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Recent advancements in Deep Learning (DL) have driven the development of 

innovative methodologies, particularly within the domain of steganalysis for spatial 

domain images. Steganalysis, as the counterpart to steganography, is dedicated to 

uncovering concealed data within the content, making a digital image. Convolutional 

Neural Networks (CNNs), grounded in DL principles, have been influential in pushing 

the boundaries of this field. Despite the development of various CNN architectures that 

have raised the precision in detecting images with steganographic payload, current 

models contend with challenges related to the detectability of low payload capacities 

and suboptimal processes for feature learning. In response, this study introduces a novel 

CNN architecture to enhance steganalysis and improve the accuracy of detecting covert 

data in spatial domain images. The proposed model introduces a strategic integration of 

maximum and average pooling, a tandem approach meticulously designed to amplify 

the network's proficiency in capturing intricate details and multiple layers of 

information. Moreover, the proposed CNN architecture is structured into three principal 

stages: preprocessing, feature extraction, and classification. The preprocessing stage 

comprises Input, regular convolution layer, and Batch Normalization. The feature 

extraction stage employs the ReLU as a non-linear activation function based on its 

capacity to expedite computation by bypassing the need for exponentials and divisions. 

The classification stage introduces the multi-scale inception module to enhance the 

probabilistic feature classification. The proposed model’s correctness in probabilistic 

classification through the receiver operating characteristic curve (ROC AUC) yields an 

AUC of 0.95, reflecting a prediction correctness of 95%. Furthermore, the results show 

that the proposed model outperforms the results of previous research studies in terms of 

accuracy and improves the existing works with a percentage ranging from 2.3 to 2.9%. 
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1. INTRODUCTION

In the contemporary digital landscape, ensuring secure data 

transmission through public networks for confidential 

communications is of utmost importance. Secure data 

transmission in public networks is crucial for protecting 

sensitive information from unauthorized access and 

manipulation. Data hiding protocols ensure the confidentiality 

of data, preventing eavesdropping, while mechanisms for 

authentication and integrity verification safeguard against 

impersonation and tampering. The reliability of 

communication channels is enhanced, contributing to business 

continuity and fostering customer trust [1]. Implementing 

robust security measures is essential to navigate the shared and 

potentially vulnerable space of public networks. Data hiding 

(DH) is a strategy employed to obscure sensitive information 

within non-sensitive data, enhancing the difficulty for 

unauthorized individuals to identify or access concealed 

content. This technique encompasses the integration or 

encryption of confidential data into seemingly innocuous files 

or structures. The significance of data hiding lies in its ability 

to bolster the security of sensitive information, providing an 

additional layer of protection against unauthorized access and 

ensuring the confidentiality of the hidden data [2, 3]. Common 

methodologies involve steganography, where information is 

discreetly embedded within various media [4], each serving as 

a potential carrier for covertly transmitting sensitive data. 

Applying data hiding techniques is crucial for organizations 

aiming to safeguard critical information, uphold privacy, and 

mitigate the risks associated with data breaches or 

unauthorized disclosures. The overarching goal of DH remains 

consistent: the conservation of the quality of the modified 

digital object (known as stego) in a way that allows it to 

traverse insecure channels without compromising the integrity 

of the concealed information [5]. 

The widespread use of DH techniques, while having 

beneficial applications, has inadvertently created a potential 

avenue for the covert transmission of malicious data, leading 
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to tangible threats to societal security through executing illicit 

plans [6]. Steganalysis has been developed as a critical 

countermeasure in response to this growing challenge. 

Steganalysis aims to preserve the inherent integrity of digital 

media by actively addressing and preventing the nefarious 

misuse of data-hiding methodologies [7]. To address this 

complex issue effectively, contemporary steganalysis methods 

emphasize both blind steganalysis [7, 8] and locative 

steganalysis [9, 10], strategically dealing with different aspects 

of detecting and locating potential steganographic payloads 

hidden within digital images. The increasing risks associated 

with data hiding highlight the crucial need for effective 

steganalysis practices, as they play a pivotal role in identifying 

and mitigating potential threats arising from secret 

transmissions of malicious content, thereby safeguarding the 

integrity of digital communication channels and societal well-

being. 

Within the expansive field of steganalysis, the crucial role 

of machine learning (ML) models is evident, employing 

classical ML techniques such as support vector machines, 

linear regression, principal component analysis, nearest 

neighbor, and K-means clustering [11]. However, 

conventional ML methods face challenges in effectively 

handling the growing volume of data, mainly due to the 

separation of feature extraction and classification phases. 

Deep learning (DL) has emerged as a powerful and adaptable 

solution to address these challenges, seamlessly integrating 

feature extraction and classification into an end-to-end 

learning process [12]. Convolutional Neural Networks (CNNs) 

within the Deep Learning paradigm are widely recognized for 

their ability to discern essential features without human 

supervision [13]. Despite the extensive use of CNNs in 

steganalysis, there is a discernible need for improvement. The 

role of ML and DL, particularly the advantages offered by 

CNNs, is pivotal in advancing steganalysis techniques to 

effectively address evolving challenges and cope with the 

increasing complexity of data. 

This paper introduces a new CNN architecture, drawing 

inspiration from cutting-edge research, with the primary goal 

of significantly advancing the accuracy of detecting hidden 

data within spatial domain images. The proposed multifaceted 

enhancements incorporate innovative strategies to elevate the 

model's capabilities. These include the implementation of mix 

pooling to reduce spatial dimensions judiciously, the 

integration of multiple separable convolution layers to 

enhance feature extraction, the adoption of dropouts to 

effectively mitigate overfitting, and the incorporation of multi-

scale layers facilitated by inception modules, as visually 

represented in Figure 1. The proposed method is meticulously 

evaluated through a comprehensive experimental examination 

to substantiate and underscore its notable outperformance over 

existing approaches. This research marks a substantial 

contribution to the field, offering a refined and advanced 

approach to hidden data detection within spatial domain 

images, with implications for diverse applications and 

furthering the state-of-the-art in CNN-based steganalysis 

techniques.  

The rest of the paper consists of related work reported in 

Section 2, methodology detailed in Section 3, experimental 

results presented in Section 4, and conclusions drawn in 

Section 5. The related section presents the general framework 

of image steganalysis and related work in spatial domain 

image steganalysis. The methodology section presents the 

step-by-step process of the proposed method; the experimental 

results section explains the results of this research and 

comparisons with previous related research. The overall work 

is then summarized in the conclusion section. 

 

 

 
 

Figure 1. Schematic of the multi-scale inception module 

 

 

2. RELATED WORKS 

 

Within this section, an in-depth exploration unfolds, delving 

into the rational framework that underlies the research. A 

meticulous analysis of related studies, methodologies, and 

findings is undertaken to provide a nuanced understanding of 

the research context. The following plot provides an extensive 

review of antecedent studies suitable to the research objectives. 

In 2016, the steganalysis model Xu-Net [14] introduced a 

novel CNN architecture tailored for steganalysis, 

demonstrating a profound grasp of steganalysis dynamics. 

Notable characteristics of this architecture include the 

computation of absolute values for elements within feature 

maps generated from the initial convolutional layer, the 

imposition of constraints on data value ranges through 

saturation regions defined by a hyperbolic tangent (tanh) in the 

early stages of the network, and a reduction in modeling 

strength through the incorporation of 1×1 convolutions in 

deeper layers. Furthermore, the model employs a hybrid of 

TanH and Rectified Linear Unit (ReLU) non-linear activation 

functions in the designed CNN for steganalysis. The 

discernment from their experimentation suggests that the 
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utilization of TanH in specific groups, as opposed to ReLU, 

results in enhanced performance, ostensibly attributed to the 

effective confinement of data value ranges within the 

saturation regions of TanH. However, substituting more 

ReLUs in deeper layers with TanH may lead to suboptimal 

outcomes, potentially linked to challenges in gradient 

backpropagation associated with TanH. The model 

implementation revealed that Xu-Net achieved an accuracy of 

72.7% for S-UNIWARD at 0.4 bits per pixel (bpp). These 

findings demonstrate that Xu-Net presents a sophisticated 

CNN architecture for steganalysis, showcasing improved 

performance with nuanced activation function selections. 

However, it is essential to critically evaluate certain drawbacks, 

such as the potential suboptimal outcomes associated with the 

TanH activation function in deeper layers, which warrant 

further exploration for comprehensive model enhancement. 

In the subsequent year, 2017, the research outlined by Ye et 

al. [15] introduced an innovative CNN architecture, departing 

from conventional practices by employing a set of high pass 

filters derived from Spatial Rich Models (SRM) residual maps. 

This difference from the standard use of high pass filters [7] is 

grounded in the non-randomized initialization of these filters 

with SRM values. Particularly noteworthy is the integration a 

novel Truncated Linear Unit (TLU) activation function 

designed to enhance the Signal-to-Noise Ratio (SNR), 

particularly in scenarios of low SNR during the steganography 

insertion process. Moreover, the improved performance is 

attributed to incorporating knowledge regarding channel 

selection or potential pixel alterations [16]. Significantly, a 

notable enhancement in performance is observed by 

implementing transfer learning from a network trained on 

datasets with high payload to a network trained on images with 

low payload. This innovative architecture achieved an 

accuracy of 68.7% for S-UNIWARD at 0.4 bpp. Based on 

these findings, it is remarkable that Ye et al. [15] introduced 

an unconventional yet effective CNN architecture, 

emphasizing non-randomized filter initialization from SRM 

residual maps and introducing a novel TLU activation function 

to improve SNR. Applying transfer learning from high to low 

payload datasets further enhances steganalysis performance.  

In the following year, 2018, the emergence of the innovative 

CNN architecture, Yedroudj-Net, drew inspiration from prior 

research, offering a comprehensive structure across three 

distinct stages: preprocessing, feature extraction, and 

classification [17]. Notably, 30 fundamental high pass filters 

derived from SRM, known for their non-trainable nature and 

fixed 5×5 size, were employed in the preprocessing phase. 

Transitioning to the feature extraction stage, Yedroudj-Net 

comprised five blocks, each incorporating a convolution layer, 

batch normalization, and selective use of average pooling. 

Activation functions applied in these blocks included 

Truncation and ReLU in blocks 1, 2, and 3-5, respectively, 

with a significant shift in kernel size from 5×5 in blocks 1 and 

2 to 3×3 in blocks 3 to 5. The subsequent classification stage 

utilized three fully connected layers housing 256, 1024, and 2 

neurons in the final layer corresponding to the output classes. 

The SoftMax activation function was applied to generate a 

distribution of two class labels. This architectural 

configuration resulted in an accuracy of 72.7% for S-

UNIWARD at 0.4 bpp, establishing Yedroudj-Net as a 

noteworthy contribution to the field. 

Additionally, in 2018, the study presented by Boroumand et 

al. [18] introduced a CNN architecture operating within spatial 

and frequency domains, specifically targeting the JPEG 

domain. The study emphasized the efficacy of the frequency 

domain in eliminating the need for manual and device 

heuristics required by other networks to detect steganographic 

noise. The network utilized filter banks inspired by SRM to 

initialize weights in the preprocessing layer. Subsequent 

adjustments to these weights during training were made to 

amplify noise introduced by the steganography algorithm 

while minimizing its impact on image content. The resultant 

SR-Net achieved an accuracy of 81.3% for S-UNIWARD at 

0.4 bpp, underscoring its effectiveness. 

In 2020, the steganalysis research detailed by Zhang et al. 

[19] unveiled Zhu-Net, drawing inspiration from the 

architecture of Yedroudj-Net. Distinguishing itself, Zhu-Net 

incorporates the ReLU activation function after each 

convolution layer, strategically employed to expedite network 

convergence. This architecture stands out by leveraging 

shortcuts and the Xception module to augment overall 

performance, deviating from Yedroudj-Net's choice to abstain 

from using shortcuts or the inception module. Notably, Zhu-

Net's feature extraction stage adopts a pair of separable 

convolutions, signaling a departure from conventional 

approaches. In this context, Zhu-Net showcases substantial 

advancements compared to existing CNN-based networks. 

Despite the experimental results demonstrating a promising 

accuracy improvement, reaching 89%, the model reveals a 

notable drawback related to the complexity of the CNN and a 

considerable demand for an extensive dataset to enhance 

classification correctness. This underscores the need for 

critical evaluation and areas for improvement in addressing 

these challenges for the continued advancement of 

steganalysis using CNN architectures. 

In 2021, GBRAS-Net was introduced as a steganalysis 

model by Reinel et al. [20], taking inspiration from Zhu-Net. 

The architecture of GBRAS-Net is organized into three 

distinct stages: preprocessing, feature extraction, and 

classification. In the classification stage, GBRAS-Net adopts 

an HPF bank filter for kernel initiation. Diverging from Zhu-

Net in the feature extraction stage, GBRAS-Net combines 

separable and depth-wise convolution with skip connections. 

The subsequent classification stage incorporates global 

average pooling as input before transitioning to the SoftMax 

function for prediction. Empirical findings highlight GBRAS-

Net's superior performance compared to previously proposed 

CNNs. Despite achieving a promising accuracy improvement 

of around 90%, the model reveals a notable drawback related 

to the complexity of the CNN and a substantial need for an 

extensive dataset to enhance classification correctness. This 

underscores the necessity for thorough critical evaluation and 

identifies key areas for improvement, contributing to the 

ongoing progress in steganalysis through CNN architectures. 

In the futuristic realm of 2023, a recently introduced CNN 

architecture, as described by Ntivuguruzwa et al. [7], has put 

forth an innovative design, building upon preceding research 

to enhance the proficiency of CNNs in uncovering concealed 

data within spatial domain images. During preprocessing, the 

authors incorporated 30 SRM filters, deriving 25 from 3×3 

kernels and the remaining five from 5×5 kernels. Furthermore, 

in this stage, the proposed method employed the tangent 

hyperbolic as a non-linear operator, intensifying non-linearity 

to optimize the efficiency of the deep network and foster 

improved network convergence. To expedite training time, the 

kernel values were intentionally set as non-trainable. 

Transitioning to the feature extraction stage, a unique 

combination of depth-wise separable convolution with regular 
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convolution layers was implemented, capitalizing on the 

advantages of increased model expressiveness, reduced 

storage size, and the segregation of channel correlations. Each 

regular convolution layer utilized the LeakyReLu activation 

function to enhance non-linearity, complemented by the batch 

normalization layer for normalizing the distribution of feature 

maps. The strategic use of LeakyReLu prevented vanishing 

gradients by converting negative values into small positive 

ones, facilitating backward communication and ensuring 

positive model weights. The rapid convergence achieved with 

LeakyReLu contributed to swift network convergence and 

heightened training stability. In the subsequent classification 

stage, multi-scale average pooling was integrated to retain 

spatial information from the preceding layer, thereby 

augmenting feature expression. Three sequentially arranged 

dense layers followed this. The output from the last fully 

connected layer was then directed to the SoftMax layer to 

transform generated features into probabilistic classes, 

ultimately yielding class labels. The multi-scale average 

pooling featured a 3-scale pyramid pool with sizes (4,4), (2,2), 

and (1,1). Despite achieving promising accuracy 

improvements of around 90%, surpassing previously proposed 

models, the model exhibits a noteworthy drawback that may 

lead to overfitting, given the imperative need for enhancing the 

model's feature learning ability. This emphasizes the crucial 

need for comprehensive assessment and pinpointing key areas 

requiring enhancement, ultimately playing a role in the 

continual advancement of steganalysis through CNN 

architectures. 

Building upon existing research, this study introduces a 

novel CNN designed to enhance the detection hidden data 

within spatial domain images. The core of these enhancements 

involves the integration of mix pooling, dropout, and multi-

scale convolution, strategically applied to bolster the stability 

of the classification stage. However, a comprehensive 

examination of the current literature highlights notable 

shortcomings, such as low detection rates, suboptimal 

outcomes, and increased complexity. Leveraging insights 

derived from the recognized limitations in previous studies, 

this paper addresses these challenges by proposing an 

innovative model. The objective is to mitigate complexity and 

classification accuracy concerns by introducing a cutting-edge 

steganalysis approach. This includes integrating proficient 

feature selection and optimization techniques, marking a 

significant advancement in response to identified deficiencies 

in the existing body of literature. 

 

 
3. METHODOLOGY 

 
This section explains the proposed methodology starting 

from the dataset, the proposed CNN architecture, and 

compares the proposed architecture with related research 

discussed in the related work session. In essence, this section 

serves as a comprehensive exposition of the methodology, 

commencing with the foundational dataset, traversing through 

the details of the CNN architecture, and culminating in a 

meticulous comparative analysis with relevant research.  

 
3.1 Dataset 

 

The dataset employed for training and testing the proposed 

CNN model involves resizing the original cover images, 

generating stego images using specific steganographic 

algorithms, and subsequently partitioning the dataset into 

training, validation, and testing sets while ensuring a balanced 

distribution between stego and cover images. The dataset 

utilized for training and testing the proposed CNN model is 

sourced from the Break Our Steganographic System 

(BOSSBase 1.01) database [21], which is publicly accessible 

and comprises Portable Gray Map (PGM) images with 8-bit 

grayscale. The BOSSBase database encompasses 10,000 

cover images, each with a 512×512 pixels resolution. The 

principal characteristics and preprocessing steps applied to the 

dataset are described as follows: 

1. Resizing cover image size: 

• The initial cover images, sized 512×512 pixels, 

undergo resizing to 256×256 pixels. This resizing 

step reduces computational complexity in 

subsequent operations while preserving reasonable 

image quality. 

2. Steganographic images generation: 

• Post-resizing, stego images are generated using 

two distinct steganographic algorithms: Wavelet 

Obtained Weights (WOW) and Spatial Universal 

Wavelet Relative Distortion (S-UNIWARD). 

• The steganographic process involves embedding 

information with a payload of 0.4 bpp. 

• This results in two separate stego image datasets, 

one for WOW and another for S-UNIWARD, 

containing 10,000 images. 

3. Data distribution: 

• Following stego image generation, three datasets 

are formed: 10,000 cover images, 10,000 stego 

images from the WOW algorithm, and 10,000 

stego images from the S-UNIWARD algorithm. 

• Two distinct models are constructed, each utilizing 

a different dataset: Model 1 incorporates Cover 

Images + Stego Images from WOW. In contrast, 

Model 2 employs the dataset containing Cover 

Images + Stego Images from S-UNIWARD. 

• The total dataset of 20,000 images is partitioned 

into three subsets: 

• 8,000 images for training 

• 2,000 images for validation 

• 10,000 images for testing 

• The data split maintains a 50:50 proportion 

between stego and cover images across all subsets. 

 

3.2 Hyper-parameters selection 

 

The rationale behind this training methodology's chosen 

hyperparameters and optimization techniques is rooted in a 

strategic approach to bolster the model's learning capacity, 

expedite convergence, and enhance overall performance. The 

decision to employ Conv2D and SeparableConv2D 

convolutional layers with the Glorot kernel initializer is driven 

by the acknowledged efficacy of Glorot initialization in 

mitigating the vanishing/exploding gradient problem, thereby 

fostering stable and efficient learning. Within the Batch 

Normalization layer, the deliberately selected parameters, 

including a modest momentum of 0.2, an epsilon value of 

0.001, and a renorm momentum set at 0.4, collectively aim to 

expedite adaptation to data distributions, mitigate overfitting 

risks, and ensure consistent and reliable updates during 

training. Moving to the optimization strategy, the adoption of 

the Adam optimizer is motivated by its adaptive learning rate 

capabilities and proven effectiveness in handling sparse 

1230



 

gradients. A learning rate of 0.001 strikes a balance between 

convergence speed and precision, while an epsilon value of 1e-

08 safeguards against division by zero issues, ensuring 

numerical stability throughout the optimization process.  

 

3.3 CNN architecture 

 

The architecture delineated in this research is visually 

represented in Figure 2. It is structured into three principal 

stages: preprocessing, feature extraction, and classification. 

The ensuing discourse provides a detailed elucidation of each 

of these three stages. 

 

3.3.1 Preprocessing 

The preprocessing stage comprises Input, regular 

convolution layer, and Batch Normalization. The model's 

input is configured with dimensions (256,256,1). 

Subsequently, the input undergoes processing in the regular 

convolution layer, where a 30 SRM filter bank with a 5×5 

kernel is applied. The utilization of this filter bank is aimed at 

enabling the model to capture a more diverse range of texture 

information and image features. The convolutional operation 

employs a stride of (1,1), and padding is set to 'same' to ensure 

that the output from preprocessing maintains the same size as 

the input. In the preprocessing layer, the chosen activation 

function is 3TanH, an extension of the TanH function. TanH 

itself produces output within the range of -1 to 1. The output 

of the TanH activation function is defined as illustrated in Eq. 

(1). 
 

𝑓(𝑥) = (
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
) (1) 

 

 
 

Figure 2. Architecture of the proposed CNN 

 

The primary advantage conferred by this function lies in its 

ability to generate a zero-centered output, thereby facilitating 

the backpropagation process [22, 23]. In this preprocessing 

layer, the weights are designated as non-trainable, signifying 

that throughout the training phase, these weights remain static 

and are not subject to updates or evaluations. After the non-

trainable weights, batch normalization is employed. Batch 

Normalization exerts a positive influence on gradient flow 

throughout the network. It accomplishes this by mitigating the 

gradient's dependence on the scale of the parameter or its 

initial value. This reduction in dependence enables the 

utilization of higher learning rates without the associated risk 

of divergence. 

 

3.3.2 Feature extraction 

Diverging from the preprocessing stage, the feature 

extraction stage employs the non-linear activation function 

ReLU. ReLU is preferred for its capacity to expedite 

computation by bypassing the need for exponentials and 

divisions, thereby enhancing overall computational speed [22]. 

The mathematical formulation of the ReLU activation function 

is expressed in Eq. (2). 

 

𝑓(𝑥) = max(0, 𝑥) = {
𝑥𝑖 , 𝑖𝑓 𝑥𝑖 ≥ 0 
0, 𝑖𝑓 𝑥𝑖 < 0

} (2) 

The ReLU activation function serves to rectify input values 

below zero by setting them to zero, thus mitigating the issue 

of missing gradients. The feature extraction stage is structured 

with a configuration of 9 blocks. Blocks 1 and 2 incorporate a 

depth-wise convolution layer with 1×1 filters for dimension 

reduction, followed by a Separable convolution layer featuring 

32 3×3 filters and applying the ReLU activation function, 

succeeded by Batch Normalization. Block 1 is connected to 

Block 2 through a skip connection, followed by a dropout 

mechanism. Moving Block 3, it encompasses a convolutional 

layer with 32 filters of size 3×3, employing 'same' padding. 

Subsequently, Batch Normalization is applied, followed by 

Mix Pooling with a kernel size of 2×2, stride of 2×2, and 'same' 

padding. Mix Pooling is introduced in this study to address the 

limitations of both Max pooling and Average pooling. Max 

pooling, focusing solely on the largest element, can lead to 

losing salient features when most elements exhibit high 

magnitudes, potentially yielding undesirable results. 

Conversely, average pooling encounters challenges when a 

substantial portion of activations in the pooling zone is zero, 

leading to a significant reduction in the characteristics of 

convolution features [24]. Eq. (3) outlines the formula for 

pooling. 
 

𝑆𝑗 = 𝜆 𝑚𝑎𝑥 𝑎𝑖 + 𝑐 (3) 
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The pooling output depends on the value of 𝜆 where 𝜆 is 

binary 0 or 1. If 𝜆 = 0 it means the pooling output or 𝑆𝑖  is 

expressed in Eq. (4); otherwise, if 𝜆 = 1, then 𝑆𝑗 is obtained 

using the relation in Eq. (5) for average pooling. 

 

𝑆𝑖 = (1 − 𝜆)
1

|𝑅𝑗|
∑ 𝑎𝑖

𝑖∈𝑅𝑗

 (4) 

 

𝑆𝑖 = max 𝑎𝑖 (5) 

 

In Blocks 4 and 5, a Separable convolution layer is 

employed with 64 filters of size 3×3, maintaining the same 

structure as Block 3, followed by batch normalization and mix 

pooling. Block 6 introduces a variation by incorporating a 

multi-scale approach from the inception module. This entails 

three convolution layers with filters of 64, 64, and 32, each 

featuring different kernel sizes (1×1, 3×3, and 5×5). These 

layers are arranged in parallel, enabling the network to capture 

features at varying scales simultaneously. Batch normalization 

is applied, followed by dropout with a probability value of 

0.15. Moving to Block 7, it comprises a 64-filter convolution 

layer with a 1×1 kernel, followed by batch normalization and 

dropout with a probability value of 0.25. Blocks 8 and 9 share 

a similar composition, featuring a convolution layer succeeded 

by batch normalization. The distinction lies in the convolution 

layer's number of filters and kernel size; Block 8 incorporates 

32 filters with a 3×3 kernel, while Block 9 applies two filters 

with a 1×1 kernel. Both blocks conclude with dropout, 

utilizing a probability value of 0.25. Blocks 8 and 9 have the 

same composition, namely a convolution layer followed by 

batch normalization, differentiated by the number of filters and 

kernel size in the convolution layer where block 8 has 32 filters 

with a kernel size of 3×3 and block 9 applies two filters with a 

kernel size of 1×1, followed using dropout with a probability 

value of 0.25. 

 

3.3.3 Classification 

In the classification stage, the process involves employing 

global average pooling as the final channel, which is 

subsequently connected to the SoftMax function to transform 

the generated features into probabilistic classes. The modeling 

phase incorporates an optimizer designed to dynamically 

adjust the learning rate for each weight, thereby facilitating 

faster convergence. 
 

3.4 Model evaluation 
 

The evaluation metrics employed to assess the performance 

of the proposed model predominantly revolve around accuracy, 

as of Eq. (6). Accuracy, which measures the proportion of 

correctly classified instances among total predictions, serves 

as a straightforward and illuminating indicator of the model's 

overall correctness. This metric hinges on the outcomes of the 

four classes in the classification results: True Positive (TP), 

representing concealed images accurately predicted as such; 

True Negative (TN), denoting visible images accurately 

predicted as visible; False Positive (FP), indicating visible 

images inaccurately predicted as concealed; and False 

Negative (FN), representing concealed images inaccurately 

predicted as visible. Additionally, the model's overall 

performance is further gauged using the AUC-ROC (Area 

Under the Curve) metric. AUC-ROC values nearing 1 signify 

commendable performance, while those approaching 0.5 

suggest a performance akin to chance. 

Together, these evaluation metrics offer a comprehensive 

and nuanced assessment of the proposed model's classification 

accuracy and its overall efficacy in distinguishing between 

concealed and visible images. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100)% (6) 

 

 

4. RESULTS AND DISCUSSION 
 

The results analysis in this section, grounded in the 

experimental setups outlined in Section 3, provides a 

comprehensive evaluation of the proposed model's 

performance concerning the S-UNIWARD and WOW 

steganographic algorithms at a 0.4 bpp payload. The 

comparative benchmarking against state-of-the-art models, 

with accuracy as the key metric, reveals insightful strengths 

and weaknesses. Figures 3-5 visually depict the model's 

accuracy progression during training, notably showcasing 

stable performance across epochs for both S-UNIWARD and 

WOW stego datasets.  
 

 
       (a) Accuracy                                                                               (b) Loss 

 

Figure 3. Training and validation curves of the proposed CNN with S-UNI 0.4 bpp 
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(a) Accuracy                                                                             (b) Loss 

 

Figure 4. Training and validation curves of the proposed CNN with WOW 0.2bpp 

 

 
(a) S-UNIWARD                                                             (b) WOW 

 

Figure 5. ROC curves 
Note: Legend: “Class 0” represents the stego images, “Class 1” represents the cover image. Random represents the unclassified inputs. 

 

Table 1. Comparison of the accuracy between the proposed 

method and the state-of-the-art works 
 

Steganographic Algorithm 
S-UNIWARD WOW 

0.4 bpp 0.4 bpp 

Yedroudj-Net 77.2 84.1 

Zhu-Net 80.1 84.4 

GBRAS-Net 81.4 85.9 

Proposed Method 84.5 87.6 

 

Table 1 provides a comprehensive overview of the accuracy 

results from model comparisons, showcasing the proposed 

CNN model against Yedroudj-Net, Zhu-Net, and GBRAS-Net. 

The testing accuracy for S-UNIWARD and WOW stego 

datasets with a 0.4 bpp payload is systematically presented for 

each model. Starting with the baseline Yedroudj-Net model, 

subsequent enhancements with the Zhu-Net model yielded 

improved accuracies, further elevated by the GBRAS-Net 

model. Notably, the proposed CNN model demonstrated 

superior performance, achieving testing accuracies of 84.5% 

and 87.6% for the S-UNIWARD and WOW datasets, 

respectively. This represents a substantial improvement, 

surpassing GBRAS-Net by 2.9% for the S-UNIWARD dataset 

and 2.3% for the WOW dataset. The table succinctly captures 

the comparative accuracy gains achieved by the proposed 

model, showcasing its efficacy in steganalysis tasks. 

The impact of the proposed enhancements, namely mix 

pooling, multi-scale inception module, and dropouts, on the 

model's performance is significant. These enhancements 

contribute to stability without compromising accuracy or 

succumbing to overfitting. Notably, the proposed CNN model 

outshines Yedroudj-Net, Zhu-Net, and GBRAS-Net, 

achieving testing accuracies of 84.5% and 87.6% for the S-

UNIWARD and WOW datasets, respectively. This surpasses 

GBRAS-Net by 2.9% and 2.3%, underscoring the efficacy of 

the model's design choices. The incorporation of mix pooling, 

the multi-scale inception module, and dropouts enhances the 

model's ability to discern concealed and visible images with 

improved accuracy. While the results demonstrate notable 

success, future research avenues may explore additional 

optimizations in model architecture and investigate features or 

preprocessing methods to bolster robustness across diverse 

datasets further. The current study lays a strong foundation for 

advancements in steganalysis methodologies, offering 

promising avenues for future exploration and refinement. 
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5. CONCLUSIONS 

 

This study makes significant contributions by introducing a 

meticulously designed steganalysis model for the precise 

detection of concealed data within spatial-domain images. The 

proposed CNN architecture integrates innovative elements, 

including mix pooling, dropouts, and a multi-scale 

initialization module. These enhancements collectively result 

in substantial improvements over previous works, as 

particularly demonstrated in the application to WOW and S-

UNIWARD stego datasets at a 0.4 bpp payload. The observed 

enhancements in accuracy, ranging from 2.3% for S-

UNIWARD to 2.9% for WOW, underscore the model's 

effectiveness in advancing steganalysis methodologies. The 

broader implications of this research extend to its potential 

applications in real-world scenarios, where the accurate 

detection of concealed data is of paramount importance. The 

proposed model's superior performance, outperforming 

previous works, positions it as a significant milestone in 

steganalysis. The refined architectural choices, such as mix 

pooling, dropouts, and the multi-scale initialization module, 

enhance the model's adaptability and generalizability. These 

qualities make the model applicable in diverse settings, 

including cybersecurity, digital forensics, and information 

security, where identifying hidden information within images 

is crucial. This paper specifically presents a steganalysis 

model that not only enhances accuracy in detecting concealed 

data but also contributes to the broader field of image-based 

information security. The strategic use of mix pooling, 

dropouts, and a multi-scale initialization module showcases 

significant improvements over existing methodologies. The 

observed enhancements in accuracy underscore the model's 

efficacy. This study serves as a stepping stone for future 

advancements in steganalysis, offering a robust and adaptable 

model with implications beyond the academic realm.  

Future work in this domain could explore more advanced 

optimization techniques, further refinement of the model 

architecture, and the exploration of novel features or 

preprocessing methods to enhance the steganalysis model's 

robustness and applicability across diverse datasets. 

Additionally, investigating the model's performance under 

varying payload conditions and different steganographic 

algorithms would contribute to a more comprehensive 

understanding of its capabilities and limitations. 
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