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In this study, we have developed a multi-task model based on Convolutional Neural 

Network (CNN) to determine the isocitrate dehydrogenase (IDH) status and grade of 

gliomas brain tumours from T1-weighted (T1), T2-weighted (T2) and Fluid-Attenuated 

Inversion Recovery (FLAIR) images, both independently and utilizing stacked images. The 

study used information from the Cancer Genome Atlas (TCGA), which includes scans of 

grade III & IV tumours. Around 5546 MR images of individual modality and 1942 images 

of stacked modalities were processed from the original dataset. Popular CNN architectures 

like MobileNet, EfficientNetB0, EfficientNetB1, EfficientNetB2 and Xception models 

were implemented and used for the predictive analysis. A multi-task model has been 

developed to generate the grade and the IDH status from a single input image. Further, a 

user interface was developed using Python binding for Qt (PyQt) for checking the samples 

in real time without the help of medical experts. In comparison to all other models taken 

into account in this study, the EfficientNetB2 CNN model achieved the highest accuracy. 

For grade classification and IDH status classification on stacked images, the EfficientNetB2 

CNN multi-task architecture achieved accuracy values of 99.4% and 99.6%, respectively. 

Accuracy scores of 99.7% and 99.8%, respectively, are obtained for grade classification 

and IDH status classification on individual images. 
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1. INTRODUCTION

The most common primary brain tumours are gliomas. Glial 

cells, which are supporting cells in the central nervous system, 

are the target for gliomas [1]. These tumours, which can be 

benign or malignant, can develop in different regions of the 

brain. The majority of adult brain tumours are gliomas. The 

pathophysiology of these tumours is exceedingly complex, 

and results are typically subpar despite extensive multimodal 

management that includes surgical resection, adjuvant 

radiation therapy, and chemotherapy with temozolomide [2]. 

Early tumour detection is crucial for the patient's survival as it 

helps to start the treatment at an early stage. One of the most 

significant recognized factors for predicting survival in glioma 

patients is the genotype of the enzyme isocitrate 

dehydrogenase (IDH) [3]. IDH is an enzyme that is important 

for cellular metabolism. Several malignancies, including 

gliomas and Acute Myeloid Leukaemia (AML), have been 

linked to mutations in the IDH genes. Gliomas are classified 

as low-grade (grade II) and high-grade (grade III and IV) 

gliomas based on their histological characteristics, prognosis, 

aggressiveness, and histological characteristics. Frequently 

occurring genetic changes in gliomas are the IDH mutations 

which is categorized as either positive (mutant) or negative 

(wildtype) for the various glioma subtypes. 

Molecular testing techniques, such as Deoxyribonucleic 

Acid (DNA) sequencing or immunohistochemistry (IHC), are 

commonly used on tumour tissue samples to determine the 

IDH mutational status [4]. IHC is a technique that allows for 

the visualization and analysis of particular proteins or antigens 

present in tissue samples. These tests aid in determining 

whether or not particular IDH mutations are present, and they 

offer useful data for individualized treatment plans and 

prognosis analysis. These tests are considered the gold 

standard and assist in correct diagnosis by identifying the 

mutational status and the subtype. Despite being the gold 

standard, histopathology has some drawbacks, such as the 

potential for serious morbidity when the lesion occurs in the 

eloquent area [5]. Therefore, developing quantitative markers 

of genotype information from the patient's Magnetic 

Resonance Imaging (MRI) would not only allow for a non-

invasive pre-operative prognosis of the mutational status, but 

would also enhance therapeutic intervention and allow for 

early patient-specific treatment planning.  

Radiogenomics play an important role in noninvasively 

acquiring the molecular characteristics of the tumour from 

radio-phenotypical signatures extracted from the MR images. 

Radiomics features extracted from Fluid-Attenuated Inversion 

Recovery (FLAIR) hyperintense regions in addition to tumour 

magnitude and location have been usually employed to 

determine the status of IDH mutations [6]. Some popular 

radiomic features extracted from MRI and medical imaging in 

general include shape characteristics, volume characteristics, 

Gray Level Co-occurrence Matrix (GLCM), Gray Level Run 
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Length Matrix (GLRLM), Gray Level Size Zone Matrix 

(GLSZM), Neighboring Gray Tone Difference Matrix 

(NGTDM) and Gray Level Dependence Matrix (GLDM) 

techniques. There are open-source tools like PyRadiomics 

which automate the process of radiomic feature extraction, 

aiding in medical imaging research.  

IDH1 mutations are very common in grade II and III 

gliomas and are related to higher survival rates. Many studies 

have worked on delineating the IDH mutant from wildtype 

gliomas using several computational predictive measures on 

multimodal MRI and have delivered high accuracies of up to 

95%. Furthermore, radiomics on diffusion kurtosis and 

fractional anisotropy-based diffusion models are also useful 

for identifying the mutational status. Significant results were 

demonstrated in the discrimination of Grade III and IV 

tumours using Antibody Drug Conjugate (ADC) modalities 

[7]. 

However, there are some issues observed with radiomics, 

and a critical one being the lack of interpretability. The 

radiomic features tend to have the least level of interpretability, 

which is highly in demand, especially in areas like healthcare. 

Also, the features are prone to noise and other variations in the 

input image [8]. Alternatively, automated feature extraction 

approaches like Convolutional Neural Networks (CNN) are 

robust to noise and provide interpretations (using explainable 

AI techniques), better than radiomics. This is one of the 

reasons for the research trend to transition into CNNs and 

other deep neural network architectures.  

The field of healthcare has greatly benefited from artificial 

intelligence, particularly in the area of diagnosis. It serves as a 

tool for performing automated diagnoses and aiding 

physicians in strengthening their decisions. For this purpose, a 

number of machine learning and deep learning algorithms 

have been developed. CNNs in particular have demonstrated 

their potential and ability to automatically learn image features 

reducing the need for the time-consuming preliminary 

processing procedures required by radiomics-based 

approaches [9]. Several architectures of the CNN have been 

tested. One of the models with the highest level of stability is 

ResNet. Earlier studies using quantitative MRI-based analysis 

such as radiomics or CNNs although have illustrated great 

potential, have focused only on a single aspect, i.e., either 

grade, IDH mutation or other genotypes like Methylguanine 

Methyltransferase (MGMT) or 1p/19q codeletion [10].  

The general challenge observed in research works related to 

glioma analysis are the usage of more MR imaging modalities 

and the need for multi-tasking. Many works focus on single 

tasks and use limited MR imaging modalities in their work. An 

efficient solution to this challenge is multi-task learning, 

which is the development of an algorithm that produces 

multiple outputs for provided inputs. This technique does 

multiple tasks parallelly, adding efficiency to the work. Some 

researchers have used this powerful technique to tackle the 

above-mentioned challenge in the area of glioma analysis. 

Chakrabarty et al. [11] developed a multi-task CNN model for 

the classification of IDH and 1p/19q code status from T1-

weighted (T1), T2-weighted (T2) and FLAIR modality MRI 

images and achieved an accuracy of 0.925. Cheng et al. [12] 

developed a multi-task deep learning model for the 

segmentation of gliomas and classification of IDH status. 

Tupe-Waghmare et al. [13] worked on the development of a 

semi-supervised multi-task module for the classification of 

IDH, 1p/19q codeletion and MGMT status from T1, T2 and 

FLAIR MRI images and achieved 82.35% average test 

accuracies.  

Inspired by these multi-task learning models, we have 

implemented a new deep learning multi-task CNN learning 

network for the automated classification of IDH status and 

grades of gliomas brain tumours from T1, T2 and FLAIR MRI 

images. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Subjects and dataset 

 

The dataset consisted of T1, T2 and FLAIR images of 178 

glioma cases from the Cancer Genome Atlas (TCGA) dataset 

[14]. This included 37 grade III (G3) scans with 28 IDH-

mutant and 9 IDH-wildtype, and 34 grade IV (G4) scans with 

4 mutant and 30 wildtypes. Our dataset included 24 adult 

patients with grade IV gliomas and 34 adult patients with 

grade III gliomas, confirmed via histology. The demographic 

information about the participant groups is given in Table 1. 

 

Table 1. Demographical data of the subjects selected for the 

analysis 

 

 

2.2 Pre-processing 

 

The volumes were obtained in the Neuroimaging 

Informatics Technology Initiative (NIFTI) format [15]. The 

open-source database comprises T1, T1-weighted contrast-

enhanced (T1-CE), T2 and FLAIR modalities. From those, the 

T1, T2 and FLAIR modalities were considered for this work 

[16]. In order to focus on the areas with the tumour, the 

volumes were obtained and cropped. The volumes were then 

trimmed and converted to PNG images. The general workflow 

of the proposed work is shown in Figure 1. The two 

methodologies featured in the proposed study are stacking of 

the modalities and individual modalities. The T1, T2 and 

FLAIR modalities were put together into one dataset and in the 

other dataset a single image was created by stacking the T1, 

T2, and FLAIR images. The stacking operation was done 

using the NumPy library in Python. The total number of 

images used for each modality individually and for stacked 

modalities collectively is shown in Table 2. 

 

Table 2. Details of the image dataset used in the work 

 
Class/Modality Individual Stacked 

G3 mutant 2496 832 

G3 wild 420 140 

G4 mutant 420 140 

G4 wild 2490 830 

Total 5466 1942 

 

2.3 Model training and testing 

 

In this work, a 7-layer multi-task CNN-based deep learning 

model is implemented to distinguish between Grade III and 

Grade IV glioma along with their IDH status. The multi-task 

model was designed with two different branches since there 

are two different tasks to be done. In this work, five CNN 

models - MobileNetV2, EfficientNetB0, EfficientNetB1, 

Grade Age (years) Male:Female 

G3 (34) 38.87 ± 10.98 21:13 

G4 (24) 48.8 ± 15.76 11:13 
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EfficientNetB2 and Xception were trained and implemented 

for making predictions [17, 18].  

CNN generates an output that consists of the multiplication 

of one function and a shifted and reversed version of the other 

function [19, 20]. The core of the CNN layout is the 

convolution layer. The following equations describes how the 

kernel and the input are convoluted in CNN. 

 

𝑓(𝑛) =  𝐼(𝑛) ∗ 𝑘(𝑛) (1) 

𝑓𝑖(𝑛) = I(n)k(1) + I(n-1)k(2) + … + I(0)k(n) (2) 

 

𝑓𝑖(𝑛) = ∑ 𝐼(𝑙 + 1)𝑘(𝑚 − 𝑙 + 1)

𝑛

𝑙=−𝑛

 (3) 

 

where, I represent the input signal, k represents the kernel, n 

and m represent the input signal and kernel lengths, and f 

represents the output signal. 

 

 
 

Figure 1. Typical pipeline of the process workflow of the proposed work 
 

 
 

Figure 2. Architecture diagram of the proposed multi-task 

model 

 

Along with the above-mentioned networks, a convolution 

layer with 32 neurons of size (1,1), and a global average 

pooling layer were added. Each unit comprises the dense layer 

with 128 neurons of Rectified Linear Unit (ReLU) activation 

function, the Gaussian noise layer with 0.15 standard deviation, 

the dropout layer with a drop rate of 0.15 and the output layer 

with 1 dense neuron of sigmoid activation function. Figure 2 

represents the architecture diagram of the proposed deep 

learning multi-task model. 

Choosing to employ a multi-task architecture is mostly 

based on efficiency. Due process efficiency is increased and 

time complexity is decreased by the network's simultaneous 

processing. The network branches, indicating that each task is 

decided upon individually, while the shared layers carry out 

the feature extraction. Training of the model is done on Nvidia 

GPU GTX 1060 processor board with 6 GB of internal 

memory. The convolutional operation in the initial layers of 

CNN captures primitive features such as edges and curves 

from the image. The latter layers learn to encapsulate complex 

features such as shapes and patterns yielding prediction 

probabilities for every class. To increase the robustness of the 

model and to prevent overfitting, augmentation methods 

involving rotating, flipping and shifting along height and 

width were used while training. Further, to gain insights into 

the most discriminative regions in the tumour slices, we have 

plotted activation maps using Gradient-weighted Class 

Activation Mapping (GradCAM) by calculating the gradients 

obtained from the last convolutional layer [21]. This operation 

results in the precise localization of the most distinguishing 

regions in the image. 

The processed images were split into training and validation 

sets in the ratio of 80:20. The Adam optimizer along with 

binary cross entropy loss function were used to trained the 

multi-task network. The models were trained for 30 epochs 
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using early stopping and ReduceLROnPlateu callbacks, and 

the batch size was set to 16 [22]. Based on how well the model 

performs on a validation set, ReduceLROnPlateau is designed 

to dynamically modify the learning rate while training.  
 

2.4 Evaluation metrics  
 

The model's performance was assessed using the test set's 

performance metrics. Model evaluation is one of the critical 

steps performed in the development of image classification 

systems. Major performance parameters like accuracy, 

precision, recall and Area under the Curve (AUC) values are 

calculated to evaluate the performance of the proposed multi-

task model [23].  

The accuracy, precision and recall are calculated using True 

Positive (TP), True Negative (TN), False Positive (FP) and 

False Negative (FN) values.  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 (5) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +  𝑇𝑁 + 𝐹𝑁
 (6) 

The most useful metric for assessing the performance of the 

classification model is accuracy. It is defined as the proportion 

of accurately predicted outcomes to all of the predictions. For 

every task and model, the Receiver Operating Characteristic 

(ROC) curves are also evaluated to analyze the performance 

[24]. 

 

 

3. RESULTS AND DISCUSSION 

 

In the studies pertaining to medical imaging, it is very 

crucial that the classifiers provide the clinical interpretability 

to the problem along with prediction with superior accuracy. 

The proposed study accounts for both the criterion. The 

performance metrics for the models on the training and testing 

sets for stacked images are shown in Tables 3 and 4, 

respectively. The performance values computed for training 

and testing sets for individual modalities are shown in Tables 

5 and 6, respectively. Out of all models considered in this 

study, the most accurate prediction was made by the 

EfficientNetB2 model. Compared to other models, it has more 

layers and parameters, allowing it to recognize more intricate 

features and patterns in images. 

 

Table 3. Training results for the multi-task model for stacked images 

 
Sl. No. Model Task Accuracy Loss Precision Recall AUC 

1 MobileNetV2 
Grade 93.2 0.0069 95.4 92.4 0.97 

IDH 93.3 0.0064 94.6 93.1 0.97 

2 EfficientNetB0 
Grade 95.4 0.0031 95.4 95.8 0.98 

IDH 95.6 0.0029 95.6 96.1 0.98 

3 EfficientNetB1 
Grade 96.3 0.0023 97.65 97.1 0.99 

IDH 96.4 0.0020 98.14 98.4 0.99 

4 Xception 
Grade 98.7 0.0014 98.9 99.1 0.99 

IDH 98.3 0.0012 98.9 98.6 0.99 

5 EfficientNetB2 
Grade 99.4 0.0022 99.8 99.5 1 

IDH 99.6 0.0023 99.75 99.9 1 

 
Table 4. Testing results for the multi-task model for stacked images 

 
Sl. No. Model Task Accuracy Loss Precision Recall AUC 

1 MobileNetV2 
Grade 93.8 0.0039 94.6 93.3 0.97 

IDH 93.5 0.0041 94.9 93.5 0.97 

2 EfficientNetB0 
Grade 95.8 0.0026 96.2 96.3 0.98 

IDH 95.5 0.0027 96.4 95.9 0.98 

3 EfficientNetB1 
Grade 96.9 0.0011 97.9 97.9 0.99 

IDH 96.7 0.0012 97.12 97.7 0.99 

4 Xception 
Grade 98.9 0.0011 100 100 1 

IDH 98.7 0.0009 100 100 1 

5 EfficientNetB2 
Grade 100 0.0001 100 100 1 

IDH 100 0.0002 100 100 1 

 
Table 5. Training results for the multi-task model for individual images 

 
Sl. No. Model 3 Task Accuracy Loss Precision Recall AUC 

1 MobileNetV2 
Grade 94.9 0.0029 95.6 93.8 0.98 

IDH 94.95 0.0031 94.9 93.7 0.98 

2 EfficientNetB0 
Grade 96.9 0.0016 98.2 97.9 0.99 

 IDH 96.95 0.0017 98.4 96.2 0.99 

3 EfficientNetB1 
Grade 97.5 0.0008 99.1 98.9 0.99 

IDH 97.7 0.0005 99.2 99.5 0.99 

4 Xception 
Grade 98.5 0.0008 99.8 99.8 0.99 

IDH 98.7 0.0005 100 100 1 

5 EfficientNetB2 
Grade 99.8 0.00008 100 100 1 

IDH 99.9 0.00001 100 100 1 
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Table 6. Testing results for the multi-task model for individual images 
 

Sl. No. Model 4 Task Accuracy Loss Precision Recall AUC 

1 MobileNetV2 
Grade 94.2 0.0059 94.4 92.7 0.98 

IDH 94.4 0.0054 94.6 93.3 0.98 

2 EfficientNetB0 
Grade 96.2 0.0041 96.4 96.7 0.99 

IDH 96.3 0.0037 96.6 97.1 0.99 

3 EfficientNetB1 
Grade 97.1 0.0023 98.9 99.1 0.99 

IDH 97.3 0.0021 98.1 98.3 0.99 

4 Xception 
Grade 98.1 0.0013 98.9 99.1 1 

IDH 98.3 0.0014 99.1 99.3 1 

5 EfficientNetB2 
Grade 99.7 0.0019 99.8 100 1 

IDH 99.8 0.0024 99.8 100 1 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Confusion matrices for grade and IDH classification on training and testing sets for stacked modalities: (a) Grade 

classification task on the training set; (b) Grade classification task on the testing set; (c) IDH classification task on the training 

set; (d) IDH classification task on the testing set 

 

  
 

Figure 4. ROC curves for grade and IDH classification on training and testing sets for stacked modalities: (a) ROC curve for the 

grade classification task on the testing set; (b) ROC curve for the IDH classification task on the testing sets 

1202



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 5. Confusion matrices for grade and IDH classification on training and testing sets for individual modalities: (a) Grade 

classification task on the training set; (b) Grade classification task on the testing set; (c) IDH classification task on the training 

set; (d) IDH classification task on the testing set 
 

  
 

Figure 6. ROC curves for grade and IDH classification on training and testing sets for individual modalities: (a) ROC curve for 

the grade classification task on the testing set; (b) ROC curve for the IDH classification task on the testing set 

 

 
 

Figure 7. Original MRI images and their corresponding heatmaps obtained through the GradCAM technique using the 

EfficientNetB2 model for stacked images 
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Figure 8. Original MRI images and their corresponding heatmaps obtained through the GradCAM technique using the 

EfficientNetB2 model for individual images 
 

The confusion matrices produced for grade and IDH 

classification on the training and testing datasets for stacked 

modalities are shown in Figure 3. The AUC value, which is 

acquired by plotting the ROC curve, is evaluated in order to 

assess the model's performance. A greater value of AUC 

indicates better categorization performance, and it ranges from 

0 to 1. Using the EfficientNetB2 model, we were able to 

classify grades and IDH for stacked modalities with AUC 

values of 0.9964 and 0.9972, respectively. Figure 4 displays 

the ROC curves for grade and IDH classification on the testing 

sets for stacked modalities. The confusion matrix generated for 

grade and IDH classification on training and testing sets for 

individual modality is displayed in Figure 5. The ROC curves 

for grade and IDH categorization on the testing sets for 

individual modalities are shown in Figure 6. The AUCs 

obtained for grade and IDH classification for individual 

modalities are 0.9986 and 0.9977, respectively. It is observed 

that the EfficientNetB2 architecture has performed the best out 

of all. One reason for its better performance can be the scaling 

convolutions present in its architecture, contributing to better 

training and generalization. Also, the model is light weight in 

comparison to others, accounting for less time and space 

complexities, making it ideal for deployment purposes. 

Activation mapping techniques are normally used in the 

medical field to visualize and analyze the activation patterns 

within the human body [25]. When an input image is fed to the 

model, the features are extracted and class activation maps are 

generated. These maps are used to understand where the model 

is focusing while classifying an image. In this study, we have 

used the GradCAM technique to enhance the visual 

explanation of CNN-based architectures. Feature information 

is extracted from the pre-max-pooling layers to generate an 

optimized class activation map. The gradients of the target 

class score concerning the feature maps of the last 

convolutional layer in the CNN are calculated using the 

GradCAM method. Relevant weights for each spatial position 

within the feature maps are then calculated using these 

gradients. A heat map that highlights the areas in the input 

image that are most important for the network's prediction is 

created by multiplying the feature maps by their respective 

weights and performing a global average pooling operation. 

Figures 7 and 8 show, respectively, the original MRI images 

and the matching heatmaps produced by the GradCAM 

technique using the EfficientNetB2 model for both stacked 

and individual modalities. On the heatmaps, it can be observed 

that red areas are the most focused and blue areas are the least 

concentrated.  

Additionally, a user interface is created to produce 

automatic predictions by processing and analyzing MR images. 

The interface provides tools and functionalities for uploading 

the image and checking the predictions. Real-time glioma 

diagnosis is made easier by the user interface. The user 

interface has been developed using the Python binding for Qt 

(PyQt) development tool [26]. The front end of the interface is 

developed using drag-and-drop options. The functions for the 

tools are written in Python in the backend. Two user interfaces 

have been developed in this work, where one is for the 

individual modalities and another is for the stacked 

modsalities. For individual modality, the user must provide an 

MRI image in their preferred modality (T1, T2, or FLAIR). 

The user must upload images for each of the three modalities 

for stacked modalities to work. After being uploaded, the 

images are automatically stacked, and the stacked image is 

then used as input by the trained model to forecast the results. 

Figure 9 displays a screenshot of the designed user interface, 

displaying the expected grade and IDH status. In our study, 

only 3 MRI modalities were utilized out of the 5500 images. 

Additionally, the network was trained only for the tasks of 

IDH prediction and grade. These factors will be taken into 

account in further work. 

 

 
 

Figure 9. Screenshot of the user interface showing the 

predicted grade and IDH status 

 

 

4. CONCLUSIONS 

 

The goal of our work was to apply the advanced deep-

learning CNN models with the highest prediction accuracy to 

categorize gliomas according to their grade and IDH status. 

The automated feature extraction of CNN alleviates the time-

consuming pre-processing steps that are essential in 
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radiomics-based methods. The developed multi-task classifier 

model has proven effective for the classification of high-grade 

gliomas. Out of all the backbones used in this work, the 

EfficientNetB2 backbone has produced the highest results. 

Our multi-task classifier model employed with EfficientNetB2 

CNN demonstrated superior accuracy results of 99.4% for 

grade classification tasks and 99.6% for IDH status 

classification for stacked images, and 99.7% for grade 

classification and 99.8% for IDH status classification for 

individual images. The overall loss value for the stacked 

dataset was 0.0086 and 0.0043 for the individual dataset 

respectively. Also, the precision and recall values for the 

model on testing sets have reached 100% for both type of 

datasets. The developed model has produced very low loss 

values and very high accuracy, precision, recall and AUC 

values. The confusion matrices show that the model has not 

produced any false positive or false negatives, which is very 

important for medical tasks since the presence of false 

negatives in a medical diagnostic system can be detrimental. 

The ROC plots of the model are also good indicating that the 

model has not overfit. From the results of our studies, it is 

evident that the model's ability to learn the features of multiple 

tasks simultaneously can facilitate superior performance. 

Moreover, the class activation maps help in visualizing and 

interpreting the areas of an image that have the most impact on 

predictions. The designed user interface helps to carry out the 

task in real-time and can aid physicians in making predictions. 

The findings of this study are important as the prediction of 

IDH mutation and grade extracted from MRI images is crucial 

in the diagnosis and management of gliomas, as it provides 

important prognostic and predictive information. The 

proposed work can be useful for clinicians to rapidly and 

accurately identify the biomarker status (grade and IDH) from 

MR images, resulting in better glioma analysis and 

management. Future work may include the development of 

multi-modal neural network accepting multiple MRI 

modalities and producing multiple tasks. The proposed work 

has produced a generalized model with high accuracy and 

efficiency, resulting in a great computer aided diagnosis tool 

for clinicians in the area of glioma analysis. 
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