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Amputation is sometimes utilized to overcome tissue death in human limbs. Prostheses 

offer individuals an effective solution for restoring their quality of life. The 

development of prosthetic control systems using EEG-acquired movement imagery 

signals is ongoing. This technology has proven a viable option due to its easy 

controllability by an individual's thought patterns. This study aimed to discover 

distinguishing features between imagery movement and grasping and opening hand 

movements. To this end, the proposed method is a classification using Long-Short Term 

Memory Network (LSTM) with various feature combinations of mean, standard 

deviation, variance, RMS, skewness, kurtosis, and PSD at alpha rhythm. Data were 

acquired from three healthy subjects using the Emotiv Epoc+Headset. The classification 

results showed that applying skewness and kurtosis features yielded an accuracy range 

of 73.52% to 100% for each subject's data. On the other hand, combining kurtosis and 

Power Spectrum Density (PSD) features resulted in 84.9% accuracy for the subjects' 

combined data. This result shows great potential in supporting the development of 

prosthetic control to improve the quality of life of an amputee. 
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1. INTRODUCTION

Amputation is a follow-up action taken when tissue death 

occurs in an individual's limbs as a result of an accident, fall, 

or case of Diabetes Mellitus. Amputation can affect all aspects 

of the sufferer's life, especially in aspects of daily motor 

movements. The prevalence of people in the world who 

experienced amputation in 2017 was 57.7 million people with 

the biggest cause being falls, followed by traffic and 

mechanical accidents [1]. According to data from the Central 

Bureau of Statistics (BPS) in 2020, as many as 22.5 million 

people in Indonesia experienced disabilities, with 16% of 

sufferers having difficulty using their hands [2]. In addition, 

the increasing cases of Diabetes Mellitus in Indonesia have 

also increased the number of people undergoing amputation 

due to complications in the patient's peripheral arteries [3]. 

This statement suggests that there is a growing demand for 

hand prosthetics. 

The use of prostheses for amputee sufferers is one way to 

make it easier for sufferers to carry out daily activities and 

improve their quality of life. Several studies have been 

conducted to develop control methods for prostheses, such as 

myokine-metric [4], mechanomyography [5], EMG [6], 

speech recognition [7], EOG [8], and EEG [9]. These studies 

aim to improve the convenience and comfort of prosthetic 

users. EEG has gained widespread development among the 

several methods of controlling prostheses due to its high 

temporal resolution signals, non-invasive nature, and ease of 

installation [10]. However, EEG has several shortcomings, 

including low signal latency, the influence of skull thickness 

on the information obtained, and susceptibility to background 

disturbances [11]. 

The research currently being developed is regarding the 

classification of imagery movements which can be used to 

help develop control systems for prostheses. Imagery 

movement is a mental simulation where a person imagines 

motor movements without having to move their body parts 

directly [12]. The activated regions of the brain include the 

primary motor cortex, premotor cortex, somatosensory cortex, 

parietal cortex, and cerebellar cortex [13]. Signal processing 

steps, such as pre-processing, feature extraction, and 

classification, are necessary to extract the utmost information 

from the imagery movement signal. Several classifications 

have been carried out, including using Linear Discriminant 

Analysis (LDA) and Support Vector Machine (SVM) which 

achieved an accuracy of 83% [14], Extreme Learning Machine 

(ELM) with an accuracy of 85% [15], CNN with an accuracy 

of 84% [16], and Long-Short Term Memory Network (LSTM) 
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with an accuracy of 96.6% [17]. 

In recent years, Artificial Neural Network (ANN) 

algorithms have begun to be widely developed in EEG 

research. This is because ANN can classify data that is non-

linear. A Recurrent Neural Network (RNN) is known as a 

reliable algorithm for processing sequential data, such as 

language, dialogue, video, and audio [18]. However, RNN has 

limitations in processing data that require long-term memory 

and tend to experience vanishing gradients. Therefore, in 1997 

the LSTM algorithm was developed by Greff et al. [19]. 

The EEG signal utilized for prosthesis control is imagery 

movement. Imagery movement refers to the state in which a 

person imagines themselves executing a motor movement 

without physically carrying it out. The activated regions of the 

brain include the primary motor cortex, premotor cortex, 

somatosensory cortex, parietal cortex, and cerebellar cortex 

[13]. Signal processing steps, such as pre-processing, feature 

extraction, and classification, are necessary to extract the 

utmost information from the imagery movement signal. 

Several studies have been conducted on the classification of 

signals for imagery movement using methods such as Linear 

Discriminant Analysis (LDA) and Support Vector Machine 

(SVM) [14], Extreme Learning Machine (ELM) [15], 

Convolutional Neural Network (CNN) [16], and Long-Short 

Term Memory Network (LSTM). The LSTM method 

achieved the highest accuracy of 96.6% [17].  

The LSTM algorithm is a neural network algorithm 

developed from the Recurrent Neural Network (RNN) 

algorithm that can learn sequential data with long-term 

dependencies in time series [16]. Therefore, utilizing the 

LSTM method to classify imagery movement signals can be 

an explorative option. Several feature extraction methods have 

been used to classify imagery movement signals accurately. 

Wang extracted features by decomposing frequency bands and 

calculating entropy values in each band, resulting in a 96.6% 

accuracy rate [17]. The difference in accuracy can be caused 

by feature extraction carried out before classification. Zhang 

identified six features, including skewness, kurtosis, zero-

crossing, amplitude spectrum density, Power Spectrum 

Density (PSD), and power in each frequency band, achieving 

an accuracy rate of 98.3% [20]. 

Thus, the proposed method in this research involves 

classifying hand opening and grasping imagery movements 

utilizing the LSTM approach with several statistical feature 

combinations from the alpha frequency band. This study aims 

to determine the most appropriate feature combination in 

discriminating between different types of imagery movements. 

The imagery movements of grasping and opening the hand 

were chosen because these movements are basic in daily 

activities. Thus, it is hoped that this research can increase 

accuracy in controlling the prosthetic hand so that it can 

improve the quality of life of an amputee. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Participants 

 

Experiments were conducted on three participants aged 

between 18 and 30 years without any history of neurological 

disorders. Before participation, each subject provided 

informed consent and completed the Movement Imagery 

Questionnaire-3 (MIQ-3) to assess their movement imagery 

capabilities [21]. The MIQ-3 consists of 12 questions, each 

using a Likert rating scale from 1 (most difficult to imagine) 

to 7 (easiest to imagine). The average value will be calculated 

by summing up the assessment results for each question. After 

completing the questionnaire, the subject sits facing a 

computer screen that displays a simulation of imagery 

movement training during data acquisition, as shown in Figure 

1. 

 

 
 

Figure 1. An experimental setup for data acquisition 

 

2.2 Data acquisition 

 

Data acquisition was performed using the Emotiv Epoc+ 

Headset EEG device, which has a fixed electrode arrangement 

for easy attachment to different subjects. The device has a 

sampling frequency of 128 Hz and 14 channels (AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). It utilizes a 

10-20 type montage with the electrode locations shown in 

Figure 2. 

 

 
 

Figure 2. Emotiv Epoc+Headset montage [22] 

 

Subjects trained their imagery movement skills by 

simulating the motion of a cube on the EmotivPRO software. 

Once the training results met the minimum limit, grasping and 

opening imagery movement data was acquired for 54 seconds 

using OpenViBE software. Details of the movement’s timeline 

are shown in Figure 3. Each subject underwent data 

acquisition 10 to 15 times. 

 

 
 

Figure 3. Experimental timeline for each session 
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2.3 Pre-processing 

 

All movement imagery data is processed using the Python 

programming language. In addition, the collected data 

undergoes pre-processing, which begins with separating the 

different hand movements, namely opening and grasping, for 

12 seconds. Each imagery movement signal then undergoes 

signal filtering using a Butterworth IIR Bandpass Filter Order 

5 with a cut-off frequency of 8-13 Hz. Butterworth filters are 

frequently used in biosignal processing because they have 

smooth passband characteristics and initial attenuation without 

ripple [23]. The signal is filtered to obtain signals in the alpha 

frequency band while removing noise artifacts. Signals in the 

alpha frequency band were selected due to the dominant 

appearance of alpha and beta rhythms in the brain during 

imagery movement activities, particularly in the sensorimotor 

and parietal cortex areas [24]. The filtered data is segmented 

every second during processing, resulting in 12 segments for 

each input. Figure 4 illustrates the segmentation process 

applied to hand-grasping imagery movement data. 

 

 
 

Figure 4. Illustration of the segmentation process occurring 

every second 

 

2.4 Feature extraction 

 

Feature extraction is performed on imagery movement data 

with alpha rhythm and has gone through the segmentation 

process. Each data segment yields seven statistical features: 

mean, standard deviation, variance, root mean square (RMS), 

skewness, kurtosis, and power spectral density (PSD) as 

calculated using Eq. (1) to Eq. (7). The resulting total features 

are 98, representing 14 channels × 7 features per subject. 

 

Mean (�̅�) =
1

𝑁
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Power Spectral Density(𝑆𝑥𝑛(𝜔)) = lim
𝑇→∞

𝐸 [|�̂�(𝜔)|
2
] (7) 

 

where, N is the total data, xi is the i-data input and �̂�(𝜔) is 

input in frequency domain.  

In order to determine the appropriate feature type for a given 

type of imagery movement, a Pearson correlation value is 

calculated within a range of -1 to 1. A positive correlation 

indicates a directly proportional relationship, while a negative 

correlation shows an inversely proportional relationship. A 

value closer to 0 indicates a weaker correlation between 

variables. Based on Asuero's research on interpreting 

correlation values, a correlation value of at least 0.3 must be 

achieved for features to be deemed relevant in the feature 

variation [25]. 

 

2.5 LSTM algorithm and data analysis 

 

The feature extraction data is split into 70% training and 

30% test data before inputting into the LSTM. Labels 0 and 1 

represent the hand opening and grasping classes, respectively. 

Since LSTM works with 3-dimensional input data, the original 

2-dimensional data representing features × segments was 

reshaped using Numpy's reshape function into a 3-dimensional 

format representing samples × timesteps × features. The 

number of timesteps used is 12, representing the number of 

segments in each dataset. 

The LSTM algorithm is a type of neural network algorithm 

that evolved from RNN. In the LSTM architecture (Figure 5), 

there are cell states (ct-1 and ct) that play the role of storing 

information during the classification process in LSTM. 

Information will be updated through several gates in the 

LSTM and combined in the cell state. The classification 

process in LSTM starts from processing information at the 

forget gate. Forget gate (ft) plays the role of selecting input 

data and discarding data that is not needed [26]. Following the 

combination of input data from the forget gate and the input 

gate within the cell state, the output gate releases the 

classification result data [27]. The results of the classification 

process are fed into the Dropout Layer to prevent overfitting, 

followed by the Dense Layer for interpreting the results. The 

LSTM algorithm utilized in this study is presented in Figure 6. 

The classification was performed with an epoch of 100 and 

a batch size 64. Since the Neural Network algorithm is 

stochastic, the classification process on each input training 

data is repeated ten times, and the accuracy value is calculated 

from the average of all training. Afterward, the test data is 

classified, and the performance of the LSTM model is 

evaluated. Classification results are evaluated using the 
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confusion matrix. The positive label is represented by the 

hand-grasping class (label 1), and the negative label is 

represented by the hand-opening class (label 0). 

The evaluation metrics are accuracy, precision, and Kappa 

score. Accuracy measures the rate of correctness of the 

classification results to the total amount of data. Precision 

measures the reliability degree of the model in classifying data 

labeled as "positive." The Kappa Score measures the 

classification consistency. 

 

 
 

Figure 5. LSTM architecture [28] 

 

 
 

Figure 6. LSTM algorithm 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Subjects 

 

The MIQ-3 assessment of the three subjects yielded results 

between 5.16 and 6.58 on a Likert scale of 1 to 7. These 

outcomes suggest that the subjects have exceptional imagery 

movement ability. The data set obtained from the participants 

consisted of 78 data points detailed in Table 1. 

Table 1. Collected data from each subject 

 

Subjects 
Imagery Movement Class Data Amount of 

Each Subject Hand Open Hand Close 

1 10 10 240 

2 15 15 360 

3 14 14 336 

Total 39 39 78 

 

The data acquisition results were then subjected to pre-

processing, which involved signal filtering to obtain the alpha 

rhythm and segmentation to enhance the number of machine 

learning inputs. Segmentation occurs every second for each 

movement type, resulting in 936 data points from the three 

subjects after the segmentation process. Refer to Table 2 for a 

breakdown of data amounts by subject. 

 

Table 2. Collected data after segmentation 

 

Subjects 
Imagery Movement Class Data Amount of 

Each Subject Hand Open Hand Close 

1 120 120 240 

2 180 180 360 

3 168 168 336 

Data From All Subjects 936 

 

3.2 Feature extraction and correlation 

 

Features were extracted from all EEG channels, resulting in 

98 features represented in the table columns. Table 3 presents 

the feature extraction results for the three subjects. Pearson 

correlation can be utilized to calculate the correlation 

coefficient between each feature and the type of imagery 

movement based on the obtained feature extraction results. 

The correlation calculation aims to identify features related to 

the type of imagery movement. Table 4 presents the 

correlation analysis results for each feature and its association 

with the type of imagery movement.   

 

Table 3. Feature extraction results 

 
Data Mean-AF3 Mean-F7 Mean-F3 ⋯ 

0 0.1499E+15 0.1367E+15 0.2057E+15 ⋯ 

1 -0.054E+14 -0.055E+14 -0.057E+13 ⋯ 

2 0.047E+14 0.009E+13 -0.004E+13 ⋯ 

3 0.002E+13 0.057E+14 0.120E+15 ⋯ 

4 -0.036E+14 -0.037E+14 -0.096E+13 ⋯ 

⋮ ⋮ ⋮ ⋮ ⋯ 

933 0.143E+16 0.056E+16 0.155E+15 ⋯ 

934 -0.085E+15 -0.033E+16 -0.122E+16 ⋯ 

935 0.039E+16 -0.062E+16 0.026E+16 ⋯ 

 

Table 4. Correlation coefficient between each feature 

towards imagery movement types 

 

Variable 

Correlation Coefficient 

Subject 

1 

Subject 

2 

Subject 

3 

All 

Subjects 

Mean -0.004 0.005 -0.005 -0.000 

Std. 

Deviation 
-0.110 -0.180 -0.027 -0.084 

Variance -0.098 -0.078 0.056 -0.002 

RMS -0.110 -0.180 -0.027 -0.084 

Skewness -0.093 -0.430 0.210 -0.055 

Kurtosis -0.420 -0.690 0.580 -0.160 

PSD -0.420 -0.120 0.055 -0.001 
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Features were selected based on a minimum correlation 

value of ±0.3 and included in the low correlation category 

based on the correlation interpretation results [25]. The 

calculations reveal that Subject 1 exhibits low correlation 

values on the kurtosis and PSD features. Subject 2 displays a 

low correlation value on the skewness feature and a moderate 

correlation value on the kurtosis feature. Additionally, Subject 

3 demonstrates a medium correlation value on the kurtosis 

feature. When the information from the three subjects was 

aggregated, the feature calculation showed a notably low value. 

This occurrence is influenced by individual differences in 

brain conditions, which may result from variations in a 

person's learning process during a task [29] and brain 

topography, which may affect signal conductivity [30]. 

Following the correlation calculation, the Skewness, Kurtosis, 

and PSD features were chosen to be combined. However, it is 

necessary to validate the relationship between the features and 

the type of imagery movement using the LSTM algorithm. 

 

3.3 7-feature classification 

 

After the feature extraction results are obtained, the data 

proceeds to the classification stage utilizing the LSTM 

algorithm. Classification is performed on each subject's data 

using seven features. The rationale for subject-by-subject 

classification is to account for differences in individual's brain 

condition, as detailed in Section 3.2. The accuracy value of the 

7-feature classification on each subject is presented in Figure 

7. 

 

 
 

Figure 7. Classification accuracy of 7 features 

 

 
 

Figure 8. Classification accuracy of each feature 

 

The classification results demonstrate varying accuracy 

among each subject. Subject 3 exhibits the highest accuracy 

compared to the other two subjects. This result is due to 

differences in hair thickness, with Subject 3 having the 

thinnest hair. The Emotiv Epoc+Headset device employs wet 

electrodes that require moistening with saline liquid. The 

electrode surface dries quicker as the subject's hair thickens, 

resulting in a decline in electrode conductivity. 

A classification was conducted using each feature on each 

subject to determine the distinguished characteristics of 

imagery movement types. Figure 8 displays the accuracy 

graph for each feature on each subject. The skewness, kurtosis, 

and PSD features exhibit significant graphs across all three 

subjects compared to other features. 

Table 5 displays detailed accuracy values for each feature. 

Subject 1 has high accuracy values for the kurtosis and PSD 

features, while subjects 2 and 3 have high accuracy values for 

the skewness and kurtosis features. As a result, calculating the 

average accuracy of the skewness, kurtosis, and PSD features 

in all three subjects yields a higher value than the other 

features. This finding aligns with the correlation value 

calculations in Subsection 3.2, which demonstrate that 

skewness, kurtosis, and PSD features play a role in 

differentiating between types of imagery movement. 

 

Table 5. Detailed accuracy values from each feature 

classification 

 

Feature 

Accuracy (%) Accuracy 

Average 

(%) 

Subject 

1 

Subject 

2 

Subject 

3 

Mean 46.83 50.94 50.83 49.38 

Std. 

Deviation 
51.25 51.87 49.79 57.71 

Variance 50.42 49.79 69.38 56.04 

RMS 51.53 52.50 66.77 56.93 

Skewness 65.69 99.89 100.00 87.97 

Kurtosis 100.00 99.38 98.65 99.34 

PSD 100.00 49.69 67.08 72.26 

 

3.4 Selected feature classification 

 

Feature variation is carried out to determine the most 

compelling feature combination for distinguishing between 

types of imagery movement. The classification results and 

correlation calculations reveal that a combination of skewness, 

kurtosis, and PSD features is suitable for classification 

purposes. Figure 9 presents the classification results for the 

various feature combinations. 

 

 
 

Figure 9. Classification accuracy of selected feature 

combinations 

 

In addition to accuracy, precision and Kappa score metrics 

are also used to evaluate the classification results. These 

metrics can be analyzed from the confusion matrix of the test 

data. The confusion matrix of the classification using 

skewness and kurtosis features with each subject's input data 

is shown in Figure 10(a)-(c). 
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(a) 

 
(b) 

 
(c) 

 

Figure 10. Test data confusion matrix with skewness and 

kurtosis input: (a) Subject 1; (b) Subject 2; (c) Subject 3 

 

According to the findings illustrated in Figure 10, the 

combination of skewness and kurtosis features after being 

classified by using LSTM in each subject displays a 100% 

accuracy rate. Skewness and kurtosis are statistical features 

used to determine signal distribution and peaks [31]. These 

findings suggest that the two classes of imagery movements 

have different signal shapes. Meanwhile, the combination of 

kurtosis and PSD features yielded the highest accuracy value 

(84.99%) in the combined subject data. These features 

demonstrate signal shape and power variations among subjects 

engaging in different types of imagery movements. 

The precision value for all three subjects was 1, with a 

Kappa score of 1 out of a possible range of 0 to 1. These results 

could be because the data used for testing on each subject was 

collected on the same day from the same subject. As a result, 

the machine learning model could easily classify the data. 

The precision and Kappa score values were calculated for 

the classification of combined subject data with kurtosis and 

PSD feature inputs. The confusion matrix of the classification 

results is presented in Figure 11, which reveals a precision 

value of 1 and a Kappa score of 0.64. Interestingly, the 

precision value for all feature combinations is also 1, as the 

majority of misclassification involves the label "Grasping" 

being classified as "Opening". 

 

 
 

Figure 11. Test data confusion matrix with kurtosis and PSD 

input on merged data 

 

Achieving 100% accuracy on each subject's data is 

irrelevant to the real world [32]. To double-check the 

performance of the machine learning models when the 

accuracy reaches 100%, the k-cross validation method can be 

used. The principle of the k-cross validation method involves 

dividing data into training and validation data, repeated K 

times with different combinations of training and test data [33]. 

Therefore, this research used the k-cross validation method 

with K=5. 

Table 6 shows an accuracy value obtained in the range of 

61.91% - 100.00%. This shows that the LSTM model can 

classify movement imagery quite well repeatedly with 

different input data. 

Based on the results of the classification that was carried out 

with a variety of features, it was found that combining the test 

data of the three participants caused a decrease in accuracy 

values. This can be caused because the topography of each 

human brain is different, which can affect the performance of 

the nerves in the brain when carrying out an action [34, 35]. A 

person's learning ability to understand a task also causes 

variability between subjects [36]. Therefore, many methods 

have begun to be developed to overcome this in BCI 

development to minimize adjustment time before data 

acquisition. 

Apart from differences in brain topography and learning 

processes for individual, classification results are also 

influenced by the area of brain activation when performing 

imagery movements. According to Fakhruzzaman et al. [37], 

certain areas are activated in the brain during imagery 

movements. To explore this, a correlation of the seven features 

was carried out with the type of movement in each EEG 

channel in each participant's data, as in Figure 12. 
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Table 6. Classification accuracy of k-cross validation (k=5) 

 
All Subjects 

Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Kurtosis + PSD 85.94 98.96 82.81 67.77 77.77 82.65 

Skewness + PSD 74.47 61.46 63.54 62.22 59.44 64.22 

Skewness + Kurtosis 83.85 57.29 62.5 86.66 71.66 72.39 

Skewness + Kurtosis + PSD 57.81 90.62 68.75 69.99 92.22 75.87 

Subject 1 

Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Kurtosis + PSD 100.00 100.00 95.83 75.00 100.00 94.16 

Skewness + PSD 95.83 100.00 75.00 75.00 100.00 89.16 

Skewness + Kurtosis 70.83 75.00 95.83 100 100.00 88.33 

Skewness + Kurtosis + PSD 100.00 100.00 70.83 93.75 75.00 87.91 

Subject 2 

Fitur Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Kurtosis + PSD 86.11 100.00 100.00 97.22 81.94 93.05 

Skewness + PSD 79.16 87.50 95.83 80.55 75.00 83.60 

Skewness + Kurtosis 100.00 83.33 83.33 100.00 100.00 93.33 

Skewness + Kurtosis + PSD 83.33 83.33 100.00 100.00 100.00 93.33 

Subject 3 

Fitur Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Kurtosis + PSD 100.00 79.16 95.83 100.00 78.33 90.66 

Skewness + PSD 100.00 95.83 81.94 60.00 64.99 80.55 

Skewness + Kurtosis 93.05 83.33 100.00 80.00 94.99 90.27 

Skewness + Kurtosis + PSD 83.33 100.00 83.33 100.00 89.99 91.33 

 
 

Figure 12. Correlation calculation results for each channel on 

each subject 

Based on the results of the correlation calculations that have 

been carried out, the minimum limit for the correlation level 

for each channel that is considered dominant is ±0.50. Figure 

12 shows the results of correlation calculations on Subject 1 

data, where channel F3, channel P7, and channel O1 have a 

moderate level of correlation. Subject 2 shows that the 

correlation value above 0.5 is on channel P7 with a high level 

of correlation. The calculation results on Subject 3 data show 

that correlation values above 0.5 are found in channel P7 with 

a moderate level of correlation and channel F8 with a high 

level of correlation. From the three participants, a fairly high 

correlation was found in the P7 channel or the parietal area of 

the left hemisphere. According to Jiang et al, the parietal area 

is activated when participants carry out internal imagery 

movements or imagine themselves making movements from a 

first-person perspective [38]. 

Based on the analysis results in Figure 12, it can be seen that 

the use of multiple channels in EEG data acquisition does not 

always produce good classification accuracy. Thus, it is 

necessary to reduce channels based on the type of EEG signal 

being acquired. Besides being able to increase the accuracy of 

classification results, channel reduction can also reduce the 

computational load so that signal processing can be more 

efficient. Consider incorporating time intervals during data 

collection, multiplying data, and utilizing the k-cross 

validation method for analysis. This suggestion is expected to 

improve the classification of different types of imagery 

movements. Besides, it could reduce the computational work 

due to the complexity. Moreover, it will be beneficial for the 

real-time implementation in the future. 
 

 

4. CONCLUSIONS 
 

The classification of imagery movement using the LSTM 

method with various features produces different accuracy 

levels. For each subject's data, the combination of skewness 

and kurtosis features exhibits favorable classification 

outcomes, with a precision level of 1, a Kappa score of 1, and 

an accuracy rate of 73.52%-100%. The combination of 
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kurtosis and PSD features in the combined data of the three 

subjects demonstrated promising classification results, 

yielding an accuracy percentage of 84.9%, a precision level of 

1, and a Kappa score of 0.64. 

Further research methods are needed to improve the 

system's ability to classify types of imagery movement. It is 

recommended to implement time intervals during data 

collection to increase data variation and enable the 

classification of more complex data, which became our 

limitation in this study. Sampling subjects with thin hair 

characteristics can also facilitate the data collection process. 

Additionally, the selection channel may be advantageous for 

appraising LSTM models and reducing the computational 

work for real-time applications in the future. 
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