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The processes of transport of various pollutants in porous media are of great practical 

importance. Such contaminants can be solid colloidal particles suspended in the carrier 

fluid. In the process of transfer, particles can be deposited in pores, which significantly 

change the permeability and porosity characteristics of the medium. The heterogeneity 

of porous media considerably affects the transfer of these particles. One of the 

macroscopically inhomogeneous media is zonal inhomogeneous media, consisting of 

several zones with different characteristics. In such media, generalized mathematical 

models have not yet been developed that take into account the zonal inhomogeneity of 

the medium, various linear and nonlinear, reversible and irreversible kinetics of 

deposition of solid particles from the liquid into the pore space, etc. In this work, a 

model is generalized for the transfer of solid particles in a two-zone porous medium. In 

this work, a mathematical model is considered for colloidal particles transport process 

in a two-zone porous medium and both the zones having the reversible retentions of 

particles with different characteristics (parameters). It is shown that the nonlinear 

kinetics of particle deposition, other parameters being equal, leads to an intensification 

of particle deposition in pores. As the index n decreases from unity, the rate of particle 

deposition increases in both zones of the medium. As a consequence, the concentration 

of suspended particles in the mobile fluid in both zones decreases. 
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1. INTRODUCTION

A fractured porous media (FPM) is a typical example of 

structured media [1, 2]. The main paths of movement of a fluid 

with suspended solid particles or dissolved substances of 

fracture is assumed. Porous blocks are treated as impermeable 

for fluid in a simplified model and particles or solute can 

diffuse into them. The zones are divided in to two in which 

one is with a mobile fluid (fractures) and the second is with 

stationary one (porous blocks) having the mass transport 

process between these two zones. 

Spreading of substances in the porous medium in advance 

manner may raise the results in many factors. Using this 

phenomenon there may be certain difficulties of making 

mathematical model and few models in this field were 

presented by researchers [3-6]. Of course, each approach has 

its own advantages and disadvantages. If the first-order 

kinetics is used as a rule without specifying the geometric 

characteristics of the medium, then in the diffusion approach 

it is necessary to determine the geometry of the zones and 

consider the mass transfer between the zones as a diffusion 

process. Тwo-zone models, where the liquid is mobile in both 

zones, but with different scales, are more preferable. In 

addition, in each of the zones there may be different sections 

where the deposition of particles can occur in completely 

different ways: equilibrium, non-equilibrium, linear, 

nonlinear, etc. 

Leij and Bradford [7] presented a transport model of 

colloidal particles in a medium with double porosity is 

presented, which adds the reversible and irreversible retention 

of particles, as well as the first-order mass transfer between 

fractures and porous blocks. The obtained analytical solution 

was implemented to analyze the results of experiments [8]. 

Good agreement between theoretical and experimental results 

was obtained. 

Under the assumption of the reversible retention with 

different characteristics (parameters) in both the zones of the 

medium it is considered the transfer process of colloidal 

particles. This method proves to be more fitting because of the 

irreversible capture of particles, a phenomenon observed 

solely during the initial phase of the procedure when a 

monolayer of colloidal particles establishes itself on the 

medium's rock surface. Importantly, there exists no energy 

obstacle to hinder this retention [9-11]. Thus, the irreversible 

retention of particles becomes reversible beyond the certain 

time limit. Therefore, the double reversible retention kinetics 

is preferred in this study. It possible to consider the irreversible 

retention kinetics as a particular case of reversible kinetics. 
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First, we formulate a mathematical model for solid particle 

transport in two-zone, two-ite fractured porous media. Two 

kinetics of reversible deposition of solid particles are 

considered (case I and II): linear and non-linear. Then we pose 

a transport problem for this model and numerically solve it 

with using two different finite difference schemes. Relative 

advantages of these schemes are estimated. On the basis of 

numerical experiments with discretized model we present 

results and make some conclusions. 

2. MATHEMATICAL FORMULATION

Examine a medium featuring dual porosity as illustrated in 

Figure 1, revealing the mobility of fluid within one zone 

(fractures) and the stationary nature of the other zone (porous 

matrix blocks). In this context, the fluid's mobility is 

acknowledged in both zones. In such a mobile zone, it has 

double porosity or double permeability, the transfer of matter 

occurs with different intensities sometimes contrasting, like 

the movement of fluid. Similarly, it finds application in 

macroscopically non-uniform media, where convective matter 

transfer is possible in both zones. 

The first zone, denoted by index 1, exhibits elevated 

permeability, while the second zone, denoted by index 2, 

demonstrates reduced permeability. Each zone is further 

divided into subsections, denoted by indices a and s in the 

notation. 

Suppose two zones form coexisting continua. This allows 

us to consider one medium, at each point of which two 

characteristics are determined: Concentration of particles 

suspended in a fluid, concentration of deposited particles, 

porosity, diffusion coefficients, fluid filtration rates, etc. Mass 

transfer of particles occurs between the continua, which is 

considered proportional to the concentration difference in the 

continuum. This approach is known as interpenetrating or 

coexisting continua. Models of two coexisting continua have 

been effectively used in studying the processes of filtration of 

homogeneous liquids in fractured-porous media [12]. Now 

this methodology has become widely used in problems of 

transport of various substances in inhomogeneous porous 

media. 

Figure 1. A scheme of particle transfer in a two-zone 

medium 

The equations of transfer of particles in the one-dimensional 

case are written in the form [13]: 

𝜌
𝜕𝑆𝑏𝑖

𝜕𝑡
+ 𝜌

𝜕𝑆𝑑𝑖

𝜕𝑡
+ 𝜃𝑖

𝜕𝐶𝑖

𝜕𝑡

= 𝜃𝑖𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑥2 − 𝜃𝑖𝑣𝑖

𝜕𝐶𝑖

𝜕𝑥
+ 𝛼(𝐶𝑛 − 𝐶𝑖),

(𝑖 = 1,2; 𝑛 = 3 − 𝑖), 

(1) 

where, t is the time, s; x-coordinate, m; Di is longitudinal 

dispersion coefficients, m2⁄s; vi is the fluid velocity, m⁄s; 

v1>v2; C1, C2 is the volumetric concentration of particles in a 

fluid; Sbi and Sdi-concentration of deposited particles, m3⁄kg; 

θi is porosity of zones; ρ is the bulk density of the medium, 

kg/m3; α is coefficient of mass transfer between zones, s-1. 

Two cases considered for the kinetics of particle deposition. 

Case 1. The deposition of particles occurs in each of the 

sections of the zones reversibly with considering the linear 

kinetic equations are written as: 

𝜌
𝜕𝑆𝑏𝑖

𝜕𝑡
= 𝜃𝑖𝑘𝑎𝑖𝐶𝑖 − 𝜌𝑘𝑎𝑑𝑖𝑆𝑎𝑖 , (𝑖 = 1,2), (2) 

𝜌
𝜕𝑆𝑑𝑖

𝜕𝑡
= 𝜃𝑖𝑘𝑠𝑖𝐶𝑖 − 𝜌𝑘𝑠𝑑𝑖𝑆𝑠𝑖 , (𝑖 = 1,2), (3) 

Here, kai and ksi represent the deposition coefficients of 

particles from the fluid phase i onto the solid phase, 

specifically, onto the solid framework of the environment, 

measured in s-1. Additionally, kadj and ksdj denote the 

coefficients for the reattachment of particles from the solid 

phase and their transition back to the fluid phase, measured in 

𝑠−1.

Case 2. The deposition of particles occurs reversibly in each 

section of the zones with considering the nonlinear kinetic 

equations: 

𝜌
𝜕𝑆𝑏𝑖

𝜕𝑡
= 𝜃𝑖𝑘𝑎𝑖𝐶𝑖

𝑛 − 𝜌𝑘𝑎𝑑𝑖𝑆𝑏𝑖 , (𝑖 = 1,2), (4) 

𝜌
𝜕𝑆𝑑𝑖

𝜕𝑡
= 𝜃𝑖𝑘𝑠𝑖𝐶𝑖

𝑛 − 𝜌𝑘𝑠𝑑𝑖𝑆𝑑𝑖 , (𝑖 = 1,2), (5) 

where, n(<1) is a real indicator. 

The initial and boundary conditions are in the form: 

𝐶𝑖(0, х) = 0, 𝑆𝑏𝑖(0, 𝑥) = 0,  𝑆𝑑𝑖(0, 𝑥) = 0, (6) 

𝐶𝑖(𝑡, 0) = 𝑐0, (7) 

𝜕𝐶𝑖

𝜕𝑥
(𝑡, ∞) = 0, 𝑖 = 1,2. (8) 

The concentration fields are Ci(t, x), Sbi(t, x), Sdi(t, x) (i=1, 

2.) from the Eqs. (1)-(5) with additional conditions Eqs. (6)-

(8). 

3. METHOD OF SOLUTION

To solve problem Eqs. (1)-(8), we use the finite difference 

method [14]. 

Scheme I. In this scheme, in the balance Eq. (1), the mass 

transfer term 𝛼(𝐶𝑛 − 𝐶𝑖), as well as (𝐶𝑖) in Eqs. (2) and (3),

are approximated at the lower time layer j. Difference schemes 

have the form: 

𝜌
(𝑆𝑏𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗

𝜏
+ 𝜌

(𝑆𝑑𝑖)𝑙
𝑗+1

− (𝑆𝑑𝑖)𝑙
𝑗

𝜏
+ 𝜃𝑖

(𝐶𝑖)𝑙
𝑗+1

− (𝐶𝑖)𝑙
𝑗

𝜏

= 𝜃𝑖𝐷𝑖

(𝐶𝑖)𝑙−1
𝑗+1

− 2(𝐶𝑖)𝑙
𝑗+1

+ (𝐶𝑖)𝑙+1
𝑗+1

ℎ2

− 𝜃𝑖𝑣𝑖

(𝐶𝑖)𝑙
𝑗+1

− (𝐶𝑖)𝑙−1
𝑗+1

ℎ
+ 𝛼((𝐶𝑛)𝑙

𝑗
− (𝐶𝑖)𝑙

𝑗
),

(𝑖 = 1,2; 𝑛 = 3 − 𝑖),

(9) 
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𝜌
(𝑆𝑏𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑎𝑖(𝐶𝑖)𝑙

𝑗
− 𝜌𝑘𝑎𝑑𝑖(𝑆𝑏𝑖)𝑙

𝑗+1
 

(𝑖 = 1,2), 

(10) 

 

𝜌
(𝑆𝑑𝑖)𝑙

𝑗+1
− (𝑆𝑑𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑠𝑖(𝐶𝑖)𝑙

𝑗
− 𝜌𝑘𝑠𝑑𝑖(𝑆𝑑𝑖)𝑙

𝑗+1
 

(𝑖 = 1,2), 

(11) 

 

where, (𝐶𝑖)𝑙
𝑗
, (𝑆𝑏𝑖)𝑙

𝑗
, (𝑆𝑑𝑖)𝑙

𝑗
 are the grid values of the functions 

𝐶𝑖(𝑡, 𝑥), 𝑆𝑏𝑖(𝑡, 𝑥), 𝑆𝑑𝑖(𝑡, 𝑥), (𝑖 = 1,2) at the point (𝑡𝑗, 𝑥𝑙). 

From the grid Eqs. (10) and (11) we determine (𝑆𝑏𝑖)𝑙
𝑗+1

, 

(𝑆𝑑𝑖)𝑙
𝑗+1

, 

 

(𝑆𝑏𝑖)𝑙
𝑗+1

= 𝑝𝑖1(𝑆𝑏𝑖)𝑙
𝑗

+ 𝑝𝑖2, (𝑖 = 1,2), (12) 

 

(𝑆𝑑𝑖)𝑙
𝑗+1

= 𝑞𝑖1(𝑆𝑑𝑖)𝑙
𝑗

+ 𝑞𝑖2, (𝑖 = 1,2), (13) 

 

where, 

 

𝑝𝑖1 =
1

1+𝜏𝑘𝑎𝑑𝑖
, 𝑝𝑖2 =

𝜏𝜃𝑖𝑘𝑎𝑖

𝜌(1+𝜏𝑘𝑎𝑑𝑖)
(𝐶𝑖)𝑙

𝑗
, 

𝑞𝑖1 =
1

1+𝜏𝑘𝑠𝑑𝑖
, 𝑞𝑖2 =

𝜏𝜃𝑖𝑘𝑠𝑖

𝜌(1+𝜏𝑘𝑠𝑑𝑖)
(𝐶𝑖)𝑙

𝑗
, 

(𝑖 = 1,2). 

 

Eq. (9) is reduced in the form: 

 

𝐴𝑖(𝐶𝑖)𝑙−1
𝑗+1

− 𝐵𝑖(𝐶𝑖)𝑙
𝑗+1

+ 𝐸𝑖(𝐶𝑖)𝑙+1
𝑗+1

= −(𝐹𝑖)𝑙
𝑗
, 

(𝑖 = 1,2), 
(14) 

 

where, 

 

𝐴𝑖 =
𝜃𝑖𝐷𝑖

ℎ2 +
𝜃𝑖𝑣𝑖

ℎ
, 𝐵𝑖 =

𝜃𝑖

𝜏
+

2𝜃𝑖𝐷𝑖

ℎ2 +
𝜃𝑖𝑣𝑖

ℎ
, 𝐸𝑖 =

𝜃𝑖𝐷𝑖

ℎ2 , 

(𝐹𝑖)𝑙
𝑗

=
𝜃𝑖

𝜏
(𝐶𝑖)𝑙

𝑗
−

𝜌

𝜏
((𝑆𝑏𝑖)𝑙

𝑗+1
+ (𝑆𝑑𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗
− (𝑆𝑑𝑖)𝑙

𝑗
)

+ 𝛼((𝑐𝑛)𝑙
𝑗

− (𝐶𝑖)𝑙
𝑗
), 

(𝑖 = 1,2; 𝑛 = 3 − 𝑖). 
 

The initial and boundary conditions in a discrete manner 

take the following form: 

 

(𝐶𝑖)𝑙
0 = 0, (𝑆𝑏𝑖)𝑙

0 = 0, (𝑆𝑑𝑖)𝑙
0 = 0, (𝑆𝑑𝑖)𝑙

0 = 0, 𝑙 = 1, 𝐿, 

(𝐶𝑖)0
𝑗

= 𝑐0, (𝐶𝑖)𝐿−1
𝑗

= (𝐶𝑖)𝐿
𝑗

= 0, 𝑗 = 0, 𝐽, 𝑖 = 1,2. 
 

The values of (𝑆𝑏𝑖)𝑙
𝑗+1

, (𝑆𝑑𝑖)𝑙
𝑗+1

 are obtained using Eqs. 

(12) and (13). Subsequently, the Thomas’ algorithm is applied 

to solve the systems of linear algebraic equations given in Eq. 

(14), yielding the values of (𝐶𝑖)𝑙
𝑗+1

, where , (𝑖 = 1,2). The 

stability of schemes (12) and (13) is ensured by the fact that 

𝑝𝑖1, 𝑞𝑖1 < 1. Moreover, the stability conditions of the Thomas’ 

algorithm are satisfied for solving (14) for both (𝑖 = 1,2) [14, 

15]. 

When examining Eq. (1) in conjunction with Case 2, 

involving Eqs. (4) and (5), only the approximations of the 

latter equations undergo changes. These approximations 

follow a similar approach to Eqs. (10) and (11). 

 

𝜌
(𝑆𝑏𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑎𝑖(𝐶𝑖

𝑛)𝑙
𝑗

− 𝜌𝑘𝑎𝑑𝑖(𝑆𝑏𝑖)𝑙
𝑗+1

, 

(𝑖 = 1,2), 

(15) 

𝜌
(𝑆𝑑𝑖)𝑙

𝑗+1
− (𝑆𝑑𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑠𝑖(𝐶𝑖

𝑛)𝑙
𝑗

− 𝜌𝑘𝑠𝑑𝑖(𝑆𝑑𝑖)𝑙
𝑗+1

, 

(𝑖 = 1,2), 

(16) 

 

that can be written as Eqs. (12) and (13) with to determine 

(𝑆𝑏𝑖)𝑙
𝑗+1

, (𝑆𝑑𝑖)𝑙
𝑗+1

 the same difference Eqs. (12) and (13) with: 

 

𝑝𝑖1 =
1

1 + 𝜏𝑘𝑎𝑑

, 𝑝𝑖2 =
𝜏𝜃𝑖𝑘𝑎𝑖

𝜌(1 + 𝜏𝑘𝑎𝑑𝑖)
(𝐶𝑖

𝑛)𝑙
𝑗
, 

𝑞𝑖1 =
1

1 + 𝜏𝑘𝑠𝑑

, 𝑞𝑖2 =
𝜏𝜃𝑖𝑘𝑠𝑖

𝜌(1 + 𝜏𝑘𝑠𝑑𝑖)
(𝐶𝑖

𝑛)𝑙
𝑗
, (𝑖 = 1,2). 

 

Eq. (14) retains its original form. The methodology for 

computing solutions mirrors that employed for Eqs. (12)-(14). 

 

Scheme II. Now we approximate the mass transfer term 

𝛼(𝐶𝑛 − 𝐶𝑖) in Eq. (1) and 𝐶𝑖, 𝐶𝑖
𝑛 in kinetic Eqs. (2)-(5) on the 

time layer 𝑗 + 1 . This leads to SLAE in the Case 1 and -

systems of nonlinear algebraic equations in the Case 2. 

Eqs. (1)-(3) were approximated as follows: 

 

𝜌
(𝑆𝑏𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗

𝜏
+ 𝜌

(𝑆𝑑𝑖)𝑙
𝑗+1

− (𝑆𝑑𝑖)𝑙
𝑗

𝜏

+ 𝜃𝑖

(𝐶𝑖)𝑙
𝑗+1

− (𝐶𝑖)𝑙
𝑗

𝜏

= 𝜃𝑖𝐷𝑖

(𝐶𝑖)𝑙−1
𝑗+1

− 2(𝐶𝑖)𝑖
𝑗+1

+ (𝐶𝑖)𝑙+1
𝑗+1

ℎ2

− 𝜃𝑖𝑣𝑖

(𝐶𝑖)𝑙
𝑗+1

− (𝐶𝑖)𝑙−1
𝑗+1

ℎ
+ 𝛼((𝐶𝑛)𝑙

𝑗+1
− (𝐶𝑖)𝑙

𝑗+1
), 

(𝑖 = 1,2; 𝑛 = 3 − 𝑖), 

(17) 

 

𝜌
(𝑆𝑏𝑖)𝑙

𝑗+1
− (𝑆𝑏𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑎𝑖(𝐶𝑖)𝑙

𝑗+1
− 𝜌𝑘𝑎𝑑𝑖(𝑆𝑏𝑖)𝑙

𝑗+1
 

(𝑖 = 1,2), 

(18) 

 

𝜌
(𝑆𝑑𝑖)𝑙

𝑗+1
− (𝑆𝑑𝑖)𝑙

𝑗

𝜏
= 𝜃𝑖𝑘𝑠𝑖(𝐶𝑖)𝑙

𝑗+1
− 𝜌𝑘𝑠𝑑𝑖(𝑆𝑑𝑖)𝑙

𝑗+1
 

(𝑖 = 1,2). 

(19) 

 

Extracting (𝑆𝑏𝑖)𝑙
𝑗+1

, (𝑆𝑑𝑖)𝑙
𝑗+1

 are accomplished through the 

solutions provided by grid Eqs. (18) and (19): 

 

(𝑆𝑏𝑖)𝑙
𝑗+1

= 𝑝𝑖1(𝑆𝑏𝑖)𝑙
𝑗

+ 𝑝𝑖2, (𝑖 = 1,2), (20) 

 

(𝑆𝑑𝑖)𝑙
𝑗+1

= 𝑞𝑖1(𝑆𝑑𝑖)𝑙
𝑗

+ 𝑞𝑖2, (𝑖 = 1,2), (21) 

 

where, 

 

𝑝𝑖1 =
1

1+𝜏𝑘𝑎𝑑𝑖
, 𝑝𝑙2 =

𝜏𝜃𝑖𝑘𝑎𝑖

𝜌(1+𝜏𝑘𝑎𝑑𝑖)
(𝐶𝑖)𝑙

𝑗+1
, 

𝑞𝑖1 =
1

1+𝜏𝑘𝑠𝑑𝑖
, 𝑞𝑖2 =

𝜏𝜃𝑖𝑘𝑠𝑖

𝜌(1+𝜏𝑘𝑠𝑑𝑖)
(𝐶𝑖)𝑙

𝑗+1
, (𝑖 = 1,2). 

 
Grid Eq. (17) are reduced to the form: 

 

𝐴𝑖(𝐶𝑖)𝑙−1
𝑗+1

− 𝐵𝑖(𝐶𝑖)𝑙
𝑗+1

+ 𝐸𝑖(𝐶𝑖)𝑙+1
𝑗+1

+ 𝐺𝑖(𝐶𝑛)𝑙
𝑗+1

= −(𝐹𝑖)𝑙
𝑗
, 

(𝑙 = 1,2; 𝑚 = 3 − 𝑙), 

(22) 

 

where, 
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𝐴𝑖 =
𝜃𝑖𝐷𝑖

ℎ2
+

𝜃𝑖𝑣𝑖

ℎ
, 𝐵𝑖 =

𝜃𝑖

𝜏
+

2𝜃𝑖𝐷𝑖

ℎ2
+

𝜃𝑖𝑣𝑖

ℎ
+

𝜃𝑖𝑘𝑎𝑖

1+𝜏𝑘𝑎𝑑𝑖
+

𝜃𝑖𝑘𝑠𝑖

1+𝜏𝑘𝑠𝑑𝑖
+ 𝛼, 

𝐸𝑖 =
𝜃𝑖𝐷𝑖

ℎ2 , 𝐺𝑖 = 𝛼, 

(𝐹𝑖)𝑙
𝑗

=
𝜌

𝜏
(1 −

1

1 + 𝜏𝑘𝑎𝑑𝑖

) (𝑆𝑏𝑖)
𝑙
𝑗

+
𝜌

𝜏
(1 −

1

1 + 𝜏𝑘𝑠𝑑𝑖

) (𝑆𝑑𝑖)
𝑙
𝑗

+
𝜃𝑙

𝜏
(𝐶𝑖)𝑙

𝑗
, 

(𝑖 = 1,2; 𝑛 = 3 − 𝑖). 
 

In contrast to Eq. (14), SLAEs (22) on the 𝑗 + 1 layer are 

connected for i=1 and i=2. To solve these systems, we use the 

iterative method [14-16]. We construct the iterative scheme in 

such a way that at 𝐺1(𝐶2)𝑙
𝑗+1

, the term is taken from the lower 

iteration layer i=1. In the iterative scheme for i=2 the term 

𝐺2(𝐶1)𝑙
𝑗+1

 is already taken from the upper iteration layer. Thus, 

iterative schemes are composed like the Seidel procedure and 

have the form: 

 

𝐴1( 𝐶1

(𝑘+1)

)𝑙−1
𝑗+1

− 𝐵1( 𝐶1

(𝑘+1)

)𝑙
𝑗+1

+ 𝐸1( 𝐶1

(𝑘+1)

)𝑙+1
𝑗+1

= −𝐺1(𝐶2

(𝑘)

)𝑙
𝑗+1

− (𝐹1)𝑙
𝑗
, 

(23) 

 

𝐴2( 𝐶2

(𝑘+1)

)𝑙−1
𝑗+1

− 𝐵2( 𝐶2

(𝑘+1)

)𝑙
𝑗+1

+ 𝐸2( 𝐶2

(𝑘+1)

)𝑙+1
𝑗+1

= −𝐺2( 𝐶1

(𝑘+1)

)𝑙
𝑗+1

− (𝐹2)𝑙
𝑗
, 

(24) 

 

where, k is the iteration number, k=0, 1, .... 

For Eqs. (20), (21), an iterative scheme can be omitted. The 

calculation scheme, in contrast to the previous one (Eqs. (12)-

(14)), will change. Here, at each time level, Eqs. (23) and (24) 

are first solved by the Thomas’ algorithm, after reaching the 

required accuracy of the iterative scheme according to Eqs. (20) 

and (21) are determined (𝑆𝑏𝑖)𝑙
𝑗+1

 and (𝑆𝑑𝑖)𝑙
𝑗+1

 using the 

coefficients 𝑝𝑖1, 𝑞𝑖1 and 

 

𝑝𝑖2 =
𝜏𝜃𝑖𝑘𝑎𝑖

𝜌(1 + 𝜏𝑘𝑎𝑑𝑖)
( 𝐶𝑖

(𝑘+1)

)𝑙
𝑗
, (25) 

 

𝑞𝑖2 =
𝜏𝜃𝑖𝑘𝑠𝑖

𝜌(1+𝜏𝑘𝑠𝑑𝑖)
( 𝐶𝑖

(𝑘+1)

)𝑙
𝑗
, (𝑖 = 1,2). (26) 

 

The iterative process ends when the following conditions 

are satisfied: 

 

𝑚𝑎𝑥
𝑙

|( 𝐶1

(𝑘+1)

)
𝑙

𝑗+1

− (𝐶1

(𝑘)

)
𝑙

𝑗+1

| < 𝜀 and 

𝑚𝑎𝑥
𝑙

|( 𝐶2

(𝑘+1)

)
𝑙

𝑗+1

− (𝐶2

(𝑘)

)
𝑙

𝑗+1

| < 𝜀, 

(27) 

 

where, 𝜀 is the specified accuracy of calculations. 

In the Case 2, the approximations of Eqs. (4) and (5) are 

similar to Eqs. (18) and (19) and we have the same Eqs. (20) 

and (21) with 𝑝𝑖1, 𝑞𝑖1 and 

 

𝑝𝑖2 =
𝜏𝜃𝑖𝑘𝑎𝑖

𝜌(1 + 𝜏𝑘𝑎𝑑𝑖)
(𝐶𝑖

𝑛)𝑙
𝑗+1

, 𝑞𝑖2 =
𝜏𝜃𝑖𝑘𝑠𝑖

𝜌(1 + 𝜏𝑘𝑠𝑑𝑖)
(𝐶𝑖

𝑛)𝑙
𝑗+1

, 

𝑙 = 1,2, 
(28) 

 

and in Eq. (22) the coefficients take the form: 

 

𝐴𝑖 =
𝜃𝑖𝐷𝑖

ℎ2 +
𝜃𝑖𝑣𝑖

ℎ
, 𝐵𝑖 =

𝜃𝑖

𝜏
+

2𝜃𝑖𝐷𝑖

ℎ2 +
𝜃𝑖𝑣𝑖

ℎ
+ 𝛼, 

𝐸𝑖 =
𝜃𝑖𝐷𝑖

ℎ2 , 𝐺𝑖 = 𝛼, 

(𝐹𝑖)𝑙
𝑗

=
𝜌

𝜏
((𝑆𝑏𝑖)𝑙

𝑗
− (𝑆𝑏𝑖)𝑙

𝑗+1
) +

𝜌

𝜏
((𝑆𝑑𝑖)𝑙

𝑗
− (𝑆𝑑𝑖)𝑙

𝑗+1
) +

𝜃

𝜏
(𝐶𝑖)𝑙

𝑗
, 

(𝑖 = 1,2). 
 

For (𝐶𝑖)𝑙
𝑗+1

, 𝑖 = 1,2  a system of nonlinear algebraic 

equations is obtained: 

 

𝐴𝑖(𝐶𝑖)𝑙−1
𝑗+1

− 𝐵𝑖(𝐶𝑖)𝑙
𝑗+1

+ 𝐸𝑖(𝐶𝑖)𝑙+1
𝑗+1

+ 𝐾𝑖(𝐶𝑖
𝑛)𝑙

𝑗+1

+ 𝐺𝑖(𝐶𝑛)𝑙
𝑗+1

= −(𝐹𝑖)𝑙
𝑗
, 

𝑙 = 1, 𝐿 − 1, 𝑗 = 0, 𝐽 − 1, 

(29) 

 

where, 𝐴𝑖 , 𝐵𝑖 , 𝐸𝑖 , 𝐺𝑖 remain unchanged, i.e. as in Eq. (22), and 

 

𝐾𝑖 =
𝜏𝜃𝑖

𝜌
(

𝑘𝑎𝑖

1 + 𝜏𝑘𝑎𝑑𝑖

+
𝑘𝑠𝑖

1 + 𝜏𝑘𝑠𝑑𝑖

), 

(𝐹𝑖)𝑙
𝑗

=
𝜌

𝜏
((1 − 𝑝𝑖1)(𝑆𝑏𝑖)𝑙

𝑗
+ (1 − 𝑞𝑖1)(𝑆𝑑𝑖)𝑙

𝑗
) +

𝜃

𝜏
(𝐶𝑖)𝑙

𝑗
, 

(𝑙 = 1,2). 
 

The iterative scheme for (29) is constructed as follows: 

 

𝐴1( 𝐶1

(𝑘+1)

)𝑙−1
𝑗+1

− 𝐵1( 𝐶1

(𝑘+1)

)𝑙
𝑗+1

+ 𝐸1( 𝐶1

(𝑘+1)

)𝑙+1
𝑗+1

= −𝐾1(𝐶1
𝑛

(𝑘)

)𝑙
𝑗+1

− 𝐺1(𝐶2

(𝑘)

)𝑙
𝑗+1

− (𝐹1)𝑙
𝑗
, 

(30) 

 

𝐴2( 𝐶2

(𝑘+1)

)𝑙−1
𝑗+1

− 𝐵2( 𝐶2

(𝑘+1)

)𝑙
𝑗+1

+ 𝐸2( 𝐶2

(𝑘+1)

)𝑙+1
𝑗+1

= −𝐾2(𝐶2
𝑛

(𝑘)

)𝑙
𝑗+1

− 𝐺2( 𝐶1

(𝑘+1)

)𝑙
𝑗+1

− (𝐹2)𝑙
𝑗
, 

(31) 

 

In the k+1 iteration layer, the systems represented by Eqs. 

(30) and (31) are linear and are effectively addressed using the 

Thomas’ algorithm. The stability criteria for the Thomas’ 

algorithm are duly met. 

As an initial iterative approximation, we can take (𝐶𝑖)𝑙
𝑗
, 𝑖 =

1,2.  Note that in the Scheme II, the presence of the mass 

transfer term 𝛼(𝐶𝑛 − 𝐶𝑖) plays a positive role in ensuring the 

stability conditions for the Thomas’ algorithm when solving 

systems (23), (24), (30), (31). The scheme of calculating 

solutions is similar to that for Eqs. (20)-(24). First, from (30), 

(31), we determine (𝐶𝑖)𝑙
𝑗+1

, 𝑖 = 1,2.  Then (𝑆𝑏𝑖)𝑙
𝑗+1

, 

(𝑆𝑑𝑖)𝑙
𝑗+1

, 𝑖 = 1,2 from equations similar to Eqs. (20), (21) with 

coefficients 𝑝𝑖1, 𝑞𝑖1 and Eq. (28). 

 

 

4. NUMERICAL CALCULATIONS 

 

Computations were conducted employing the specified 

initial parameter values in accordance with the numerical 

solution outlined above. 

𝑣1 = 10−4m/s , 𝑣2 = 10−5m/s , 𝐷1 = 𝑣1 ⋅ 𝛽 , 𝐷2 = 𝑣2 ⋅ 𝛽 , 

𝛽 = 0,005𝑚, 𝜃1 = 0,1, 𝜃2 = 0,4, 𝑘𝑎1 = 3 ⋅ 10−4𝑠−1, 𝑘𝑎2 =
4 ⋅ 10−4𝑠−1,  𝑘𝑠1 = 4 ⋅ 10−4𝑠−1,  𝑘𝑠2 = 5 ⋅ 10−4𝑠−1,  𝜌 =
1800kg/m3, 𝑐0 = 0,1 and several values of 𝑘𝑎𝑑𝑙 , 𝑘𝑠𝑑𝑙  and 𝛼. 

The following grid steps are taken ℎ = 0,01𝑚, 𝜏 = 0,5𝑠. 

Figures 2-4 depict the outcomes associated with Case 2. In 

Figure 2, it illustrates the reduction in the indicator n from 

unity, while holding the remaining parameters constant, 

resulting in a deceleration of the development of profiles for 

suspended particle concentrations. In this scenario, the 
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concentration of deposited particles exhibits an accelerated 

evolution (Figures 3 and 4). To put it differently, a decrease in 

the 𝑛  indicator, with the other model parameters remaining 

constant, leads to an enhancement in the particle deposition in 

both regions. Consequently, there is a delay in the distribution 

of particle concentrations in the mobile fluid of both zones. 

Comparable outcomes were achieved through the utilization 

of Scheme II. Without presenting the comprehensive set of 

results, we will provide comparative visual representations for 

a single instance (Figure 5), denoting the concentrations 

calculated by Scheme II as �̄�𝑖 , 𝑖 = 1,2. Examining the figures 

reveals the primary distinction in solutions is particularly 

noticeable for i=2, corresponding to 𝐶2. Notably, Scheme II 

yields underestimated values for 𝐶2. Meanwhile, the values for 

𝐶1  and �̄�1  closely align across the entire range of 

concentration variations along the x-coordinate at a given time. 

The devised iterative schemes exhibit favorable 

convergence. Achieving a solution with the precision of 𝜀 =
10−4  proved to be satisfactory with a completion of 8-10 

iterations for Eqs. (23) and (24), and 28-30 iterations for Eqs. 

(30) and (31). 

 

 
 

 
 

Figure 2. Concentration profiles Ci at t=1800s,  

α=10-5s-1, 𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅ 10−4𝑠−1, 
 𝑘𝑠𝑑1 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1  

Note: …… n=0,8, ----- n=0,9, —— n=1,0 

 

To attain a more elaborate presentation of outcomes for both 

strategies, namely Scheme I and Scheme II, the subsequent 

values were computed: 

 

𝛿𝑖𝑠 = |𝐶𝑖 − �̄�𝑖|, 𝛿𝑖𝑆𝑎 = |𝑆𝑏𝑖 − �̄�𝑏𝑖|, 
𝛿𝑖𝑆𝑠 = |𝑆𝑑𝑖 − �̄�𝑑𝑖|, 𝑖 = 1,2, 

 

where, �̄�𝑏𝑖 , �̄�𝑑𝑖  represent the values of 𝑆𝑏𝑖 and 𝑆𝑑𝑖  obtained in 

accordance with Scheme II, respectively. 

 
 

 
 

Figure 3. Concentration profiles 𝑆𝑏𝑖  at t=1800s 

α=10-5s-1, 𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅ 10−4𝑠−1, 
 𝑘𝑠𝑑1 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1  

Note: …… n=0,8, ----- n=0,9, —— n=1,0 

 

 

 
 

Figure 4. Concentration profiles 𝑆𝑑𝑖 , i=1; 2, at t=1800s 

α=10-5s-1, 𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅ 10−4𝑠−1, 
 𝑘𝑠𝑑1 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1  

Note: …… n=0,8, ----- n=0,9, —— n=1,0 
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Figure 5. Concentration profiles 𝐶𝑖 (Scheme I) and 

�̄�𝑖 (Scheme II) at α=10-5s-1, 𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅
10−4𝑠−1, 𝑘𝑠𝑑1 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1  

𝑡 = 1800𝑠, 𝑛 = 0,8, 𝑙 = 1,2 

 

 

 

 

 
 

 

 
 

Figure 6. Surfaces 𝛿1𝑐 (а), 𝛿2𝑐 (b), 𝛿1𝑆𝑎 (c), 𝛿2𝑆𝑎 (d), 𝛿1𝑆𝑠 

(e), 𝛿2𝑆𝑠 (f) при 𝑛 = 1, α=10-5s-1,  

𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑1 = 2 ⋅
10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1 

 

Figures 6 and 7 illustrate some representative surfaces, 

namely 𝛿𝑖𝑐 , 𝛿𝑖𝑆𝑎, 𝛿𝑖𝑆𝑠, 𝑖 = 1,2 . These surfaces reveal 

discernible maxima in their dependencies on both 𝑥, and 𝑡 . 

Notably, the absolute disparities between the solutions for 𝑆𝑏𝑖 

and 𝑆𝑑𝑖  are negligible. Substantial distinctions in outcomes are 

solely observed for 𝐶𝑖(𝑡, 𝑥), 𝑖 = 1,2.  The computations 

indicate that 𝛿𝑖𝑐  can attain maximum values up to 0.0015 

(Figure 7), which is notably significant. In essence, both 

schemes yield closely aligned results, and the observed 

discrepancies in solutions can be deemed acceptable. 
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Figure 7. Surfaces 𝛿1𝑐 (а), 𝛿2𝑐 (b), 𝛿1𝑆𝑎 (c), 𝛿2𝑆𝑎 (d), 𝛿1𝑆𝑠 

(e), 𝛿2𝑆𝑠 (f) at 𝑛 = 0,8, 

α=10-5s-1, 𝑘𝑎𝑑1 = 2,5 ⋅ 10−4𝑠−1, 𝑘𝑎𝑑2 = 2 ⋅ 10−4𝑠−1 

 𝑘𝑠𝑑1 = 2 ⋅ 10−4𝑠−1, 𝑘𝑠𝑑2 = 10−4𝑠−1  

To form a judgment regarding the comparative merits of 

Scheme I and Scheme II, conducting test computations for a 

problem featuring a known exact solution is imperative. The 

numerical solutions should then be juxtaposed with the exact 

solution. In this context, a preliminary evaluation of Scheme 

II can be provided, guided by the overarching inclination 

favoring implicit schemes over explicit ones, even though, 

computationally speaking, Scheme II is relatively more 

resource-intensive. 

As noted above, the deposition of particles in the pores 

changes the structure of the pore space and, as a consequence, 

the porosity and permeability of the medium. The model needs 

to be improved to account for these phenomena. In this case, 

you can use the approaches [16-19].  

 

 

5. CONCLUSIONS 

 

In this paper, a model of solid particle transport in a two-

zone porous medium is generalized. In this case, there are two 

sections with significantly different particle settling 

characteristics in each section. Here the sedimentation of 

particles in both parts of the zones is assumed to be reversed 

and the process is expressed by kinetic equations. Two 

different schemes were used to solve the generalized model 

numerically. The solutions obtained using this model were 

analyzed. 

In nonlinear kinetics, it is shown that the particle settling 

increases when the index decreases to one, without changing 

the other parameters. As a result, there is a delay in the 

development of the particle concentration distribution in the 

mobile fluid. As further step in this work, we determined some 

parameters of the model used here by solving the inverse 

problems. In addition, it was necessary to study the possibility 

of replacing the bicontinuum considered here with a 

monocontinuum and such work was carried out [13, 20]. 
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