by various authors, implies uniformity 

in terms of expected values, covariance [9], and 

autocorrelation patterns across the study area. Failure to meet 

this principle could result in imprecise mineral grade 

estimation, leading to erroneous conclusions [10]. 

The conventional procedure for defining mineral resource 

estimation domains follows a methodology based on the 

integration of geological studies and statistical analysis [11, 

12]. This approach is firmly rooted in geological 

understanding and hu-man intervention, carried out through a 

series of stages, from selecting the geological attributes 

controlling the mineral grade to geological, statistical, and 

geostatistical validation of the estimation domains [13, 14]. 

However, this traditional method presents certain challenges 

and limitations. One of them is its slowness and the need for 

detailed examination by an expert in the deposit's geology. 

Furthermore, its subjective nature implies that there may be 

variations in criteria and interpretations among different 

experts [15]. 

To address the existing limitations, unsupervised machine 

learning approaches have been explored as viable alternatives. 

Techniques such as Autoencoders for dimensionality 

reduction and K-Means for clustering were employed, along 

with the Kolmogorov-Smirnov test and the Reservoir Quality 

Index [16]. Additionally, geological knowledge was integrated 

with statistical analysis, contrasting the use of K-Means with 

a technique grounded in spatial autocorrelation [17]. 

Incorporating geological expertise into the unsupervised 

learning framework is a crucial aspect of our methodology. 

Geological attributes, such as alteration, mineralization, and 

lithological properties, are used as input features for the 

Autoencoder and K-Means algorithms. These features are 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 5, May, 2024, pp. 1207-1218 

Journal homepage: http://iieta.org/journals/mmep 

1207

https://orcid.org/0000-0002-5880-8227
https://orcid.org/0000-0003-3801-0370
https://orcid.org/0000-0002-3798-7027
https://orcid.org/0000-0001-7674-7125
https://orcid.org/0000-0001-8413-8792
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110509&domain=pdf


derived from detailed geological studies and expert knowledge 

of the deposit. Furthermore, the output clusters from the K-

Means algorithm are validated using geological and 

geostatistical methods to ensure that they align with the 

underlying geological structures. This integration of 

geological expertise ensures that our machine learning 

techniques are grounded in domain-specific knowledge, 

bridging the gap between data-driven methods and geological 

understanding. 

The application of multivariate clustering algorithms offers 

an innovative perspective for defining estimation domains. 

These algorithms allow for more precise and coherent data 

segmentation, aligning with the fundamental principles of 

geostatistical estimation. This adaptation enhances the 

accuracy and reliability of estimates, giving the reference 

greater relevance and robustness [15]. In addressing the 

challenges of non-stationarity in geostatistical data, our 

approach employs Autoencoders alongside K-Means 

clustering. Autoencoders, through their layered neural 

network architecture, are adept at capturing complex data 

patterns, thus identifying areas of stationarity and non-

stationarity. Autoencoder and K-Means methodology address 

the limitations of conventional methods. The automated nature 

of Autoencoders enhances processing speed, while K-Means 

clustering reduces subjectivity by providing precise data 

segmentation. Thus, this combination offers a faster, more 

objective solution for defining estimation domains. The 

preprocessing steps further include normalization to manage 

data variance effectively, ensuring that K-Means clustering 

can distinctly isolate and assess stationary segments within the 

data. This methodological integration allows for a nuanced 

interpretation of geological data, crucial for accurate domain 

estimation in varying geological settings. Clustering 

algorithms, such as K-Means, have a long track record of 

application in various fields such as marketing [18], health 

[19], finance [20], and engineering [21]. Their ability to 

segment data into groups based on the relationships between 

the most relevant variables of a problem offers a fresh 

perspective for spatial data analysis. This allows data to be 

organized in-to clusters so that elements within a group are 

more similar to each other than those in other groups [22]. 

The K-Means method, although productive, faces 

challenges when dealing with mixed data, i.e., datasets that 

include both numerical and categorical variables. Some 

examples of numerical variables are mineral grades, location 

coordinates, and categorical variables include rock type, 

alteration, and mineralization. Specifically, the K-Means 

algorithm optimizes a cost function based on the Euclidean 

distance between data points and their centroids, which limits 

its direct applicability to numerical data [15-23]. This 

limitation can affect the method's utility for categorical 

geological variables essential for controlling mineral grade, as 

they cannot contribute directly to the clustering. Therefore, 

researchers have considered some alternatives. One involves 

transforming categorical data into continuous, and the other 

alternative involves con-verting continuous numerical 

variables, such as mineral grades, into discrete variables [24, 

25]. 

Autoencoder neural networks have proven to be powerful 

tools for the compression and representation of complex data 

in various fields of study [26]. This neural network 

architecture is used to learn unsupervised encoded 

representations of input data, intending to capture their 

underlying structure [27, 28]. Essentially, an autoencoder is 

designed to learn how to reconstruct its inputs, forcing the 

network to capture the most important features of the data in 

the process [29]. 

The combination of the data representation capabilities of 

autoencoder networks and the clustering power of the K-

Means algorithm offers a promising approach for defining 

geostatistical estimation domains. By applying an autoencoder 

neural network, we can transform our mixed geological data 

into a lower-dimensional latent space where Euclidean 

distances are meaningful and can be effectively utilized by the 

K-Means algorithm. This feature of unsupervised learning can 
pose challenges, one of which is the need to specify the 
number of groups or clusters a priori. In this research, two 
approaches will be used to determine the optimal number of 
clusters: the elbow method and the silhouette coefficient [30, 
31].

This article is structured as follows: In Section 2, the 

methodology used is detailed, including the principles behind 

the Autoencoders Neural Network and the K-Means clustering 

algorithm, and how these are adapted to address the 

peculiarities of mineral resource data. In Section 3, this 

methodology is applied to a case study, providing a concrete 

illustration of how these techniques can be implemented in 

practice. Finally, in Section 4, the conclusions drawn from this 

study are presented, highlighting the progress made and 

suggesting areas for future research. 

2. MATERIALS AND METHODS

Autoencoders are a category of unsupervised neural 

networks used to learn efficient encoded representations of 

data, typically with the goal of dimensionality reduction or 

feature extraction. The architecture of an autoencoder consists 

of two main components: the encoder and the decoder [32]. 

The encoder compresses the input into a latent code, structured 

by layers 𝐿1, 𝐿2, … , 𝐿𝑛  [33]. This transformation is achieved 
through a series of mathematical operations that can be 

expressed as follows: 

ℎ = 𝑓(𝑊. 𝑥 + 𝑏) (1) 

where, h is the encoded representation, f is an activation 

function, W represents the weights, b is the bias, and x is the 

input. The decoder reconstructs the input from the latent code 

using layers 𝐿n+1, 𝐿n+2, … , 𝐿𝑚 . The reconstruction is

performed as follows, where �̂� is the reconstructed output, g is 

an activation function, V represents the weights, c is the bias, 

and h is the encoded representation [34]. 

�̂� = 𝑔(𝑉. ℎ + 𝑐) (2) 

The training phase of the autoencoder consists of optimizing 

the model's weights and biases by minimizing a loss function 

[34]. The typical loss function used in this context is the mean 

squared difference between the input and the reconstructed 

out-put, which can be mathematically expressed as: 

𝐿(𝑥, �̂�) =
1

𝑁
∑(𝑥𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

(3) 

The specific architecture of the autoencoder neural network 

used in this research is detailed and visualized in Figure 1. The 

1208



 

architecture of the autoencoder used in this study consists of 

an encoder and a decoder, each composed of multiple layers 

with ReLU activation functions. The encoder has four hidden 

layers with 600, 600, 800 and 10 neurons respectively. The 

decoder mirrors this structure and consists of four hidden 

layers with 800, 600, 600 and 10 neurons respectively. This 

symmetric architecture was chosen so that the autoencoder 

could learn a compressed representation of the input data in 

the middle layer and reconstruct the original data from this 

compressed representation. The autoencoder was trained using 

a mean square error loss function and the SGD optimizer with 

a learning rate of 0.2, over 100 epochs with a batch size of 128. 

After training the autoencoder, the K-Means algorithm with 30 

initializations was applied to the encoded representations to 

form clusters. This architecture was chosen for its ability to 

effectively capture complex patterns in the data while ensuring 

computational efficiency.  

Autoencoders transform categorical data into a continuous 

latent space, enabling the K-Means algorithm to operate more 

effectively. The encoder part of the autoencoder learns a 

compressed representation of the input data, including 

categorical variables, in a lower-dimensional space. This 

compressed representation is then used as input to the K-

Means algorithm. While some information loss can occur due 

to the dimensionality reduction inherent in the encoding 

process, the architecture of the autoencoder is designed to 

retain the most salient features of the data, thereby minimizing 

the impact of any potential information loss. 

 

 
 

Figure 1. Autoencoder neural networks 

 

In the process of preparing to implement the autoencoder 

neural network, it is vital to develop a robust understanding of 

the underlying features of the available data. This is done 

through Exploratory Data Analysis (EDA), a crucial stage that 

allows elucidating key patterns, trends, and relationships 

within the dataset [35, 36]. In the study, the analysis focuses 

on the database of diamond drill holes, where critical variables 

include copper (Cu) and molybdenum (Mo) grades. The 

selected metrics for this analysis were the arithmetic mean, 

variance, standard deviation, kurtosis, and data correlation. 

 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (4) 

 

𝜎2 =
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (5) 

 

𝜎 = √𝜎2 (6) 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑ (

𝑥𝑖 − 𝜇

𝜎
)

4

− 3

𝑁

𝑖=1

 (7) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑋, 𝑌) =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑋, 𝑌)

𝜎𝑥𝜎𝑦

 (8) 

 

Here, μ is the arithmetic mean, N is the total number of 

observations, 𝑥𝑖  is the value of the i-th observation, 𝜎2 is the 

variance, σ is the standard deviation, and 𝜎𝑥𝜎𝑦 are the standard 

deviations of variables X and Y, respectively. 

To determine the estimation domains in the present analysis, 

the K-Means clustering approach was employed. This method 

represents a prominent technique in the domain of 

unsupervised clustering, aiming to divide a dataset into K 

distinct and well-separated clusters. The process of identifying 

the optimal number of clusters is carried out by combining the 

elbow method and silhouette analysis [30]. The elbow method 

involves evaluating the sum of squares within the clusters 

(WCSS) for different values of K and selecting the value of K 

at the "elbow" of the graph. This is mathematically represented 

as: 
 

𝑊𝐶𝑆𝑆(𝐾) = ∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶

𝑘

𝑖=1

 (9) 

 

where, 𝜇𝑖  is the centroid of cluster 𝐶𝑖. In parallel, the silhouette 
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method calculates the average silhouette score for different 

values of K, selecting the value that maximizes this score. The 

score is defined as: 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))
 (10) 

 

where, a(i) represents the average distance of point i to the 

other points in its cluster, and b(i) is the average distance of 

point 𝑖 to the points in the nearest cluster outside of its own. 

Once the optimal number of clusters is selected, the K-Means 

algorithm is implemented through the following steps: 

1. Initialization: Select K points as initial centroids. 

2. Assignment: Assign each point to the cluster whose 

centroid is closest to it. 

3. Update: Calculate new centroids as the average of the 

points in each cluster. 

4. Convergence: Repeat the assignment and update steps 

until the centroids do not change significantly or a maximum 

number of iterations is reached [30]. 

The objective function is expressed as: 

 

𝐽 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 (11) 

 

where, 𝜇𝑖 is the centroid of cluster 𝐶𝑖 and k is the number of 

clusters. 

Figure 2 presents the sequence of stages that make up the 

design of this research. 

 

 
 

Figure 2. Sequence of the research stages 

 

 

3. RESULTS 

 

3.1 Exploratory data analysis 

 

The aim of this research is to validate the use of the 

autoencoder neural network and K-Means clustering for the 

definition of geostatistical estimation domains through a 

practical application case. For this purpose, an exploratory 

data analysis was conducted on the database. Table 1 presents 

the statistics of the database, showing a total of 5,654 

composites. The variables studied consist of east (x) 

coordinates, north (y) coordinates, elevation (z), as well as 

copper (Cu) and molybdenum (Mo) grades in per-centage (%), 

and finally, rock type. The codes assigned to the different rock 

types are Rock 1 for Magnetite Skarn, Rock 2 for Granodiorite, 

Rock 3 for Dacite Porphyry, Rock 4 for Calcareous Sediments, 

and Rock 5 for Catalina Volcanics. Figure 3 illustrates the 

distribution of the drill holes in the East-North directions, 

highlighting the copper and molybdenum grades and the 

specific rock type. 

 

Table 1. Statistics of the diamond drill holes database 

 
Description Easting (x) Northing (y) Elevation (z) Copper (Cu) Molybdenum (Mo) Rock Type 

Quantity 5,654 5,654 5,654 5,654 5,654 5,654 

Mean 375,606.25 8,717,015.68 4,473.54 0.43 0.015 2.16 

Std 307.24 393.54 169.54 0.29 0.017 0.78 

Minimum 374,821.06 8,716,003.08 4,050.35 0.002 0.001 1 

Q1 375,393.42 8,716,738.40 4,340.07 0.227 0.004 2 

Q2 375,602.29 8,716,995.80 4,462.82 0.378 0.01 2 

Q3 375,824.99 8,717,271.73 4,607.49 0.578 0.02 3 

Maximum 376,414.81 8,718,153.15 4,902.14 2.95 0.23 5 
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Table 2. Statistic of rock type with respect to the copper grade 

 
Rock Type Quantity Mean Std Min (% Cu) Q1 Q2 Q3 Max Kur 

Magnetite Skarn 906 0.36 0.28 0.002 0.18 0.31 0.48 1.87 3.13 

Granodiorite 3,317 0.48 0.31 0.003 0.27 0.43 0.65 2.95 3.26 

Dacite Porphyry 1,079 0.36 0.23 0.003 0.19 0.32 0.48 1.60 2.13 

Calcareous Sediments 307 0.35 0.21 0.051 0.21 0.31 0.47 1.89 8.35 

Catalina Volcanics 45 0.29 0.17 0.038 0.12 0.29 0.43 0.57 -1.38 

 

Table 2 summarizes statistical information on five different 

types of rocks, numbered from 1 to 5, including the number of 

observed samples, the mean, standard deviation (Std), 

Kurtosis (Kur), minimum values (Min), maximum values 

(Max), and the three quartiles (Q1, Q2, and Q3). It is 

noteworthy that rock 2 has the largest dataset (3,317), the 

highest mean and maximum values (0.48% and 2.95% copper, 

respectively). In contrast, rock 5, with only 45 data points, 

displays the lowest mean, maximum, and minimum values 

(0.29%, 0.57%, and 0.038% copper, respectively). The 

predominance of granodiorite rock in the studied area closely 

correlates with significant zones of copper mineralization, a 

characteristic feature of this type of igneous rock. This 

mineralogical association is further reinforced by the presence 

of other geological formations in the vicinity, such as 

magnetite skarns and dacite porphyries, collectively creating 

an environment conducive to copper concentration. Figure 4 

displays an iso-metric view of the diamond drill holes in 

relation to the rock type. 

 

 
(a) Diamond drill holes with respect to copper grade 

 
(b) Diamond drill holes with respect to molybdenum grade 

 
(c) Diamond drill holes with respect to rock type 

 

Figure 3. East-North view of the diamond drill holes 

 

 
 

Figure 4. Isometric view of diamond drill holes with respect 

to rock type 

 

 
(a) Correlation matrix of database variables 
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(b) Correlation of gold and molybdenum grades 

 

Figure 5. Correlation of diamond drill hole database 

variables 

 

Figure 5 displays a correlation matrix that encompasses all 

the variables contained in the initial database. It's crucial to 

highlight within this matrix the correlation between copper 

and molybdenum grades, which is estimated at 14%. Given 

this low coefficient, it is concluded that molybdenum does not 

influence the domain definition due to its dissimilar behavior 

relative to copper. 

 

 
 

Figure 6. Copper grade distribution 

 

 
 

Figure 7. Boxplot of rock type with copper grades 

Figure 6 displays the distribution of copper grades. In this 

graph, it is observed that these grades are predominantly 

concentrated in the range of 0.0 to 1.0%. Figure 7 presents a 

boxplot illustrating the distribution of copper grades in relation 

to different rock types. Specifically, for rock types 1 and 2, the 

concentration of copper grades stands out with values ranging 

between 1.0 and 3.0%. 

Figure 8 reveals the distribution of copper grades in relation 

to five different rock types. In this graph, there is a higher 

probability of high copper grades in rock type 2 and a lower 

probability of low grades in rock type 5. 

 

 
 

Figure 8. Copper grade probability graph with rock type 

 

 
 

Figure 9. Elbow method 

 

 
 

Figure 10. Silhouette method 
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3.2 Determination of the optimal number of clusters 
 

After normalizing the numeric variables: East coordinates 

(X), North coordinates (Y), elevation (Z), and copper grade 

(Cu), and encoding the categorical variable of rock type using 

the "one-hot" method, we proceeded with the training of 

Autoencoders. Subsequently, using the latent code, we 

determined the optimal number of clusters through two 

complementary techniques: the elbow method and the 

silhouette method. Figure 9 illustrates the results of the elbow 

method, identifying an optimal number of two clusters. This 

conclusion is based on the point where the graph shows a 

noticeable change in the curve, commonly known as the 

"elbow". Figure 10, on the other hand, represents the silhouette 

method, corroborating that the optimal number of clusters is 

also two, as indicated by the location of the peak in the data, 

i.e., the highest value in the silhouette graph. The agreement 

between these two methods strengthens the decision to 

segment the data into two estimation domains, providing a 

solid and methodologically robust foundation for subsequent 

analysis. 

In addition to the elbow method and silhouette method, we 

also considered the inertia and silhouette score for each 

number of clusters. Inertia, or the within-cluster sum of 

squares, measures the compactness of the clusters, with lower 

values indicating better clustering. The silhouette score 

measures how similar each data point is to its own cluster 

compared to other clusters, with higher values indicating better 

clustering. Both of these metrics were calculated for a range of 

cluster numbers, and the results were plotted to visually assess 

the optimal number of clusters. The optimal number of clusters 

was chosen as the one that minimized the inertia and 

maximized the silhouette score. Although the inertia for K=2 

may seem relatively high compared to other cluster numbers, 

both the elbow method and silhouette score indicated that two 

is the optimal number of clusters. This suggests that two 

clusters provide a balance between cluster compactness, as 

measured by inertia, and separation, as measured by the 

silhouette score, thereby justifying our choice (see Table 3). 
 

Table 3. Comparison of the results of the elbow method and 

silhouette method 
 

Method 
Optimal Number of 

Clusters 
Inertia (K) 

Silhouette 

Score 

Elbow method 2 17447.44 - 

Silhouette method 2 - 0.261 

 

Table 4. Statistics of estimation domains and mineral grade 
 

Domain Quantity Mean Std 
Min 

(% Cu) 
Q1 Q2 Q3 

Max 

(% Cu) 
Kur 

1 4,204 0.44 0.30 0.002 0.22 0.39 0.60 2.95 5.21 

2 1,450 0.41 0.25 0.01 0.24 0.36 0.52 2.09 5.07 

 

3.3 Determination of estimation domains 
 

Table 4 presents a statistical analysis of the estimated 

domains in relation to the copper grade. Notably, domain one 

(1) houses the largest amount of data, totaling 4,204 data 

points. Within this domain, the copper grade varies, with a 

range extending from a minimum value of 0.002% to a 

maximum value of 2.95%. Meanwhile, domain two (2) 

consists of 1,450 data points and has an average copper grade 

of 0.41%. Figure 11 displays a visualization of the generated 

estimation domains. 

 
 

Figure 11. Visualization of the estimation domains 

 

 
 

Figure 12. Estimation domains silhouette score 

 

Figure 12 presents the silhouette score of the estimation 

domains, which has a mean of 0.214. This value indicates 

moderate cohesion and separation between the identified 

clusters, suggesting an acceptable definition of the geologic 

domains. Table 5 shows additional metrics to support this 

claim, a mean Silhouette Score value of 0.21 and a Davies-

Bouldin index of 1.70 indicating reasonably clear and distinct 

structuring between the clusters formed. 

 

Table 5. Comparison of performance metrics of estimation 

domain definition models 

 
Metric Value 

Medium Silhouette Score 0.21 

Davies-Bouldin Index 1.70 

 

Table 6 presents the comparisons of indicators of statistical 

significance tests, where the mean error for the Autoencoders 

Neural Networks (ANN) model is 0.29 with a variance error 

of 0.04 and a mean of the variances of the standardized errors 

of 0.04. In contrast, it was compared with the research of 

Boroh et al. [37], where they defined estimation domains with 

the classical method (geochemical modeling) which presented 

a mean error of 0.05, a variance error of 17.36 and a mean of 

the standardized error variances of 0.01. These results indicate 

that the ANN model has a superior performance in terms of 

mean error and error variance, suggesting that the observed 
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improvements are not due to chance, but to the efficiency of 

the proposed model. 

 

Table 6. Comparisons of indicators of statistical significance 

tests 

 

Indicator 
Mean 

Error 

Variance 

Error 

Mean of the Variances of 

the Standardized Errors 

ANN 0.29 0.04 0.04 

Classical 

(Geochemical 

modeling) [37] 

0.05 17.36 0.01 

 

 
 

Figure 13. Distribution of data in each geological domain of 

estimation with respect to rock type 

 

 
 

Figure 14. Boxplot by estimation domain for copper grades 

 

Figure 13 presents a box plot detailing the distribution of 

copper grades for each geological estimation domain. This 

chart not only illustrates how each domain controls the 

behavior of copper, but also provides essential information 

about the geological character underlying the definition of the 

domains. Figure 14 displays a probability plot that relates the 

estimation domains to the copper grade, offering a detailed 

view of trends within each domain. Domain 1 shows a higher 

probability of low copper grades, while domain 2 exhibits a 

higher probability of high copper grades. 

Figure 15 presents a confusion matrix that quantifies the 

accuracy of the classification performed by the proposed 

methodology, which combines Artificial Neural Networks 

Autoencoders and K-Means. In domain 2, a high 

correspondence of 2,164.00 and 763.0 values is observed with 

the actual rock types 2 and 3, respectively. These numerical 

values represent the number of correct matches, indicating a 

higher accuracy in the correspondence between the estimated 

domains and the actual rock types. This validation provides an 

objective and robust evaluation of the efficiency of the 

clustering method, demonstrating its applicability and 

accuracy in defining geological estimation domains. 

 

 
 

Figure 15. Confusion matrix showing accuracy of predicted 

domains and actual rock types using ANN Autoencoders and 

K Means 

 

The domains D1 and D2 exhibit notable spatial continuity, 

a characteristic reflected in the omnidirectional 

semivariograms depicted in Figures 16 and 17. Domain 1 (D1) 

stands out for its initial continuity and a stationarity ranging 

from 0 to 500 meters, suggesting the presence of structures 

modeled with spherical or exponential shapes. Meanwhile, 

domain 2 (D2) demonstrates stationarity within the range of 0 

to 600 meters, which is consistent with a spherical model due 

to its pronounced stationarity. 

 

 
(a) Derived from the D1 domain at the X coordinate 
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(b) Derived from the D1 domain at the Y coordinate 

 
(c) Derived from the D1 domain at the Z coordinate 

 
(d) Onmidirectional semivariogram of the D1 domain 

 

Figure 16. Drift and omnidirectional semivariogram of the 

domain D1 

 
(a) Derived from the D2 domain at the X coordinate 

 
(b) Derived from the D2 domain at the Y coordinate 

 
(c) Derived from the D2 domain at the Z coordinate 
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(d) Onmidirectional semivariogram of the D2 domain 

 

Figure 17. Drift and omnidirectional semivariogram of the 

domain D4 

 

 

4. CONCLUSIONS 

 

This research has clearly demonstrated the effectiveness of 

autoencoder neural networks and K-Means clustering in 

accurately defining geostatistical estimation domains. The 

silhouette score of 0.261 and an inertia of 17447.44 identified 

two optimal estimation domains, where domain 1 composed 

of 4204 samples with an average copper grade of 0.44% and 

domain 2 with a total of 1450 samples with an average grade 

of 0.41% copper. This analysis demonstrates a substantial 

improvement in terms of accuracy and efficiency, with a 

significantly lower average error (0.29 vs. 0.05) and a 

significantly reduced error variance (0.04 vs. 17.36) compared 

to geochemical modeling. Furthermore, the correlation of rock 

types with estimation domains underlines the geological 

relevance of this model, particularly in the association of 2534 

granodiorite (rock 2) samples with domain 1 and the 

correspondence between rock types 2 and 3 in domains 1 and 

2. 

The application of this methodology contributes 

significantly to the field of geostatistics, fulfilling the essential 

requirements of local stationarity and modelable spatial 

structure for advanced methods such as Kriging. This 

integration not only maintains geological consistency, but also 

significantly optimizes the mineral resource estimation 

process. However, it is crucial to recognize the inherent 

limitations of the method, particularly the reliance on high-

quality, error-free data, a common challenge in practical 

settings. 

Looking to the future, there is a need to expand the database 

parameters to encompass additional aspects such as 

mineralization zones and metallurgical recovery rates. Such an 

expansion would not only improve the accuracy and 

applicability of the estimation domains, but also provide a 

more complete perspective of mineral potential. Additionally, 

exploration and comparison of alternative methodologies for 

domain definition, including advanced and traditional 

techniques, would reveal valuable insights into the strengths 

and weaknesses of each approach, opening avenues toward 

even greater optimization in mineral resource estimation and 

exploration. 
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NOMENCLATURE 

 

h Encoded representation 

f Activation function 

W, V Weights 

b, c Bias 

x Input 

x̂ Reconstructed output 

g Activation function 

EDA Exploratory Data Analysis 

Cu Copper grade 

Mo Molybdenum grade 

N Number of observations 

xi Value of the i-th observations 

Q1, 

Q2, Q3 
Quartiles statistics 

Kur Kurtosis 

a(i) 
Average distance of point i to other points in its 

cluster 

b(i) 
Average distance of point i to the points in the 

nearest cluster outside of its own 
 

Greek symbols 
 

µ Arithmetic mean 

𝜎2 Variance 

𝜎 Standard deviation 

𝜎𝑥𝜎𝑦 Standard deviations of variables X and Y 

𝜇𝑖 Centroid of cluster c-i 
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