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This paper explores the effectiveness of different similarity measures for characterizing 

vertices and edges in rough graphs, which were introduced to handle imprecise and 

uncertain information. The authors examine traditional similarity measures like the 

Jaccard index, Dice coefficient, and overlap measure in this context. Additionally, a 

new ζ-labeling similarity measure for rough graphs is proposed. The main goal is to 

perform a comparative analysis evaluating the performance of these diverse similarity 

measures when applied to rough graphs. Furthermore, the paper computes the energy 

of rough graphs, defined as the sum of absolute eigenvalues, to demonstrate the superior 

potency of the proposed ζ-labeling measure compared to the other similarity measures 

considered. Overall, this work aims to advance techniques for assessing similarity in 

rough graphs, which have applications in dealing with vague and imprecise data. 
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1. INTRODUCTION

Rough set theory, a prominent mathematical framework 

developed by Professor Pawlak to address uncertain problems, 

was extended to the domain of graphs through the work of 

Tong in 2006 [1], which leveraged approximations and led to 

varied forms of representations of rough graphs, including 

weighted rough graphs and directed rough graphs [2, 3]. 

Mathew et al. [4] established the notion of a vertex rough 

graph, delving into precision at both vertex and edge levels. 

Their investigation involved comparing two rough graphs 

using the degree of Similarity Measure. In this paper, we 

propose labeling through similarity measures for the graph 

from an Information system.  

For managing imprecise data, Rough sets address boundary 

cases, while Fuzzy sets handle graded membership. These sets 

have found widespread application by researchers in both 

academic studies and practical, real-world situations [5-10]. 

The realm of classical and fuzzy graph labeling is discussed 

[7-12], encompasses diverse variations. While classical graph 

labeling techniques have been applied in areas like network 

analysis, data compression, optimization, image processing, 

and cryptography, the labeling of rough and fuzzy graphs 

caters to data involving partial truths and uncertain knowledge 

bases. Many researchers have investigated the concept of 

rough graphs through the lens of approximation methods. 

Anitha and Arunadevi for instance, devised a rough graph by 

assigning fixed rough membership values to objects within an 

Information System. Their work included the computation of 

the metric dimension of the rough graph [13]. 

 After extensive research on rough graphs, Anitha and 

Nithya pioneered and explored a labeling technique, as 

labeling has emerged as a rapidly growing area of study across 

various fields. Their novel approach introduced the concept of 

ζ-graceful labeling applied to different representations of 

rough graphs [14]. 

In graph theory, graph energy represents a significant 

concept that captures the structural characteristics of a graph 

in a numerical form. It is defined as the trace of the graph's 

adjacency matrix. This notion of graph energy was originally 

proposed by Ivan Gutman, who demonstrated its applicability 

to certain families of graphs [15-18]. Extending this line of 

inquiry, Nagarani et al. explored the notion of energy within 

the context of fuzzy labeling graphs [19]. Alexander et al. 

made noteworthy contributions by addressing four conjectures 

related to path energy in graphs. They also devised an efficient 

algorithm for computing the path matrix [20], while Pirzada 

and Ganie introduced the Laplacian matrix derived from the 

adjacency matrix [21]. In this study, we further advance the 

understanding of energy within the domain of ζ-labeling rough 

graphs, underpinned by similarity measures. 

Pappis and Karacapilidis [22] put forth the subsequent trio 

of similarity measures applicable to fuzzy sets as,  

𝑀𝐴,𝐵 =
∑ min(𝑎𝑖 , 𝑏𝑖𝑖 )

∑ 𝑚𝑎𝑥𝑖 (𝑎𝑖 , 𝑏𝑖)

𝐿𝐴,𝐵 = 1 −𝑚𝑎𝑥𝑖(|𝑎𝑖 − 𝑏𝑖|)

𝑆𝐴,𝐵 = 1 −
∑ min(𝑎𝑖 , 𝑏𝑖𝑖 )

∑ 𝑚𝑎𝑥𝑖 (𝑎𝑖 , 𝑏𝑖)

Zadeh pioneered the concept of using similarity measures 

for fuzzy sets, which proved to be a successful strategy in 

handling uncertainty [23]. Simultaneously, similarity indexes 
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emerged as a tool to gauge approximate equality among fuzzy 

sets within a specific universe of discourse. Following this, 

Wang [24] presented an overview of fuzzy set similarity 

measures and introduced two novel measures to quantify 

similarity between fuzzy sets and individual elements. Beyond 

Zadeh's groundwork in fuzzy set similarity measures, various 

researchers extended these notions to encompass multiple sets 

and vague sets [25-30]. In a parallel vein, other researchers 

ventured into the domain of similarity measures, tackling 

applications like text comparison using notions such as soft 

cardinality, similarity-based ranking, and query processing in 

multimedia databases and text mining. These authors proposed 

a novel similarity measure for fuzzy graphs, which seamlessly 

extends to the realm of fuzzy signatures, finding utility in 

analyzing workforce behavioral data. Furthermore, they 

generalized a similarity measure from trapezoidal fuzzy 

numbers to interval-valued trapezoidal fuzzy numbers, 

ensuring the preservation of its original properties [31, 32]. 

Extending previous similarity measures, we introduced a 

new similarity metric tailored to a novel labeling approach, 

which we explored for various representations of rough graphs 

constructed from high-dimensional data. 

The primary aim of this paper is to propose a novel ζ-

labeling similarity measure and evaluate its performance in 

comparison with existing similarity measures in the context of 

rough graphs. Additionally, this paper highlights the 

application of ζ-labeling similarity measures to rough graphs, 

with a focus on analyzing their energy. The synergy of rough 

ζ-labeling and the modified similarity measure yields the 

rough ζ-labeling similarity measure. 

The paper commences with Section 2, which lays out the 

fundamental concepts of rough sets and rough graphs. 

Subsequently, Section 3 explores the notion of similarity 

relations in depth. Section 4 elucidates the methodology for 

labeling vertices and edges using similarity measures. Finally, 

the same section examines the connection between the 

energies of similarity measures, culminating in the concluding 

remarks presented in Section 5.   
 

1.1 Exploring similarity measures 
 

Similarity measures are mathematical techniques used to 

quantify the degree of similarity or dissimilarity between two 

objects, entities, or data points. They play a crucial role in 

various fields, including data analysis, pattern recognition, 

machine learning, and information retrieval. Similarity 

measures are used to compare objects based on their features 

or attributes and determine how closely they resemble each 

other. 

There are several types of similarity measures and they can 

be broadly categorized into the following:  

(a) Jaccard similarity coefficient 

The Jaccard coefficient, also referred to as the Jaccard 

similarity coefficient or Jaccard index, is a metric used to 

quantify the similarity between two sets. It is defined as the 

size of the intersection of the sets divided by the size of their 

union. Mathematically, the Jaccard coefficient (𝐽)  is 

calculated using the following formula:  
 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

 

where, 𝐴 and 𝐵 are two sets to measure similarity. The Jaccard 

coefficient produces a value between 0 and 1. A value of 0 

signifies that there is no similarity or common elements 

between the sets, while a value of 1 signifies complete 

similarity, indicating that the sets are identical. 

(b) Dice similarity measure 

The Dice coefficient is an alternative method for gauging 

the similarity between two sets. Its calculation employs the 

subsequent formula: 

 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

 

The Dice coefficient furnishes an output ranging between 0 

and 1. A value of 0 denotes the absence of overlap or similarity 

amid the sets, while a value of 1 signifies an impeccable 

overlap or total similarity. A heightened Dice coefficient 

implies a superior overlap or concordance between the 

segmented regions and the established ground truth. 

(c) Overlap coefficient similarity measure 

The Overlap coefficient measures the similarity between 

two sets by expressing the fraction of their overlap. It's 

alternatively referred to as the Overlap index or Overlap 

coefficient of Tversky. The calculation of the overlap 

coefficient involves the use of the following formula: 

 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

𝑚𝑖𝑛(|𝐴|, |𝐵|)
 

 

The outcome of the overlap coefficient ranges between 0 

and 1. A value of 0 denotes the absence of overlap or similarity 

between the sets, while a value of 1 signifies full overlap or 

complete similarity. 
 

 

2. PRELIMINARIES 

 

This section covers fundamental concepts related to Rough 

sets and Rough graphs. 

 

2.1 Information system 
 

Let𝒰 be a non-empty finite set, referred to as the universe 

of discourse, and 𝒜  be a set of attributes. An information 

system 𝐼𝑠 is defined as a pair (𝒰,𝒜), where for every 𝑘 ∈ 𝒜, 

there exists a function 𝑘:𝒰 → Ꮙ𝑘, with Ꮙ𝑘 being the value 

set of attribute a. If there exists a decision attribute ԃ ∉ 𝒜, 

called the decision attribute, and the elements of A are termed 

condition attributes, then the triplet (𝒰 , 𝒜 , ԃ) is called a 

decision system. 

 

2.2 Rough membership function (𝑹𝑴𝒇) 

 

The 𝑅𝑀𝑓 value provides a way to represent and handle the 

uncertainty and imprecision associated with the membership 

of elements in a rough set, allowing for a more flexible and 

realistic representation of real-world data. 𝑅𝑀𝑓  is 

characterized by 𝜑ℛ: 𝔗 → [0,1] and defined by  

 

𝜔𝔗
ℛ(𝓎) =

|[𝓎]ℛ ∩ 𝔗|

|[𝓎]ℛ|
, ∀𝓎 ∈ 𝒰 

 

2.3 Rough graph 

 

Let 𝒰 be a non-empty set called the universe, and let 𝔈 be a 

set of unordered pairs of distinct elements from 𝒰. A graph 𝔾 

can be constructed from these elements with the following 
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considerations: 

An edge between two vertices in the graph exists if and only 

if the maximum of their associated membership values is 

greater than zero. 

 

2.4 Energy measure of rough labeling graph 

 

Definition 2.4.1 The matrix representing the rough labeling 

relation is coined as 𝑀𝜑 = [𝑚𝑖𝑗
𝜑
] where 𝑚𝑖𝑗

𝜑
= 𝜎𝜑(𝑣𝑖𝑣𝑗). 

 

Definition 2.4.3 The sum of the absolute values of the 

eigenvalues of the rough labeling matrix is known as the 

Energy of the rough graph ℛℒ
𝜑

 which is denoted by 𝔈(ℛℒ
𝜑
) =

∑ |ψ𝑖|
𝑛
𝑖=1  and also it should satisfies the following criteria: 

 

i) 𝔈(ℛℒ
𝜑
)= ∑ |ψ𝑖|

𝑛
𝑖=1  

ii) 0 ≤ 𝜔(𝑣𝑖) ≤ 1 

iii) Ifℛℒ
𝜑
= max(𝜔(𝑣𝑖

𝜑
),𝜔(𝑣𝑗

𝜑
)) > 0 then edge exists for 

𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

 

 

3. MEASURING SIMILARITY: A QUANTITATIVE 

APPROACH 

 

Let 𝕊: ℛℒ
𝜑
(𝑣𝑖 , 𝑣𝑗) → [0,1]be a function mapping pairs of 

elements from the universe 𝒰  to the closed interval [0, 1]. 

Then, 𝕊 is said to be a similarity measure between 𝑣𝑖 , 𝑣𝑗 in 𝒰 

if 𝕊 satisfies the following properties: 

 

i) 0 ≤ 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗) ≤ 1 

ii) 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚(𝑣𝑗 , 𝑣𝑖) 

iii) For any 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 ∈ ℛℒ
𝜑
, 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗) and 

𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆𝑖𝑚(𝑣𝑗 , 𝑣𝑘) 

iv) [𝑣𝑖]𝒮𝑟={𝑣𝑗: 𝑣𝑖𝒮𝑟𝑣𝑗} 

 

3.1 Characteristics of similarity metric 

 

Theorem 3.1.1 𝑆(𝑣𝑖 , 𝑣𝑗) = 1 iff [𝑣𝑖]𝒮𝑟 = [𝑣𝑗]𝒮𝑟
 

Proof: 𝑆(𝑣𝑖 , 𝑣𝑗) = 1  iff 𝑆 ([𝑣𝑖]𝒮𝑟 , [𝑣𝑗]𝒮𝑟
) = 1  which is 

equivalent to [𝑣𝑖]𝒮𝑟 = [𝑣𝑗]𝒮𝑟
 taking into account the property 

[𝑣𝑖]𝒮𝑟 ⊆ 𝑋  and [𝑣𝑗]𝒮𝑟
⊆ 𝑋  ⟺  𝜔𝑋

𝑅(𝑣𝑖) = 1  and 𝜔𝑋
𝑅(𝑣𝑗) =

1.So 𝑆(𝑣𝑖 , 𝑣𝑗) = 1 where 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

 

Theorem 3.1.2 𝑆(𝑣𝑖 , 𝑣𝑗) = 0 iff [𝑣𝑖]𝒮𝑟 ≠ [𝑣𝑗]𝒮𝑟
 

Proof: 𝑆(𝑣𝑖 , 𝑣𝑗) = 0  iff 𝑆 ([𝑣𝑖]𝒮𝑟 , [𝑣𝑗]𝒮𝑟
) = 0  which is 

equivalent to [𝑣𝑖]𝒮𝑟 ∩ 𝑋 = 0 iff 𝜔𝑋
𝑅(𝑣𝑖) = 0 and [𝑣𝑗]𝒮𝑟

∩ 𝑋 =

0 iff 𝜔𝑋
𝑅(𝑣𝑗) = 0. 

 

Theorem 3.1.3 0 ≤ 𝑆(𝑣𝑖 , 𝑣𝑗) ≤ 1 

Proof: For 𝑋 ⊂ 𝑈, [𝑣𝑖]𝒮𝑟 ⊆ 𝑋  and [𝑣𝑗]𝒮𝑟
⊆ 𝑋  where 

𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. Then [𝑣𝑖]𝒮𝑟 ⊆ 𝑋 iff [𝑣𝑗]𝒮𝑟
∩ 𝑋 ≠ ∅ iff 𝜔𝑋

𝑅(𝑣𝑖) >

0 and [𝑣𝑗]𝒮𝑟
⊆ 𝑋 iff [𝑣𝑗]𝒮𝑟

∩ 𝑈 − 𝑋 ≠ ∅ iff 𝜔𝑋
𝑅(𝑣𝑗) < 1. So, 

0 ≤ 𝜔𝑋
𝑅(𝑣𝑖) ≤ 1  and 0 ≤ 𝜔𝑋

𝑅(𝑣𝑗) ≤ 1 , 0 ≤

𝑚𝑎𝑥 (𝜔𝑋
𝑅(𝑣𝑖), 𝜔𝑋

𝑅(𝑣𝑗)) ≤ 1  

Hence, we proved that 0 ≤ 𝑆(𝑣𝑖 , 𝑣𝑗) ≤ 1. 

Theorem 3.1.4 𝑆(𝑣𝑖 , 𝑣𝑗) = 𝑆(𝑣𝑗 , 𝑣𝑖)  

Proof: i) 𝑆(𝑣𝑖 , 𝑣𝑗) = 1  iff 𝑆 ([𝑣𝑖]𝒮𝑟 , [𝑣𝑗]𝒮𝑟
) = 1  which is 

equivalent to [𝑣𝑖]𝒮𝑟 = [𝑣𝑗]𝒮𝑟
 iff 𝜔𝑋

𝑅(𝑣𝑖) = 1 and 𝜔𝑋
𝑅(𝑣𝑗) = 1. 

ii) 𝑆(𝑣𝑗 , 𝑣𝑖) = 1  iff 𝑆 ([𝑣𝑗]𝒮𝑟
, [𝑣𝑖]𝒮𝑟) = 1  which is 

equivalent to [𝑣𝑗]𝒮𝑟
= [𝑣𝑖]𝒮𝑟  iff 𝜔𝑋

𝑅(𝑣𝑗) = 1 and 𝜔𝑋
𝑅(𝑣𝑖) = 1. 

From (i) and (ii) ⟹ 𝑆(𝑣𝑖 , 𝑣𝑗) = 𝑆(𝑣𝑗 , 𝑣𝑖)  

 

Theorem 3.1.5 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗)  and 

𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆𝑖𝑚(𝑣𝑗 , 𝑣𝑘) 

Proof: For any 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 ∈ ℛℒ
𝜑
, 

𝑆(𝑣𝑖 , 𝑣𝑗) = 1  if 𝑆 ([𝑣𝑖]𝒮𝑟 , [𝑣𝑗]𝒮𝑟
) = 1  which is equivalent 

to [𝑣𝑖]𝒮𝑟 = [𝑣𝑗]𝒮𝑟
 if 𝜔𝑋

𝑅(𝑣𝑖) = 1 and 𝜔𝑋
𝑅(𝑣𝑗) = 1 

And 𝑆(𝑣𝑗 , 𝑣𝑘) = 1  ⟺  𝑆 ([𝑣𝑗]𝒮𝑟
, [𝑣𝑘]𝒮𝑟) = 1  which is 

equivalent to [𝑣𝑗]𝒮𝑟
= [𝑣𝑘]𝒮𝑟  iff 𝜔𝑋

𝑅(𝑣𝑗) = 1 and 𝜔𝑋
𝑅(𝑣𝑘) =

1. Therefore, it is proved that 𝑆(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆(𝑣𝑖 , 𝑣𝑗). Similarly, 

𝑆(𝑣𝑖 , 𝑣𝑘) ≤ 𝑆(𝑣𝑗 , 𝑣𝑘) 

 

3.2 Operations of similarity measures 

 

1. Let 𝑣𝑖  is a subset of 𝑣𝑗  (i.e) 𝑣𝑖 ⊆ 𝑣𝑗  iff [𝑣𝑖]𝒮𝑟 ⊆

[𝑣𝑗]𝒮𝑟
∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

2. Let 𝑣𝑖 is equal to 𝑣𝑗 (i.e.) 𝑣𝑖 = 𝑣𝑗 iff [𝑣𝑖]𝒮𝑟 ⊆ [𝑣𝑗]𝒮𝑟
 and 

[𝑣𝑗]𝒮𝑟
⊆ [𝑣𝑖]𝒮𝑟 ,(i.e) iff [𝑣𝑖]𝒮𝑟 = [𝑣𝑗]𝒮𝑟

 ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

3. The union of 𝑣𝑖 𝑎𝑛𝑑𝑣𝑗  is denoted by 𝒮𝑟(𝑣𝑖 ∪ 𝑣𝑗) whose 

similarity classes are defined as 𝒮𝑟(𝑣𝑖 ∪ 𝑣𝑗)=[𝑣𝑗]𝒮𝑟
∨ [𝑣𝑖]𝒮𝑟 . 

4. The intersection of 𝑣𝑖 and𝑣𝑗  is denoted by 𝒮𝑟(𝑣𝑖 ∩ 𝑣𝑗) 

whose similarity classes are defined as𝒮𝑟(𝑣𝑖 ∪ 𝑣𝑗)=[𝑣𝑗]𝒮𝑟
∧

[𝑣𝑖]𝒮𝑟 . 

5. The complement of 𝑣𝑖 is denoted as 𝑣�̅� whose similarity 

classes for each 𝑣𝑖 ∈ 𝑉 where the vertices 𝑣𝑖 ∗ 𝑣𝑗 ∈ 𝑉. 
 

 

4. PROPOSED WORK 

 

The combination of 𝜁 −  labeling formula and similarity 

measure in rough graph is termed as rough 𝜁 − labeling 

similarity graph. 
 

4.1 Rough 𝛇 -labeling similarity graph 
 

A rough graph ℛℒ
𝜑
= (𝑉, 𝐸, 𝜌𝜑 , 𝜎𝜑, 𝜔) is said to be rough ζ 

-Labeling Similarity Graph if V={𝜌𝜑(𝑣𝑖)}  for 𝑖 = 1,2, … , 𝑛 

and E={𝜎𝜑(𝑣𝑖 , 𝑣𝑗)} for 𝑖 = 1,2, … , 𝑛 and 𝜔: 𝑉 ∗ 𝑉 → [0,1] is 

bijection such that edges and vertices can be labeled using 

similarity classes and measures if it satisfies the following 

requirements: 
 

i. Ifℛℒ
𝜑

 = max(𝜔(𝑣𝑖
𝜑
),𝜔(𝑣𝑗

𝜑
)) > 0 then edge exists for 

𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. 

ii. Vertex labeling: 𝜌𝜑(𝑣𝑖) =
[𝑣𝑖]𝒮𝑟

𝑛
, where [𝑣𝑖]𝒮𝑟 = {𝑣𝑗/

𝑣𝑖𝒮𝑟𝑣𝑗} 

iii. Edge labeling: 𝜎𝜑(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚𝜁(𝑣𝑖 , 𝑣𝑗) =
𝜁

𝜁+𝜂
, where 

𝜂 =
|[𝑣𝑖]𝒮𝑟|∗|[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|+|[𝑣𝑗]𝒮𝑟
|
 and 𝜁 = 𝜌𝜑(𝑣𝑖)+𝜌

𝜑(𝑣𝑗) + 𝑚,  
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where, 𝜌𝜑(𝑣𝑖)  represents vertex labeling of 𝑣𝑖 , 𝜌𝜑(𝑣𝑗) 

represents the vertex labeling of 𝑣𝑗, 𝑚 represents the total no. 

of edges in rough graph. 

Here 𝜁 gives a labeling formula and 𝜂 mentions modified 

similarity measure based on similarity class. 

When considering two similarity classes of objects, 𝑢 and 𝑣, 

the computation of similarity measures is performed using Eqs. 

(1)-(4). 

 

𝑆𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚𝑗(𝑣𝑖 , 𝑣𝑗) =
|[𝑣𝑖]𝒮𝑟 ∩ [𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟 ∪ [𝑣𝑗]𝒮𝑟
|
 (1) 

 

𝑆𝑖𝑚𝑑𝑖𝑐𝑒(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚𝑑(𝑣𝑖 , 𝑣𝑗) =
2 |[𝑣𝑖]𝒮𝑟 ∩ [𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟| + |[𝑣𝑗]𝒮𝑟
|
 (2) 

 
𝑆𝑖𝑚min−𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚𝑂(𝑣𝑖 , 𝑣𝑗)

= 𝑚𝑖𝑛(
|[𝑣𝑖]𝒮𝑟 ∩ [𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|
,
|[𝑣𝑖]𝒮𝑟 ∩ [𝑣𝑗]𝒮𝑟

|

|[𝑣𝑗]𝒮𝑟
|

) 
(3) 

 

𝑆𝑖𝑚𝜁−label(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚𝜁(𝑣𝑖 , 𝑣𝑗) =
𝜁

𝜁 + 𝜂
 (4) 

 

where, 𝜂 =
|[𝑣𝑖]𝒮𝑟|∗|[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|+|[𝑣𝑗]𝒮𝑟
|
 and 𝜁 = 𝜌𝜑(𝑣𝑖)+𝜌

𝜑(𝑣𝑗) + 𝑚 

𝜌𝜑(𝑣𝑖) and 𝜌𝜑(𝑣𝑗) represent the vertex labeling of 𝑣𝑖 ,𝑣𝑗 

and 𝑚 represents the total no. of edges in rough graph. 

All these similarity measures yield values within the range 

of 0 to 1. A value of 0 signifies a complete mismatch between 

two clusters, while a value of 1 signifies that the two clusters 

are identical. 

 

4.2 Algorithm for computing the energy of rough graphs 

 

The following algorithm outlines the steps to compute the 

Energy measure of a rough graph by employing rough vertex 

and edge labeling techniques. 

(i) Construct the rough graph by assigning membership 

values to vertices and edges using a membership 

function.  

(ii) Compute the similarity classes from the given 

information table or data.  

(iii) Label the vertices using a vertex labeling formula 

based on the similarity classes. 

(iv) Assign labels to the edges using edge labeling 

formulas for various similarity measures.  

(v) Represent the labeled rough graph with similarity 

measures in a diagrammatic form.  

(vi) Construct the adjacency matrix for rough graph, 

incorporating the various similarity measures 

assigned to the edges.  

(vii) Calculate the eigenvalues of the adjacency matrix for 

each similarity measure.  

(viii) Compute the Energy of the rough graph for each 

similarity measure by summing the absolute values of 

the corresponding eigenvalues. 

 

Illustrative Case 1: Machine quality data 

Consider a dataset consisting of information about five 

machines, with attributes: operation efficiency, number of 

machines, machine capacity, and a decision attribute 

representing quality. 

 
Table 1. Decision system of machine quality data 

 

Machines 
Operation 

Efficiency 

No. of 

Machine 

Machine 

Capacity 

h/day 

Quality 

𝑚1 Advanced 35 20 Good 

𝑚2 Advanced 29 12 Good 

𝑚3 Advanced 35 12 Good 

𝑚4 Moderate 18 15 Poor 

𝑚5 Low 35 20 Poor 

 

Equivalence classes of Table 1 are as follows:  

 

R{𝑚1}={𝑚1}, R{𝑚2}={𝑚2},  

R{𝑚3}={𝑚3}, R{𝑚4}={𝑚4}, R{𝑚5}={𝑚5}. 

 

Assuming that the outcome evaluation decision is good, we 

consider the target set as X={𝑎, 𝑏}. Rough Membership values 

are 

 

𝜔(𝑚1) =
|[𝑥]𝑅 ∩ 𝑋|

|[𝑥]𝑅|
= 1; 𝜔(𝑚2) = 1; 𝜔(𝑚3) = 0 

𝜔(𝑚4) = 0; 𝜔(𝑚5) = 0 

 

4.3 Similarity class 

 

4.3.1 Calculation of similarity class 

Based on the decision table (Table 1), we have constructed 

a similarity matrix that captures the relationships between 

objects with respect to their attributes. As there are three 

attributes in the dataset, each entry in Table 1 can take values 

from the set {0, 1, 2, 3}. The value 0 indicates that the two 

objects being compared have no overlapping attribute values, 

while a value of 3 signifies that the two objects are identical 

across all attributes. 

From Table 2, the following similarity classes have been 

identified, 

 

[𝑚1]𝒮r={a,b,c,e}; |[𝑚1]𝒮r| = 4;[𝑚2]𝒮r={a, b, c}; |[𝑚2]𝒮r| =

3; [𝑚3]𝒮r={a,b,c,e}; |[𝑚3]𝒮r| = 4; [𝑚4]𝒮r={d}; |[𝑚4]𝒮r| =

1; [𝑚5]𝒮r ={a,c,e}; |[𝑚5]𝒮r| = 3 

 

Table 2. Similarity class of machine quality data 

 
𝓢𝒓 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 

𝑚1 0 0.75 1 0 0.75 

𝑚2 0 0 0.75 0 0.5 

𝑚3 1 0.75 0 0 0 

𝑚4 0 0 0 0 0 

𝑚5 0.75 0.5 0 0 0 
 

4.4 Labeling methodology 

 

𝜌𝜑(𝑣𝑖) =
|[𝑣𝑖]𝒮𝑟|

𝑛
 

 

4.4.1 Vertex labeling 

Figure 1 depicts the rough graph constructed from Table 1.  

 

𝜌𝜑(𝑎) = 0.8, 𝜌𝜑(𝑏) = 0.6, 𝜌𝜑(𝑐) = 0.8, 

𝜌𝜑(𝑑) = 0.2, 𝜌𝜑(𝑒) = 0.6. 
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Figure 1. Rough graph of machine quality data 

 

4.4.2 Edge labeling 

 

𝐸𝐺
𝜑
(𝑣𝑖 , 𝑣𝑗) = 𝑆𝑖𝑚(𝑣𝑖 , 𝑣𝑗); 𝑆𝑖𝑚𝜁(𝑣𝑖 , 𝑣𝑗) =

𝜁

𝜁+𝜂
 

 

where, 𝜂 =
|[𝑣𝑖]𝒮𝑟|∗|[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|+|[𝑣𝑗]𝒮𝑟
|
 and𝜁𝑖𝑗 = 𝜌𝜑(𝑣𝑖)+𝜌

𝜑(𝑣𝑗) + 𝑚 

 

Table 3 presents the edge labeling values assigned to the 

edges of the rough graph derived from the machine quality 

data. 

Table 3. Edge labeling of rough graph  

 

Edges 𝜻𝒊𝒋 𝜼 
𝜻

𝜻 + 𝜼
 

Sim(a,b) 𝜁𝑎𝑏 = 8.4 1.71 0.83 

Sim(a,c) 𝜁𝑎𝑐 = 8.6 2 0.81 

Sim(a,d) 𝜁𝑎𝑑 = 8.0 0.8 0.91 

Sim(a,e) 𝜁𝑎𝑒 = 8.4 1.17 0.83 

Sim(b,c) 𝜁𝑏𝑐 = 8.4 1.17 0.83 

Sim(b,d) 𝜁𝑎𝑏 = 7.8 0.75 0.91 

Sim(b,e) 𝜁𝑏𝑒 = 8.2 1.5 0.85 

 

4.5 Energy of rough graph using similarity measures 

 

After assigning edge labels based on various similarity 

measures, such as Jaccard, Dice, Overlap, and 𝜁 labeling, we 

construct the adjacency matrix for the rough graph. We then 

calculate the eigenvalues of the adjacency matrix. The Energy 

of the rough graph for each similarity measure is obtained by 

summing the absolute values of the corresponding eigenvalues. 

 

4.5.1 Jaccord 𝑆𝑖𝑚𝑗(𝑣𝑖 , 𝑣𝑗) 

Here edges are labeled using Jaccord Similarity Measure as 

𝑆𝑖𝑚𝑗(𝑣𝑖 , 𝑣𝑗) =
|[𝑣𝑖]𝒮𝑟∩[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟∪[𝑣𝑗]𝒮𝑟
|
 and the adjacency matrix is given 

as shown in Table 4: 

 

Table 4. Adjacency matrix for Figure 2 

 
𝓢𝒓 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 

𝑚1 3 1 2 0 2 

𝑚2 3 3 2 0 0 

𝑚3 2 2 3 0 1 

𝑚4 0 0 0 3 0 

𝑚5 2 0 1 0 3 

 

Figure 2 illustrates the vertex, edge labeling values assigned 

to the rough graph.  

 
 

Figure 2. Jaccord similarity for Figure 1 

 

Eigen values={0,-1.316,-0.383,0.005,1.695} 

Energy of 𝑆𝑖𝑚𝑗(𝑣𝑖 , 𝑣𝑗)=3.399 

 

4.5.2 Dice 𝑆𝑖𝑚𝑑(𝑣𝑖 , 𝑣𝑗) 

Here, by using 𝑆𝑖𝑚𝑑(𝑣𝑖 , 𝑣𝑗) =
2|[𝑣𝑖]𝒮𝑟∩[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|+|[𝑣𝑗]𝒮𝑟
|
, the edges are 

labeled and adjacency matrix is given as shown in Table 5: 

 

Table 5. Adjacency matrix for Figure 3 

 

𝓢𝒓 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 

𝑚1 0 0.85 1 0 0.85 

𝑚2 0 0 0.85 0 0.66 

𝑚3 1 0.85 0 0 0 

𝑚4 0 0 0 0 0 

𝑚5 0.85 0.66 0 0 0 

 

 
 

Figure 3. Labeling using Dice similarity for Figure 1 

 

Eigen values = {0, -1.428, -0.451,0.003,1.876} 

Energy = 3.758 

 

Table 6. Adjacency matrix for Figure 4 

 
𝓢𝒓 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 

𝑚1 0 0.75 1 0 0.75 

𝑚2 0 0 0.7 0 0.6 

𝑚3 1 0.75 0 0 0 

𝑚4 0 0 0 0 0 

𝑚5 0.75 0.6 0 0 0 
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4.5.3 Overlap 𝑆𝑖𝑚𝑂(𝑣𝑖 , 𝑣𝑗) 

For overlap similarity measure 𝑆𝑖𝑚𝑂(𝑣𝑖 , 𝑣𝑗) =

𝑚𝑖𝑛 (
|[𝑣𝑖]𝒮𝑟∩[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑖]𝒮𝑟|
,
|[𝑣𝑖]𝒮𝑟∩[𝑣𝑗]𝒮𝑟

|

|[𝑣𝑗]𝒮𝑟
|

) , the edges are labeled and its 

adjacency matrix is given in Table 6. 

 

 
 

Figure 4. Overlap similarity measures for Figure 1 

 

Eigen values: {0, -1.348, -0.387, 0.002, 1.733} 

Energy: 3.47 

 

4.5.4 Rough 𝜁 𝑆𝑖𝑚𝜁(𝑣𝑖 , 𝑣𝑗) 

By implementing 𝑆𝑖𝑚𝜁(𝑣𝑖 , 𝑣𝑗) =
𝜁

𝜁+𝜂
 where 𝜂 =

|[𝑣𝑖]𝒮𝑟|∗|[𝑣𝑗]𝒮𝑟
|

|[𝑣𝑖]𝒮𝑟|+|[𝑣𝑗]𝒮𝑟
|
 and 𝜁 = 𝜌𝜑(𝑣𝑖)+𝜌

𝜑(𝑣𝑗) + 𝑚 (Table 7). 

 

Table 7. Adjacency matrix for Figure 5 

 
𝓢𝒓 𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒 𝒎𝟓 

𝑚1 0 0.83 0.81 0.9 0.83 

𝑚2 0.83 0 0.83 1 0.85 

𝑚3 0.81 0.83 0 0.9 0 

𝑚4 0.91 0.91 0 0 0 

𝑚5 0.83 0.85 0 0 0 

 

 
 

Figure 5. Overlap similarity measure for Figure 1 

 

Eigen values: {0,-1.726,-0.830,0,2.556} 

Energy: 5.112 

 

The following Table 8 presents a comparative analysis of 

the Energy values for the machine quality dataset, computed 

using different similarity measures such as Jaccard, Dice, 

Overlap, and the Rough 𝜁 Similarity Measure. 

Table 8. Comparative analysis of energy of similarity 

measures for rough graph 1 

 
Edges Jaccard Dice Overlap 𝜻 

𝑆𝑖𝑚(𝑎, 𝑏) 0.75 0.85 0.75 0.83 

𝑆𝑖𝑚(𝑎, 𝑐) 1 1 1 0.81 

𝑆𝑖𝑚(𝑎, 𝑑) 0 0 0 0.91 

𝑆𝑖𝑚(𝑎, 𝑒) 0.75 0.85 0.75 0.83 

𝑆𝑖𝑚(𝑏, 𝑐) 0.75 0.85 0.75 0.83 

𝑆𝑖𝑚(𝑏, 𝑑) 0 0 0 0.91 

𝑆𝑖𝑚(𝑏, 𝑒) 0.5 0.66 0.6 0.85 

Energy  3.399 3.758 3.47 5.112 

 

Illustrative Case 2: In this case (Table 9), we have 

considered a dataset consisting of ten Iris flower samples, 

where the sepal length, sepal width, petal length, and petal 

width are treated as independent attributes or features. The 

decision attributes are the Iris species Setosa and versicolor. 
 

Table 9. Iris flower data set 
 

Iris 

Flower 

Sepal 

Length 

(cm) 

Sepal 

Width 

(cm) 

Petal 

Length 

(cm) 

Petal 

Width 

(cm) 

Iris Class 

𝑓1 5 4 3 1 Setosa 

𝑓2 4 9 3 1 Setosa 

𝑓3 4 8 3 4 Setosa 

𝑓4 5 5 2 4 Versicolor 

𝑓5 5 6 2 9 Versicolor 

𝑓6 5 6 3 0 Versicolor 

𝑓7 5 7 4 4 Setosa 

𝑓8 5 8 2 7 Versicolor 

𝑓9 6 0 2 9 Versicolor 

𝑓10 5 7 3 8 Setosa 

 

Let us consider the decision attribute as versicolor and the 

target set is X={𝑓4, 𝑓5, 𝑓6, 𝑓8, 𝑓9}. 
Equivalence classes for Table 9: 

 

R{𝑓1}={𝑓1}, R{𝑓2}={𝑓2}, R{𝑓3}={𝑓3}, R{𝑓4}={𝑓4}, 

R{𝑓5}={𝑓5}, R{𝑓6}={𝑓6}, R{𝑓7}={𝑓7}, R{𝑓8}={𝑓8}, 

R{𝑓9}={𝑓9}, R{𝑓10}={𝑓10} 

 

Rough membership values are 

 

𝜔(𝑓1) = 0;𝜔(𝑓2) = 0; 𝜔(𝑓3) =0; 𝜔(𝑓4) = 1; 

𝜔(𝑓5) =1; 𝜔(𝑓6) = 1; 𝜔(𝑓7) = 0; 𝜔(𝑓8) = 1; 
𝜔(𝑓9) = 1;𝜔(𝑓10) = 0 

 

 
 

Figure 6. Rough graph of Iris flower data 
 

Figure 6 illustrates the rough graph constructed based on the 

membership values assigned to each object in the dataset. 
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Table 10. Calculation of similarity class 
 

𝓢𝒓 𝒇𝟏 𝒇𝟐 𝒇𝟑 𝒇𝟒 𝒇𝟓 𝒇𝟔 𝒇𝟕 𝒇𝟖 𝒇𝟗 𝒇𝟏𝟎 

𝑓1 4 2 1 1 1 2 1 1 0 2 

𝑓2 2 4 2 0 0 1 0 0 0 1 

𝑓3 1 2 4 1 0 1 1 1 0 1 

𝑓4 1 0 1 4 2 1 2 2 1 1 

𝑓5 1 0 0 2 4 2 1 2 2 1 

𝑓6 2 1 1 1 2 4 1 1 0 2 

𝑓7 1 0 1 2 1 1 4 1 0 2 

𝑓8 1 0 1 2 2 1 1 4 1 1 

𝑓9 0 0 0 1 2 0 0 1 4 0 

𝑓10 2 1 1 1 1 2 2 1 0 4 

Table 11. Edge labels based on different similarity metrics 
 

Edge Labeling Jaccord Dice Overlap 𝜻 

Sim (f1, f4) 0.88 0.88 0.88 0.89 

Sim (f1, f5) 0.7 0.82 0.77 0.90 

Sim (f1, f6) 1 1 1 0.89 

Sim (f1, f8) 0.8 0.88 0.8 0.89 

Sim (f1, f9) 0.3 0.46 0.3 0.92 

Sim (f2, f4) 0.4 0.57 0.44 0.92 

Sim (f2, f5) 0.3 0.46 0.37 0.92 

Sim (f2, f6) 0.5 0.71 0.55 0.92 

Sim (f2, f8) 0.4 0.57 0.44 0.92 

Sim (f2, f9) 0 0 0 0.94 

Sim (f3, f4) 0.7 0.82 0.77 0.90 

Sim (f3, f5) 0.6 0.75 0.75 0.90 

Sim (f3, f6) 0.8 0.94 0.8 0.90 

Sim (f3, f8) 0.7 0.82 0.77 0.90 

Sim (f3, f9) 0.2 0.33 0.25 0.93 

Sim (f4, f5) 0.88 0.94 0.8 0.90 

Sim (f4, f6) 0.8 0.88 0.8 0.90 

Sim (f4, f7) 0.88 0.94 0.8 0.90 

Sim (f4, f8) 0.9 1 1 0.89 

Sim (f4, f9) 0.44 0.61 0.44 0.92 

Sim (f4, f10) 0.9 1 1 0.89 

Sim (f5, f6) 0.7 0.82 0.77 0.90 

Sim (f5, f7) 0.77 0.87 0.87 0.90 

Sim (f5, f8) 0.88 0.94 0.8 0.90 

Sim (f5, f9) 0.5 0.66 0.5 0.93 

Sim (f5, f10) 0.7 0.82 0.77 0.90 

Sim (f6, f7) 0.88 0.94 0.8 0.89 

Sim(f6, f8) 0.8 0.88 0.8 0.89 

Sim (f6, f9) 0.3 0.46 0.33 0.92 

Sim (f6, f10) 0.9 1 1 0.89 

Sim(f7, f8) 0.8 0.94 0.8 0.90 

Sim (f7, f9) 0.33 0.5 0.37 0.93 

Sim(f8, f9) 0.44 0.61 0.44 0.92 

Sim(f8, f10) 0.8 0.88 0.88 0.89 

Sim (f9, f10) 0.3 0.46 0.33 0.92 

Table 12. Energy values of Iris flower rough graph 

 
S. No Similarity Measure  Energy Value 

1 Jaccord 10.31 

2 Dice 10.41 

3 Overlap 11.69 

4 𝜻 13.28 

 

Table 10 presents the similarity classes derived from the 

rough graph shown in Figure 6, which was constructed based 

on the Iris flower dataset. 

Vertex labeling: 𝜌(𝑓1) = 0.9; 𝜌(𝑓2) = 0.5; 𝜌(𝑓3) = 0.8; 

𝜌(𝑓4) =0.9; 𝜌(𝑓6) =0.9; 𝜌(𝑓7) =0.8; 𝜌(𝑓8) =0.9; 𝜌(𝑓9) =0.4; 

𝜌(𝑓10) =0.9. 

Table 11 presents the edge labeling values for the rough 

graph constructed from the Iris flower dataset, computed using 

the Jaccard, Overlap, Dice, and Rough 𝜁 similarity measures. 

 

Table 13. Iron pipes data 

 
Iron Pipes Coal  Sulfur Phosphorus Cracks 

𝑃1 High High Low Yes 

𝑃2 Average High Low No 

𝑃3 High High Low Yes 

𝑃4 Low Low Low No 

𝑃5 Average Low High Yes 

𝑃6 High Low High Yes 

 

Table 12 presents the Energy values calculated for rough 

graph constructed from the Iris flower dataset, based on the 

adjacency matrix derived from the vertex and edge labeling 

using different similarity measures. 
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Table 14. Energy values of iron pipes data 

 
S. No Similarity Measure Energy Value 

1 Jaccord 6.345 

2 Dice 7.626 

3 Overlap 7.294 

4 𝜁 8.072 

 

Illustrative Case 3: The dataset comprises information on 

six cast iron pipes (Table 13) subjected to a high-pressure 

endurance test. Let's designate the target set as 𝒳 =
{𝑃1, 𝑃5, 𝑃6} . Rough membership values are as follows: 

𝜔(𝑃1) = 0.5;𝜔(𝑃2) = 0;𝜔(𝑃3)= 0.5,𝜔(𝑃4) = 0; 𝜔(𝑃5) =
1, 𝜔(𝑃6) = 1. 

Table 14 presents the energy values computed using the 

Jaccard, Dice, Overlap, and 𝜁  similarity measures for the 

given dataset. 

Illustrative Case 4: The dataset comprises information on 

fifteen female patients who underwent multiple tests to assess 

their diabetic condition (Table 15). 

Table 16 presents the Energy values computed using the 

Jaccard, Dice, Overlap, and 𝜁  similarity measures for the 

female diabetic dataset. 

 

Table 15. Female diabetic data 

 

Patients Thirst  Hunger Frequent Weight Loss Tiredness Diabetic 

𝑤1 High High Low Low High High 

𝑤2 High High Low Low Low High 

𝑤3 High High High Low High High 

𝑤4 High High High Low Low High 

 𝑤5 High Low High High High High 

𝑤6 High High High High High High 

𝑤7 High Low Low Low Low High 

𝑤8 High High High High High High 

𝑤9 High High Low Low High Low 

𝑤10 High Low High Low High Low 

𝑤11 High High High Low High Low 

𝑤12 High Low Low Low Low Low 

𝑤13 Low High Low High High Low 

𝑤14 Low Low Low High Low Low 

𝑤15 High High Low Low High Low 

Table 16. Energy values of female diabetic data 

 
S. No Similarity Measure Energy Value 

1 Jaccord 25.848 

2 Dice 26.137 

3 Overlap 25.848 

4 𝜁 27.4285 

 

 

5. COMPARATIVE ANALYSIS OF EFFECTIVENESS 

OF ENERGY VALUES VARIOUS ROUGH GRAPHS 

 

 
 

Figure 7. Graphical depiction of comparative study 

We have analyzed four distinct datasets, calculating energy 

values using Jaccard, Dice, Overlap, and Rough ζ measures. 

Across all four measures, Rough ζ consistently yields the 

highest energy values. Rough graph energy can provide 

insights into the structure and properties of complex networks, 

such as social networks, biological networks, and 

communication network. Figure 7 illustrates the graphical 

depiction of the comparative analysis. 

 

 

6. CONCLUSION 

 

In this study, we conduct a comprehensive evaluation of 

various similarity measures for edge labeling in rough graphs. 

We present a unified view of these labeling similarity 

measures through the visualization of multiple bar charts. 

Additionally, we introduce a novel ζ labeling similarity metric 

designed to leverage similarity classes within rough graphs, 

utilizing its associated energy to characterize the graph's 

properties. This comprehensive overview of similarity metrics 

is facilitated through the representation of multiple bar charts. 

The energy of rough graphs can be exploited to identify 

significant nodes or links in a network, which has implications 

for network optimization, vulnerability analysis, and targeted 

interventions. This novel ζ labeling similarity metric, which 

capitalizes on similarity classes within rough graphs and 

quantifies the graph's characteristics through its energy, may 

find applications in cluster boundary region identification in 

Wireless Sensor Networks. 
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