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The novel class of composite materials known as polyethylene-carbon nanotube 

composites (PECNTs) has attracted significant interest from scientists. In this study, 

authors investigated how artificial intelligence (AI) is employed to calculate the elastic 

modulus of PECNTs. For the first time, an AI-based modeling methodology replaces 

nanoindentation techniques like depth sensing indentation (DSI). This study highlights 

the complexities inherent in traditional methods, where the proposed methodology 

utilizes a gene expression programming (GEP) model, addressing challenges associated 

with accuracy in PECNT simulation. The proposed AI model test uses 135 input/output 

data pairs taken from the literature and randomly split into 82 training and 53 testing 

sets. The elastic modulus (EM) whichever dynamic E′ or quasi-static E) employs as an 

output factor in the models created, with the method of analysis, matrix type, processing 

technique, nanofiller type, and its content serving as inputs. Though the modeling 

progression is complete with results from the training and testing sets, the nanometer 

sensitivity of the prominent designs of the AI model displayed significant promise for 

the effective application of artificial intelligence methods in measuring the elastic 

modulus of PECNTs through non-destructive testing. 
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1. INTRODUCTION

Depth sensing indentation (DSI) stands out as an essential 

mechanical method for material characterization [1]. The 

dynamic surface indentation (DSI) technique meticulously 

measures and records the depths of indentation and retraction 

of a penetrator while applying and removing a load on a 

standard material [2, 3]. The approach known as 

"nanoindentation" leverages DSI at a penetration depth of just 

a few microns [4, 5]. The DSI testing process involves distinct 

phases: loading, holding, and unloading, as illustrated (Figure 

1). The analysis of the load-depth curve is carried out using 

elastic contact principles [6]. Estimating the quasi-static 

elastic modulus E is feasible due to the linear elastic behavior 

at the beginning of the unloading phase [7-9]. Instrumented 

indentation, by applying minimal focused deformation, 

facilitates the study of the material's mechanical properties 

[10]. Although limited research systems exist, particularly 

those with highly restricted parameters, can be beneficial, as 

in the case of thin films and coatings [11, 12]. However, DSI 

goes beyond by offering the capability to spatially resolve 

mechanical characteristics in heterogeneous materials, 

providing additional benefits, as seen in the case of 

polyethylene nanocomposites. 

The incorporation of nanofillers into polyethylene materials 

yields a significant advantage in optical, electrical, mechanical, 

thermal, and fire-retardant qualities [13, 14]. These properties 

make such materials particularly useful in sectors such as 

electronics, automobiles, and aviation. Specifically, carbon 

nanotubes (CNTs) have attracted considerable interest as a 

potentially optimal nanofiller for polyethylene due to their 

exceptional electrical and mechanical characteristics [15, 16]. 

In this context, depth-sensing indentation emerges as the 

method of choice for evaluating the mechanical factors of 

polyethylene materials, thanks to its higher signal accuracy 

and examination of reduced material volumes [17-19]. 

However, to further optimize its utility, it is essential to 

emphasize the need for a smoother transition in the narrative, 

especially when transitioning from the discussion of DSI to 

exploring the potential of carbon nanotubes in polyethylene 

composites [20]. This improvement in narrative coherence and 

flow will help effectively contextualize the importance of 

artificial intelligence (AI) in enhancing the current limitations 

of DSI, providing a clearer and more comprehensive view of 

the presented research [21, 22]. 

Mechanical and physical characteristics of material are 

evaluated with the help of several AI-based methods, such as 

ANN and GEP [23, 24]. For many GEP models, projecting 

forward from current conditions is the ultimate goal [25, 26]. 

It's essential to consider the impact of input and output 

variables and product quality early in the process planning 

phase [27-29]. 
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The GEP has several benefits but infrequently engages in 

the pitch of science materials [30, 31]. Applications of GEP in 

materials engineering range from predicting the synthesis time 

of materials to modeling binding strength in polyethylene to 

simulating the hardness of nanocomposites. The current work 

showed polyethylene-carbon nanotube composites' elastic 

module properties using GEP (PECNTs) [32]. The term 

"nanoindentation" has never before applying to a simulation 

[33, 34]. Across a suitable scope, this study introduced a safe 

approach to ascertain the elastic modulus (quasi-static) of 

polyethylene-carbon nanotube composites. The model 

outcomes suggest that the proposed method could serve as a 

viable substitute for the depth sensing indentation technique. 

 

 
 

Figure 1. The load exerted on a semi-crystalline PEEK 

specimen versus indentation depth (degree of crystallinity of 

40%) 

 

 

2. METHODS AND MATERIALS 

 

2.1 AI in properties of composite materials 

 

Recent progress in the use of artificial intelligence (AI) 

techniques has highlighted the significance of traditional 

machine learning (ML) and deep learning (DL) approaches for 

the prediction of composite materials' mechanical properties. 

These approaches have been effectively used to predict critical 

mechanical properties accurately. However, their success 

largely hinges on data availability and the efficiency of the 

learning models [35]. The performance of composite materials 

can be greatly affected by their microstructure and 

composition. While most existing techniques focus on 

predicting properties based on either microstructure or 

material components, there is often a lack of comprehensive 

data utilization. This challenge has prompted the creation of a 

new multimodal material performance prediction model that 

incorporates a network for extracting features from material 

microstructures [36].  

 

2.2 Analysis of method 

 

The elastic modulus derived from the methods often used to 

interpret load-depth data from DSI is highly accurate. In this 

work, authors have included the most crucial of these 

approaches as input parameters in the model—the model 

developed by Oliver and Pharr. Following the above 

inspections and measurements, a plot of applying load vs. 

penetration depth attain from a rough force curve. The 

following equation describes the relationship between the 

methodology, reduced modulus (Er), contact stiffness (S) as 

well as the predicted contact area (A):  

 

𝐸𝑟 =
√𝜋

2𝛽

𝑆

√𝐴
 (1) 

 

where, 
 

1

𝐸𝑟
=
(1 − 𝑣2)

𝐸
+
(1 − 𝑣𝑖

2)

𝐸𝑖
 (2) 

 

𝐸: elastic modulus f the material 

𝑣: Poisson's ratio of the material  

𝐸𝑖: indenter of elastic modulus 

𝑣𝑖: indenter of Poisson's ratio 

The Oliver and Pharr method overestimates the contact area 

and underestimates the modulus of elasticity when used to 

pileup materials (where the pile-up is constrained) [37]. 

 

2.3 Dynamic strategy 

 

As an alternate method for investigating the time-dependent 

behavior of polyethylene, dynamic indentation testing (or 

continuous stiffness measurements, CSM) offers exact results. 

During a dynamic indentation test, the quasi-static loading 

profile encloses an additional cycle (sinusoidal oscillation). 

Throughout the tests, the contact stiffness determines by 

measuring the amplitude of load, displacement, and phase lag 

among them. During a dynamic test, stiffness is a constant. 

The Hertz contact model is employed to illustrate the storage 

modulus (E') and loss modulus (E"), determined by the ratio 

of the applied force to the adhesion force [38]. This technique 

called nano dynamic mechanical analysis (nano DMA), has 

recently been brought to the marketplace. Specifically, the 

complex modulus of a viscoelastic material is: 
 

𝐸∗ = 𝐸′ + 𝑖𝐸′′ (3) 
 

whereas, 
 

𝐸′ = 𝐸cos⁡ 𝛿 (4) 
 

and, 
 

𝐸′′ = 𝐸sin⁡ 𝛿 (5) 
 

𝛿: phase shifts among the complex 

𝐸: standard quasi-static modulus 

There is no distinction between quasi-static and dynamic 

indentation moduli in the DSI literature.  
 

2.4 Polyethylene-carbon nanotube composites 
 

Carbon nanotubes are one of the most valuable nanofillers 

(CNT) to enhance polyethylene matrix. CNTs split into two 

distinct varieties. The initial type, known as single-walled 

carbon nanotubes (SWCNTs), consists of a single graphene 

sheet wrapped into a cylindrical tube with a diameter ranging 

from 0.7 to 3 nm. Figure 2 depicts a multi-walled carbon 

nanotube (MWCNT), which consists of more than two coaxial 

cylinders made from single sheets and has a diameter ranging 

from 2 to 40 nm. CNTs produced through diverse techniques 

such as arc discharge, laser ablation, and chemical vapor 
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deposition, hydrothermal synthesis, electrolysis, and the solar 

process [39, 40]. The results of these multiple approaches vary 

significantly in terms of their purity and quality. Therefore, the 

"nanofiller type" can be employed as a second model 

parameter.  

 

 
 

Figure 2. Transmission electron microscopic of carbon 

nanotubes 

 

Nanocomposites created by combining polyethylene and 

carbon nanotubes. To complete the process, the model needs 

to consider the production process for polyethylene-carbon 

nanotube composites [41, 42]. One of the biggest challenges 

in developing and using filled polyethylene is getting a 

uniform distribution of Carbon Nanotubes in the matrix by 

eliminating the Vander Waals interface among the individual 

tubes [43, 44]. Due to their high aspect ratio and non-

Brownian nature, CNTs are not distributed uniformly in a 

polyethylene matrix. The reinforcing CNTs' inability to 

transfer loads efficiently across the CNT/matrix interface is 

mixed because they are passive and can only contact the 

matrix around them through van der Waals forces. Various 

methods, such as mechanical dispersion techniques like 

ultrasonication, ball-milling, plasma treatment, and chemical 

modification, are employed to address these two challenges. 

Pulverization, densification, and coagulant spinning are 

projects for preparing polyethylene/CNT nanocomposites. 

Milling; Melt blending; in situ polyethyleneization; and latex 

technology.  

 

2.5 Gene expression programming theory 

 

Genetic programming (GP), which draws inspiration from 

Darwin's idea of natural selection, is a rapidly expanding 

subfield of evolutionary algorithms [45]. It is a subfield of 

supervised machine learning that examines existing code 

instead of looking at data. 

GP used the following three methods for developing 

software that solves problems:  

(1). Repeat the following stage still the final condition 

attains. 

(2). Create a random sample of computer programs with the 

problem's primitive functions and terminals.  

a) Run each stubborn population to attain a fitness portion 

that indicates the quality in which the software solves 

the problem. 

b) Generate a fresh set of programs by applying the 

following fundamental manipulations to a subset of the 

original location of programs with selection 

probabilities determined by fitness. 

(i) Reproduce: implement a previously tested method in the 

new population. 

(ii) New software develops by combining existing 

programs or "crossing them over," as the linguists.  

(iii) It is possible to generate novel software through 

mutation.  

(iv) Select a program for which would like to perform an 

operation that would change its underlying architecture.  

(3). The best database from the population created 

throughout the run is identified as the product of genetic 

programming. 

 

 
 

Figure 3. Expression tree and accompanying mathematical 

equation for a chromosome containing two genes 

 

Evolutionary algorithms based on populations are called 

gene expression programming (GEP). People in GEP view 

them as either non-linear entities of varying sizes and forms or 

linear strings of a constant length (genome). Authors refer to 

these things as "expression trees" (ETs) [46, 47]. Each person 

has a single chromosome, and each gene on any given 

chromosome divides between the chromosome's head and tail. 

Genetic expression transcripts (ETs) are selected based on 

their fitness value to produce offspring. 

Consider the algebraic statement [(𝑏 × 𝑎) − 𝑐)] +

√(𝑑 − 𝑒)]. Figure 3 shows that a language with a linguistic 

basis in ETs classified as having either a chromosome with 

only two genes or an ET. 

 

2.6 AI model 

 

Gene expression programming (GEP) theory represents a 

powerful methodology in the field of artificial intelligence. 

This theory is based on principles inspired by genetics and 

evolution to create robust predictive models. In the design of 

a model using GEP, genetic program structures are employed 

that evolve and adapt over time. These programs, expressed in 

the form of expression trees, capture the complexity of genetic 

interactions and allow for modeling complex phenomena. 

GEP theory has been successfully used in predicting the 

mechanical properties of composite materials, highlighting its 
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ability to address complex problems and extract meaningful 

patterns from data. 

 

2.7 Data selection  

 

Table 1 presents the compiled information from the 

preceding works. In this investigation, a Gene Expression 

Programming (GEP) model was employed to predict the 

elastic modulus of polyethylene-CNT composites, serving as 

the primary objective or cost function [48]. The possible 

values for the input factors are listed in Table 2. Further details 

regarding the results shown in Table 1 can be found in Table 

3. For instance, "Raw MWCNTs" would be listed as the first 

option under "nanofiller type" (1). 

 
Table 1. The collected data serves as input and target for training and testing sets obtained from previous studies 

 

Matrix Type Kinds of Nanofi Processing Techni 
Content of Nanofiller 

(wt%) 
Analysis Method DSI Modul US (GPa) Ref. 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

1 

1 

1 

1 

1 

1 

9 

9 

9 

9 

9 

9 

2 

2 

2 

2 

1 

1 

1 

1 

2 

2 

2 

2 

2 

1 

1 

4 

4 

4 

5 

5 

6 

6 

7 

8 

8 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

11 

11 

11 

12 

12 

12 

12 

13 

14 

14 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

4 

4 

4 

5 

5 

3 

3 

3 

5 

5 

5 

5 

3 

6 

6 

6 

6 

6 

6 

7 

7 

8 

9 

9 

9 

9 

10 

10 

10 

2 

2 

2 

2 

11 

12 

12 

0 

0.25 

0.75 

0 

0.25 

0.75 

0 

0.1 

0.5 

1 

3 

5 

0 

0.1 

0 

3 

0 

0.1 

0.5 

1 

0 

5 

0 

1 

2 

0 

1 

0 

5 

5 

0 

1 

0 

1 

0 

0 

1 

3 

0 

1 

3 

0 

0.5 

0 

0.75 

5.5 

14.2 

14.2 

0 

0.75 

3 

0 

1 

3 

5 

0 

0 

1 

1 

1 

1 

1 

1 

1 

3 

3 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

2 

2 

2 

2 

2 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1.81 

2.2 

2.6 

2.2 

2.5 

2.05 

3.9 

3.78 

3.98 

4.06 

4.25 

4.56 

4.22 

4.7 

4.53 

4.75 

3.16 

3.19 

3.35 

3.44 

3.7 

7.4 

2.26 

3.1 

3.64 

3 

3 

3.7 

7.55 

4.25 

3 

3 

3 

3 

4.22 

4 

4.4 

5.6 

4 

5 

5.9 

3.6 

4 

3.6 

4.8 

4.9 

6 

8.8 

4.8 

4.6 

5.1 

4.9 

5.6 

6 

7 

2.23 

5.66 

7.62 

[1] 

[1] 

[1] 

[1] 

[1] 

[2, 7] 

[1] 

[7] 

[1] 

[7] 

[1] 

[7] 

[1] 

[7] 

[1] 

[7] 

[13, 48] 

[13, 48] 

[36] 

[36] 

[32] 

[32] 

[32] 

[16] 

[16] 

[27, 28] 

[27, 28] 

[27, 28] 

[27, 28] 

[27, 28] 

[27, 28] 

[27, 28] 

[27, 28] 

[24] 

[24] 

[24] 

[24] 

[11] 

[12] 

[18] 

[18] 

[18] 

[18] 

[18] 

[18] 

[26] 

[26, 31] 

[43] 

[43] 

[43] 

[43] 

[43] 

[43] 

[43] 

[33] 

[33] 

[33] 

[33] 
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3 

4 

4 

4 

4 

5 

5 

5 

6 

6 

6 

6 

6 

6 

6 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 

8 

8 

8 

8 

8 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

10 

10 

11 

11 

11 

11 

11 

11 

11 

12 

12 

12 

12 

13 

13 

14 

14 

14 

14 

14 

15 

15 

16 

16 

16 

16 

16 

16 

14 

15 

15 

15 

15 

14 

14 

14 

1 

1 

1 

1 

1 

1 

1 

16 

16 

16 

16 

17 

17 

17 

17 

17 

18 

18 

18 

18 

18 

18 

1 

1 

19 

19 

19 

19 

17 

17 

17 

17 

17 

17 

17 

1 

1 

20 

20 

20 

21 

21 

21 

21 

22 

22 

23 

23 

1 

1 

2 

2 

2 

2 

2 

24 

24 

20 

20 

20 

20 

20 

20 

12 

13 

13 

13 

13 

12 

12 

12 

14 

14 

14 

14 

14 

14 

14 

15 

15 

15 

15 

16 

16 

16 

16 

16 

17 

17 

17 

17 

17 

17 

18 

18 

13 

13 

13 

13 

19 

19 

19 

19 

19 

19 

19 

20 

20 

21 

21 

21 

12 

12 

12 

12 

22 

22 

22 

22 

23 

23 

24 

24 

24 

24 

24 

25 

25 

21 

21 

21 

21 

21 

21 

10 

0 

0.1 

0.2 

0.5 

0 

1 

10 

0 

0.4 

1 

1.3 

1.6 

2.2 

2.4 

0 

0.2 

0.5 

1 

0 

1 

2.5 

5 

7.5 

0 

1.25 

2.5 

3.75 

5 

6.25 

0 

0.5 

0 

0.05 

0.1 

0.2 

0 

0.5 

1 

1.5 

2 

2.5 

5 

0 

0.3 

0 

0.25 

0.5 

0 

0.2 

0.4 

0.6 

0 

1 

0 

1 

0 

4 

0 

2 

4 

6 

15 

0 

0.5 

0 

0.5 

1 

2 

4 

8 

2 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

2 

2 

2 

2 

2 

2 

2 

3 

3 

1 

1 

1 

1 

1 

1 

11.74 

2.3 

2.6 

3.15 

3.5 

0.12 

0.15 

0.53 

1.45 

2.22 

2.23 

1.58 

2.64 

2.02 

2 

1.18 

1.33 

1.6 

2.02 

0.95 

1.56 

2.14 

2.38 

2.66 

3.6 

4.4 

5.8 

6.6 

7.5 

7.8 

2.02 

2.23 

2.75 

3.1 

4.26 

4.35 

0.617 

0.728 

0.808 

0.925 

1.67 

1.75 

1.89 

0.26 

0.31 

7 

9.4 

10.4 

0.66 

6.93 

7.3 

7.8 

3.9 

4.25 

3.9 

4.6 

0.0067 

0.0089 

4 

4.2 

4.4 

4.5 

5.2 

5.23 

8.41 

2 

2.24 

3.1 

2.56 

2.96 

6 

[34] 

[46] 

[46] 

[46] 

[41] 

[46] 

[46] 

[46] 

[46] 

[46] 

[46] 

[14] 

[14] 

[14] 

[14] 

[14] 

[14] 

[14] 

[20] 

[20] 

[20] 

[20] 

[23] 

[23] 

[23] 

[23] 

[23] 

[39] 

[39] 

[39] 

[39] 

[39] 

[41, 42] 

[38] 

[46] 

[46] 

[46] 

[46] 

[41] 

[41] 

[41] 

[41] 

[41] 

[41] 

[41] 

[24] 

[29] 

[29] 

[29] 

[29] 

[33] 

[33] 

[33] 

[33] 

[23] 

[23] 

[23] 

[23] 

[23] 

[23] 

[18] 

[18] 

[18] 

[18] 

[18] 

[44] 

[44] 

[29] 

[29] 

[29] 

[29] 

1164



 

17 

17 

17 

17 

17 

17 

25 

25 

25 

25 

25 

25 

26 

26 

26 

26 

26 

26 

0 

1 

3 

5 

2 

4 

2 

2 

2 

2 

2 

2 

3.6 

3.38 

3.67 

3.53 

3.48 

3.73 

[29] 

[29] 

[42, 44] 

[42, 44] 

[42, 44] 

[42] 

 

Table 2. The variety of input and output factors in the GEP model 

 
Input Output 

Nanofiller type 

Processing method 

Nanofiller content (wt %) 

Method of analysis 

Type of Matrix 

1-25 

1-26 

0-15 

1-3 

1-17 

 

Table 3. Methods and raw materials used in previous studies 

 

Symbol Matrix Type Nanofiller Type Processing Method 
Method of 

Analysis 

1 Epoxyacrylate Raw MWCNTs Sonication/mixing photocuring Non-available 

2 Epoxy CVD raw MWCNTs Sonication/mixing curing in the oven 

From 

unloading 

(OP) 

3 Poly(3-hydroxybutyrate) Raw CVD MWCNTs Stirring/ mixing curing in the oven Dynamic 

4 Chitosan 
Acid-functionalized CVD 

MWCNTs 
Stirring/ mixing curing in a hot press - 

5 Poly(3-hydroxyoctanoate) Fluorinated-SWCNTs Stirring/ mixing curing in the oven - 

6 Polypropylene Silane functionalized SWCNTs Solution mixing curing in the oven  

7 Polyamide-6 
Plasma functionalized CVD 

MWCNTs 

Mixing/ 

Curing 
 

8 Poly (L-lactic acid) 
MBZ functionalized Arc-

discharge SWCNTs 
In situ wetting/Realign/curing  

9 
Ultra-high molecular weight 

polyethylene 
Purified laser-grown SWCNTs 

Mechanical densification/capillary-

induced wet-ting/curing 
 

10 Polyvinylidene fluoride Aligned CVDMWCNT forests Shearmixing/curing  

11 Polyvinyl alcohol 
NT forests 

CVDMWCNT forests 
Curing  

12 Poly (ether ketone)/GF Coiled CVDCNTs Solution-casting  

13 Polydimenthylsiloxane CVDCNTs grafted silica fiber Solution mixing/casting  

14 PC RawSWCNTs 
In-situpolyethyleneization 

compression-molding 
 

15 
Polyimide; PLLA: poly  

(L-lactic acid) 
PEDOT-PSS functionalized Melt-bending/compression molding  

16 
Poly  

(9-vinyl carbazole) 
Acid purifiedCVDMWCNTs Solution mixing/electro spinnig  

17 Poly (methyl methacrylate) Acid-functionalized MWCNTs Sonication/solution-casting  

18  
Acid-purified Arc-discharge 

MWCNTs 
Milling/electrostatic spraying  

19  
Plasma functionalized Arc 

discharge SWCNTs 
Ball milling/compression molding  

20  Raw arc-discharge MWCNTs 
Near-field electrospinning 

Solution mixing 
 

21  
Acid functionalized Arc-

discharge SWCNTs 
  

22  Arc purified SWCNTs Melt-blending/ hot compression  

23  
PEES-wrapped Arc-purified 

SWCNTs 
Ultrasonication/curing  

24   Melt-extrusion  

25  Raw Arc-discharge SWCNTs Sonication/spin-coating  

26  
Amide-functionalized CVD 

MWCNTs 
Solution mixing/spin coating  

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Process parameters and GEP 

 

The initial step involves selecting the fitness function for the 

formulations based on gene expression programming (GEP). 

First, in Eq. (6), authors may determine the "fi" equation as 

follows: 
 

𝑓𝑖 = ∑𝑗=1
𝐶𝑖  (𝑀 − |𝐶(𝑖,𝑗) − 𝑇𝑗|) (6) 

1165



 

whereas, 

i is fitness case. 

C(i,j) is return value. 

j is out of CT. fitness cases. 

Tj is the target value to fitness case j. 

M is selection range. 

One benefit of these fitness functions is that allow the 

structure to discover the best course of action on its own. The 

GEP model comprises six input layers, namely the matrix type 

(d0), nanofiller type (d1), processing technique (d2), nanofiller 

content (d3), and method of analysis (d4). The output layer is 

characterized by the application of the elastic modulus (either 

quasi-static E or dynamic, E′). The models listed in Table 1 

incorporate a range of input parameters. 

Figure 4 shows the expression trees generated by the GEP 

method developed in this study for predicting the values of the 

elastic modulus (EM) of PECNTs. Within this diagram, d0, d1, 

d2, d3, and d4 correspond to the aforementioned input layers. 

Specifically, d0 represents the matrix type, d1 signifies the 

type of nanofiller, d2 denotes the processing method, d3 

indicates the nanofiller content, and d4 represents the analysis 

method. 

A total of 135 experimental sets became rid of the literature; 

82 selects for the training phase, and the remaining 53 sites 

went through their paces in the testing phase. Genetic 

evolution used the training data as its input. Elastic modulus 

was determined by evaluating GEP's best model against data 

not used in the initial model generation. The model with the 

highest EM on the practicing and experimenting value sets is 

selected based on these evaluations. 

 

 
 

Figure 4. Predicting the elastic modulus of PECNTs using an expression tree including five genes 
 

Table 4. Factors of the GEP approach model 
 

Factor Definition Values 

Gene transposition rate 

Chromosomes 

Weight of functions 

Head size 

Inversion rate 

Number of genes 

Linking function 

Gene recombination rate 

Mutation rate 

One-point recombination rate 

Two-point recombination rate 

Lower bound 

Upper bound 

Constants per gene 

0.1 

30 

7 

10 

0.1 

5 

Multiplication 

0.1 

0.044 

0.3 

0.3 

10 

10 

5 

 

All modeling methodologies strive to accurately predict the 

target parameter in the output layer, whether by maximizing 

the root mean square error (RMSE) or minimizing the absolute 

percentage error (MAPE). Only if four genes are employed, 

and the connecting function employs multiplication, will these 

conditions be satisfied (x). It reveals that 30 chromosomes 

were present in the most predictive cohort for the elastic 

module. The GEP values that determine for this study are in 

Table 4.  

As the second stage in chromosome construction, the 

pivotal task is to choose the set of terminals (T) and the set of 

functions (F). In this instance, the terminal set comprises the 

independent variables: Elastic modulus value = d0, d1, d2, d3, 

d4.  

Some elementary functions (ln, sin, cos, Arctan, Exp, 

√x2, x3,) and the four elementary operators (+), (-), (x), and (/) 

are measured because selecting the best function set can be 

challenging for modeling. For 𝑓𝑠, an explicit model based on 

the GEP technique was used to obtain a formulation.  

1166



 

𝐸𝑀𝑉 = 𝑓{𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4} (7) 

 

It is crucial to describe the principles for evaluating the 

results of the model, which are the model's performance and 

the accuracy of its predictions. The model's efficacy calculates 

across a variety of statistical scales. Comparing experimental 

(target) and predicted values, we employed criteria such as 

root-mean-squared error (RMSE), R-squared (R2), and mean 

absolute error (MAE). 

 

𝑀𝐴𝐸 =
1

𝑛
[
∑  𝑛
𝑖=1 |𝑡𝑖 − 𝑜𝑖|

∑  𝑛
𝑖=1 𝑡𝑖

] (8) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑡𝑖 − 𝑜𝑖)
2 (9) 

 

𝑅2 =
(𝑛∑𝑡𝑖𝑜𝑖 − ∑𝑡𝑖∑𝑜𝑖)

2

(𝑛∑𝑡𝑖
2 − (∑𝑡𝑖)

2)(𝑛∑𝑜𝑖
2 − (∑𝑜𝑖)

2)
 (10) 

 

whereas, (t, o, n) denotes the experimented range, the 

anticipated range, and the total no of data points, respectively. 

The Root means square statistic indicates how close the model 

results are to the experimental (target) results; a smaller value 

indicates an adjacent fit. If the Root Means Square statistical 

range is extensive, however, the outcome provided by the 

models diverges significantly from the experimented (target) 

values.  

Eq. (11) follows from Figure 4 and is related to the GEP 

model. 
 

𝐸𝑀𝑉 = (ln 2.1 + sin (
(𝑑4 × arctan 3.73)

√𝑑2
3

))𝑥 

√𝑑4 + (((𝑑0 + 1.11) × cos 𝑑0) + 𝑑0 − 1.11) 

sin(𝑙𝑛√𝑑3 + 𝑠𝑖𝑛10 𝑑0) cos
2 (𝑑3

3 − (√4.21 − 𝑑1
3 )

2
) 

(√𝑑2
3 − cos⁡((𝑑2 + arctan⁡ 3.29) − 𝑑0)) 

(11) 

 

Table 5. Evaluation of training and testing data statistically 
 

Statistics 
GEP Model 

Training Testing 

R2 

Minimizing the absolute 

Percentage error 

Root mean square error 

0.99 

0.43 

 

0.31 

0.95 

0.76 

 

0.69 
 

Training and testing outcomes of the GEP model, along 

with the results of experimental studies, are depicted in Figure 

5(a) and (b) respectively. These figures showcase the linear 

least square fit line, its computation, and the corresponding R2 

values for both datasets. During both the training and testing 

phases, these findings effectively forecast the elastic modulus 

values for polyethylene-CNT composites—Table 5 illustrates 

the R2, MAPE, and RMSE values for both the training and 

testing sets. The EM values of polyethylene-Carbon Nanotube 

composites forecasts with the suggested GEP model. They are 

near the experimental values, as shown by the complete R2, 

MAPE, and RMSE values.  

Results indicate that the modeling technique suggested in 

this project is a replacement for the Deep Sensing Indentation 

technique to calculate the elastic modulus of PECNTs with a 

high correlation to the experimental ones. 

 
(a) During training 

 
(b) During testing 

 

Figure 5. Comparing the accuracy of the GEP model’s 

predicted and observed values for elastic modules during (a) 

training and (b) testing 
 

3.2 Statistical analysis of the AI model's performance 
 

The statistical analysis of the performance of the artificial 

intelligence (AI) model, based on the data provided in Table 5, 

reveals outstanding results in both the training and testing sets. 

In the training set, the gene expression programming (GEP) 

model demonstrates an exceptionally high coefficient of 

determination (R2) of 0.99, indicating outstanding ability to 

explain variability in the data used during training. 

Additionally, it minimizes the absolute percentage error to a 

low value of 0.43, signaling significant accuracy in predictions. 

The root mean square error (RMSE) in the training set is 0.31, 

demonstrating a well-fitted adjustment to the training data. 

These results underscore the GEP model's ability to adapt and 

fit well to the data used for training. 

The R2 achieves a high value of 0.95, indicating that the 

model effectively generalizes to unseen data during training. 

The absolute percentage error in the testing set is 0.76, slightly 

higher than the training set but still acceptable, suggesting 

consistent accuracy in predicting previously unused data. The 

RMSE in the testing set remains low, with a value of 0.69, 

emphasizing the model's ability to effectively forecast in new 

observations. 
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3.3 Compare AI predictions with traditional methods 

 

In comparison to traditional methods used to simulate the 

behavior of polyethylene-carbon nanotube composites 

(PECNT), this research highlights the inherent complexity in 

such conventional approaches. The challenges associated with 

accuracy in simulating PECNT through traditional methods 

are addressed by the proposed method, employing a gene 

expression programming (GEP) model. The promising results 

of the GEP model in determining the elastic modulus (quasi-

static) of PECNT suggest that it could overcome limitations 

observed in traditional methods, providing a more precise and 

effective alternative to tackle the complexity of these 

compounds. The application of GEP, with its evolutionary 

approach, could represent a significant advancement in the 

simulation of composite materials, surpassing the inherent 

limitations of traditional methods. 

 

 

4. CONCLUSIONS 

 

Since polyethylene-carbon nanotube composites (PECNTs) 

are complicated, accurately simulating their behavior is 

challenging to model. This research establishes a reliable 

method for determining the elastic modulus (quasi-static) of 

PECNTs over the relevant range. After applying the proposed 

method, the model's accuracy demonstrates that it can be a 

viable alternative to the DSI approach. As the connecting 

function, multiplication employs the GEP model, five sub-

expression trees, thirty chromosomes, and a head size of ten. 

Based on the obtained data, it appears that GEP can serve as a 

viable alternative method for determining the EM values of 

PECNTs. The optimal values for R2, minimizing absolute 

percentage error, and root mean square error in the training set 

are 0.99, 0.43, and 0.31, respectively. In the testing set, these 

values are 0.95, 0.76, and 0.69. The GEP model demonstrates 

its ability to provide accurate predictions for the EM values of 

PECNTs in the measured data, as evidenced by the favorable 

comparisons of R2, MAPE, and root mean square error values. 

 

 

REFERENCES  

 

[1] Vinoth, A., Nirmal, K.N., Khedar, R., Datta, S. (2021). 

Optimizing the tribological properties of uhmwpe 

nanocomposites—An artificial intelligence based 

approach. In Trends in Mechanical and Biomedical 

Design: Select Proceedings of ICMechD 2019, 

Singapore, pp. 831-843. https://doi.org/10.1007/978-

981-15-4488-0_70 

[2] Vinoth, A., Datta, S. (2020). Design of the ultrahigh 

molecular weight polyethylene composites with multiple 

nanoparticles: An artificial intelligence approach. 

Journal of Composite Materials, 54(2): 179-192. 

https://doi.org/10.1177/0021998319859924 

[3] You, J., Qin, W., Feng, H., Huang, R., Shangguan, J. 

(2015). Dynamic performance evaluation of computing 

system based on gene expression programming theory. 

International Journal of Innovative Computing, 

Information and Control, 11(5): 1725-1738. 

https://doi.org/10.24507/ijicic.11.05.1725 

[4] You, J., Tian, S., Huang, R. (2015). Modeling the 

performance and determining the restart time of 

computing system based on gene expression 

programming theory. ICIC Express Letters. Part B, 

Applications: An International Journal of Research and 

Surveys, 6(6): 1607-1612. 

[5] Madhan Kumar, A., Jayakumar, K. (2022). Mechanical 

and drilling characterization of biodegradable PLA 

particulate green composites. Journal of the Chinese 

Institute of Engineers, 45(5): 437-452. 

https://doi.org/10.1080/02533839.2022.2061602 

[6] Luan, F., Cordeiro, M.N.D.S. (2012). Overview of 

QSAR modelling in rational drug design. Recent Trends 

on QSAR in the Pharmaceutical Perceptions. Bentham 

Science Publishers, 48: 194-241. 

https://doi.org/10.2174/978160805379711201010194 

[7] Eghbalian, M., Ansari, R., Haghighi, S. (2023). A 

combined molecular dynamics-finite element multiscale 

modeling to analyze the mechanical properties of 

randomly dispersed, chemisorbed carbon 

nanotubes/polymer nanocomposites. Mechanics of 

Advanced Materials and Structures, 30(24): 5159-5175. 

https://doi.org/10.1080/15376494.2022.2114038 

[8] Gürbüz, R., Sarac, B., Soprunyuk, V., Rezvan, A., Yüce, 

E., Schranz, W., Sarac, A.S. (2022). Carbon nanotube-

polybutadiene-poly (ethylene oxide)-based composite 

fibers: Role of cryogenic treatment on intrinsic properties. 

Polymers for Advanced Technologies, 33(12): 3966-

3976. https://doi.org/10.1002/pat.5828 

[9] Yu, H., Bi, M., Zhang, C., Zhang, T., Zhang, X., Liu, H., 

Yao, S. (2022). Construction of high sulfur loading 

electrode with functional binder of polyacrylic acid 

polymer grafted with polyethylene glycol for 

lithium/sulfur batteries. International Journal of Energy 

Research, 46(15): 24565-24577. 

https://doi.org/10.1002/er.8601 

[10] Alexander, R., Dinkar, A., Biswas, S., Dasgupta, K. 

(2021). Comparative study of different carbon 

reinforcements at different length scales on the properties 

of polyvinyl alcohol composites. Polymer Composites, 

42(9): 4239-4252. https://doi.org/10.1002/pc.26142 

[11] Mokoena, T.E., Mochane, M.J., Mokhena, T.C., 

Motloung, M.T., Sefadi, J.S. (2022). The effect of boron 

nitride, carbon nanotubes, and their synergy on the 

properties of LLDPE and LLDPE/wax blend. Polymer 

Engineering & Science, 62(10): 3180-3193. 

https://doi.org/10.1002/pen.26094 

[12] Sahu, S.K., Rama Sreekanth, P.S. (2022). Mechanical, 

thermal and rheological properties of thermoplastic 

polymer nanocomposite reinforced with nanodiamond, 

carbon nanotube and graphite nanoplatelets. Advances in 

Materials and Processing Technologies, 8: 2086-2096. 

https://doi.org/10.1080/2374068X.2022.2034309 

[13] Zhou, Z., Zhang, H., Qiu, J., Chen, P., Sun, W. (2022). 

Atomic insights into synergistic effect of pillared 

graphene by carbon nanotube on the mechanical 

properties of polymer nanocomposites. Nano Materials 

Science, 4(3): 235-243. 

https://doi.org/10.1016/j.nanoms.2021.07.002 

[14] Pundhir, N., Pathak, H., Zafar, S. (2022). 

Crashworthiness performance of HDPE-kenaf and 

HDPE-CNT composite structures. Advances in 

Materials and Processing Technologies, 8: 1070-1088. 

https://doi.org/10.1080/2374068X.2021.1927644 

[15] Abshirini, M., Saha, M.C., Altan, M.C., Liu, Y. (2022). 

3D printed flexible microscaled porous conductive 

polymer nanocomposites for piezoresistive sensing 

1168



 

applications. Advanced Materials Technologies, 7(9): 

2101555. https://doi.org/10.1002/admt.202101555 

[16] Qin, Y., Xu, D., Zhang, S., Fan, X. (2022). Dynamic 

behavior of carbon nanotubes and basalt fiber reinforced 

coral sand cement mortar at high strain rates. 

Construction and Building Materials, 340: 127396. 

https://doi.org/10.1016/j.conbuildmat.2022.127396 

[17] Bernardo, F., Bardon, J., Riche, A., Pelletier, H. (2022). 

Quasi-static and dynamic depth-sensing indentation 

measurements to characterize wear and mar resistance of 

coating–polymer systems. International Journal of 

Materials Research, 96(11): 1256-1261. 

https://doi.org/10.1515/ijmr-2005-0219 

[18] Ilie, N. (2021). Microstructural dependence of 

mechanical properties and their relationship in modern 

resin-based composite materials. Journal of dentistry, 

114: 103829. 

https://doi.org/10.1016/j.jdent.2021.103829 

[19] Kowalewska, A., Herc, A.S., Bojda, J., Nowacka, M., 

Svyntkivska, M., Piorkowska, E., Szymański, W. (2021). 

Phase structure and properties of ternary polylactide/poly 

(Methyl methacrylate)/polysilsesquioxane blends. 

Polymers, 13(7): 1033. 

https://doi.org/10.3390/polym13071033 

[20] Staudinger, U., Janke, A., Steinbach, C., Reuter, U., 

Ganß, M., Voigt, O. (2022). Influence of CNT length on 

dispersion, localization, and electrical percolation in a 

styrene-butadiene-based star block copolymer. Polymers, 

14(13): 2715. https://doi.org/10.3390/polym14132715 

[21] Ilie, N. (2021). Comparative analysis of static and 

viscoelastic mechanical behavior of different luting 

material categories after aging. Materials, 14(6): 1452. 

https://doi.org/10.3390/ma14061452 

[22] Slouf, M., Strachota, B., Strachota, A., Gajdosova, V., 

Bertschova, V., Nohava, J. (2020). Macro-, micro-and 

nanomechanical characterization of crosslinked 

polymers with very broad range of mechanical properties. 

Polymers, 12(12): 2951. 

https://doi.org/10.3390/polym12122951 

[23] Jayakumar, K., Mathew, J., Joseph, M.A. (2012). 

Analysis and prediction of end milling characteristics of 

Al-SiC p metal matrix composite using RSM and ANN. 

Journal for Manufacturing Science and Production, 12(2): 

105-110. https://doi.org/10.1515/jmsp-2012-0009 

[24] Pebdani, M.H., Sabetvand, R. (2022). Mechanical 

properties of carbon nanotube reinforced polyurethane 

matrix using computational method: A molecular 

dynamics study. Physica Scripta, 97(7): 075402. 

https://doi.org/10.1088/1402-4896/ac6cae 

[25] Mazánková, V., Sťahel, P., Matoušková, P., Brablec, A., 

Čech, J., Prokeš, L., Trunec, D. (2020). Atmospheric 

pressure plasma polymerized 2-Ethyl-2-oxazoline based 

thin films for biomedical purposes. Polymers, 12(11): 

2679. https://doi.org/10.3390/polym12112679 

[26] Campos, J.M., del Río, B., Lorenzo, V., Ania, F., Barros-

Timmons, A., Ribeiro, M.R. (2020). Improvement of 

viscoelastic, elastic and plastic properties of Poly (L-

lactide)/Graphene Oxide-Graft-Poly (L-lactide) 

nanocomposites by modulation of grafted chain length. 

Composites Science and Technology, 199: 108350. 

https://doi.org/10.1016/j.compscitech.2020.108350 

[27] Ania, F., Gómez-Fatou, M.A., Salavagione, H.J., 

Enrique-Jiménez, P., Quiles-Díaz, S., Flores, A. (2020). 

Creep behaviour of elastomeric nanocomposites by flat 

punch indentation: Influence of graphene modification 

and content. Composites Science and Technology, 198: 

108311. 

https://doi.org/10.1016/j.compscitech.2020.108311 

[28] Ovsik, M., Manas, M., Stanek, M., Dockal, A., Vanek, J., 

Mizera, A., Stoklasek, P. (2020). Polyamide surface 

layer nano-indentation and thermal properties modified 

by irradiation. Materials, 13(13): 2915. 

https://doi.org/10.3390/ma13132915 

[29] Ovsík, M., Staněk, M., Dočkal, A., Fluxa, P. (2020). 

Local nano-mechanical properties of cross-linked 

polybutylene. Acta Polytechnica CTU Proceedings, 27: 

112-115. https://doi.org/10.14311/APP.2020.27.0112 

[30] Xu, L., Li, Z., Lu, H., Qi, X., Dong, Y., Dai, H., Ni, Q. 

(2022). Electrothermally-driven elongating-contracting 

film actuators based on two-way shape memory carbon 

nanotube/ethylene-vinyl acetate composites. Advanced 

Materials Technologies, 7(7): 2101229. 

https://doi.org/10.1002/admt.202101229 

[31] Akar, A.O., Yildiz, U.H., Tirkes, S., Tayfun, U., 

Hacivelioglu, F. (2022). Influence of carbon nanotube 

inclusions to electrical, thermal, physical and mechanical 

behaviors of carbon-fiber-reinforced ABS composites. 

Carbon Letters, 32(4): 987-998. 

https://doi.org/10.1007/s42823-022-00332-y 

[32] Ovsik, M., Manas, M., Stanek, M., Dockal, A., Mizera, 

A., Fluxa, P., Bednarik, M., Adamek, M. (2020). Nano-

mechanical properties of surface layers of polyethylene 

modified by irradiation. Materials (Basel), 13(4): 929. 

https://doi.org/10.3390/ma13040929 

[33] Sravanthi K., Rao B.N., Mahesh V. (2022). Effect of 

thermal ageing temperature and time on the mechanical 

properties of CNT/GFRP composites. AIP Conference 

Proceedings, 2393(1): 020206. 

https://doi.org/10.1063/5.0074294 

[34] Lei, W.J., Gou, X.F. (2022). Effects of stone–wales 

defects of carbon nanotubes on the elastic properties of 

the carbon nanotube-polyethylene nanocomposite and its 

interface. Materials Research Express, 9(5): 055009. 

https://doi.org/10.1088/2053-1591/ac6ed0 

[35] Kibrete, F., Trzepieciński, T., Gebremedhen, H.S., 

Woldemichael, D.E. (2023). Artificial intelligence in 

predicting mechanical properties of composite materials. 

Journal of Composites Science, 7(9): 364. 

https://doi.org/10.3390/jcs7090364 

[36] Song, L., Wang, D., Liu, X., Yin, A., Long, Z. (2023). 

Prediction of mechanical properties of composite 

materials using multimodal fusion learning. Sensors and 

Actuators A: Physical, 358: 114433. 

https://doi.org/10.1016/j.sna.2023.114433 

[37] Ilcheva, V., Boev, V., Zamfirova, G., Gaydarov, V., 

Lilova, V., Petkova, T. (2020). Transparent organic-

inorganic hybrids obtained from covalently bonded 

ureasilicate monomers: Optical and mechanical 

properties. NATO Science for Peace and Security Series 

B: Physics and Biophysics, Dordrecht, pp. 59-65. 

https://doi.org/10.1007/978-94-024-2018-0_4 

[38] Afsharhashemkhani, S., Jamal, M., Tavakolian, M. 

(2022). A molecular dynamics study on the mechanical 

properties of defective CNT/epoxy nanocomposites 

using static and dynamic deformation approaches. 

International Polymer Processing, 37(2): 176-190. 

https://doi.org/10.1515/ipp-2021-4182 

[39] Sun, Z., Guo, F.L., Li, Y.Q., Hu, J.M., Liu, Q.X., Mo, 

1169



 

X.L., Huang, P., Fu, S.Y. (2022). Effects of carbon 

nanotube-polydopamine hybridization on the mechanical 

properties of short carbon fiber/polyetherimide 

composites. Composites Part B: Engineering, 236: 

109848. 

https://doi.org/10.1016/j.compositesb.2022.109848 

[40] Han, C.L., Zou, A.L., Wang, G.D., Li, N., Wang, M., 

Wei, L., Liu, X.L. (2022). The synergetic relation of 

flexural strain behaviors and electrical signals of carbon 

nanotube-based polymer laminates. European Physical 

Journal Plus, 137(4): 462. 

https://doi.org/10.1140/epjp/s13360-022-02641-7 

[41] Dockal, A., Ovsik, M., Fluxa, P., Stanek, M., Senkerik, 

V. (2020). Implementation of natural fillers in 

polyethylene and the resulting mechanical properties. 

Materiali Tehnologije, 54(3): 341-343. 

https://doi.org/10.17222/mit.2019.154 

[42] Mizera, A., Fiala, T., Manas, M., Stoklasek, P., Ovsik, M. 

(2020). Influence of injection moulding process 

parameters on high-density polyethylene surface 

hardness. Materials Science Forum, 994: 189-196. 

https://doi.org/10.4028/www.scientific.net/MSF.994.18

9  

[43] Kaboglu, C., Ferik, E. (2022). Effects of carbon 

nanotubes on mechanical behavior of fiber reinforced 

composite under static loading. Materials Testing, 64(2): 

294-302. https://doi.org/10.1515/mt-2021-2024 

[44] Farajian, J., Alipanahi, A., Mahboubkhah, M. (2022). 

Analyses of mechanical properties and morphological 

behavior of additively manufactured ABS polymer, 

ABS/PBT blend, and ABS/PBT/CNT nanocomposite 

parts. Journal of Thermoplastic Composite Materials, 

36(6): 2390-2411. 

https://doi.org/10.1177/08927057221092952 

[45] Sťahel, P., Mazánková, V., Tomečková, K., Matoušková, 

P., Brablec, A., Prokeš, L., Jurmanová, J., Buršíková, V., 

Přibyl, R., Lehocký, M., Petr Humpolíček, P., Ozaltin, K., 

Trunec, D. (2019). Atmospheric pressure plasma 

polymerized oxazoline-based thin films-antibacterial 

properties and cytocompatibility performance. Polymers 

(Basel), 11(12): 2069. 

https://doi.org/10.3390/polym11122069 

[46] Aly, K., Aboubakr, S.H., Bradford, P.D. (2022). One-

step fabrication of bulk nanocomposites reinforced by 

carbon nanotube array fragments. Polymer Composites, 

43(1): 94-110. https://doi.org/10.1002/pc.26359 

[47] Triolo, C., Cardile, G., Pisano, M., Conzatti, L., Utzeri, 

R., Stagnaro, P., Patane, S., Santangelo, S., Moraci, N. 

(2021). High-density polyethylene/carbon nanotubes 

composites: Investigation on the factors responsible for 

the fracture formation under tensile loading. Journal of 

Polymer Research, 28(12): 454. 

https://doi.org/10.1007/s10965-021-02807-4 

[48] Zhao, F., Chen, Y., Zhou, B., Li, Y., Xue, S. (2021). 

Modeling thermo-mechanical behaviors of carbon 

nanotube/polyurethane functionally graded shape 

memory polymer beam. Polymer Composites, 42(12): 

6785-6800. https://doi.org/10.1002/pc.26340  

1170




