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In agriculture, timely and accurate detection of plant diseases is essential to obtain healthy 

crop yields and ensure food security. However, detecting diseases in potato leaves is 

challenging because of the complex symptoms and variability in leaf appearances. This 

requires the development of an effective and efficient method that can overcome these 

challenges and improve disease detection accuracy. Utilizing the power of computer vision 

and deep learning, this paper presents a comprehensive study on potato leaf disease 

detection using a multi-architecture Convolutional Neural Networks (CNNs) approach. We 

evaluate five different CNN architectures: VGG16, VGG19, MobileNetV2, ResNet50, and 

AlexNet, to assess their classification capabilities. The research encompassed the dataset 

collection, data augmentation, model selection, hyperparameter tuning, and evaluation, 

leading to a rigorous analysis of detection accuracy, model convergence, and training 

efficiency. Our findings revealed that ResNet50 was the standout performer, achieving a 

remarkable 97% testing accuracy and 98% specificity. Conversely, the VGG19 architecture 

was the least effective. A consistent challenge across all models was accurately classifying 

categories of healthy leaves, indicating a potential area for model refinement. This study 

not only highlights the efficacy of deep learning in plant health diagnosis but also highlights 

the importance of specificity as an important metric in such tasks. The results of our study 

provide a promising avenue for real-time diagnosis of potato leaf diseases in the field, 

paving the way for healthier crops and increased agricultural productivity. 
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1. INTRODUCTION

Potato (Solanum tuberosum) is a widely cultivated crop that 

has significant economic value globally. Its ability to adapt to 

diverse climates and its high nutritional value make it an 

important food source for millions of people [1]. Potatoes are 

rich in carbohydrates, vitamins, and minerals and play an 

important role in a balanced diet [2]. In addition, potatoes are 

also a staple food in some regions, especially in developing 

countries where they contribute to food security and 

livelihoods. However, the threat posed by potato foliar 

diseases is a major challenge facing farmers and researchers. 

Potatoes are susceptible to various diseases caused by 

pathogens such as fungi, bacteria, and viruses [3]. These 

diseases manifest through symptoms such as leaf discoloration, 

wilting, necrosis, and deformation, which ultimately affect the 

overall health and productivity of the crop. The impact of these 

diseases on crop yields can be severe, including reduced yields, 

reduced quality, increased production costs, and food safety 

concerns. 

Detecting and treating potato leaf diseases at an early stage 

is crucial to maintaining crop vitality. Traditional methods of 

identifying diseases often involve manual inspection, which 

can be time-consuming, subjective, and prone to errors. 

The integration of advanced technologies and artificial 

intelligence has introduced innovative solutions. One such 

breakthrough technology is Convolutional Neural Networks 

(CNNs), which is revolutionizing the field of plant foliar 

disease detection. CNNs offer a transformative approach by 

harnessing the power of deep learning to improve the accuracy, 

efficiency, and scalability of disease detection. 

CNNs are a class of deep learning models specifically 

designed for processing and analyzing visual data. Inspired by 

the human visual system, they excel at recognizing complex 

patterns and features in images. This unique ability makes 

CNNs well-suited for the task of detecting plant leaf diseases 

[4]. By training a diverse dataset of images containing healthy 

and diseased leaves, CNNs can learn to identify subtle visual 

cues that indicate the presence of disease [5, 6].  

The successful application of CNNs in detecting potato leaf 

diseases based on images is closely linked to several variables, 

one of the most important being the choice of architecture. 

Some popular architectures are ResNet [7], VGG [8], 

Inception [9], AlexNet [10], Squeezenet [11], EfficientNet 

[12], DenseNet [13], and MobileNet [14]. ResNet, short for 

Residual Network, is a CNN architecture designed to address 
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the missing gradient problem, which is a common problem in 

deep learning associated with increasing the number of layers. 

The ResNet architecture uses jump connections between 

layers to add the output of the previous layer to the output of 

the stacked layers, thus resulting in the ability to train a much 

deeper network than was previously possible [15]. The VGG 

(Visual Geometry Group) architecture, specifically VGG16, 

and VGG19, is a classic convolutional neural network 

architecture known for its simplicity and effectiveness in 

various computer vision tasks [16]. The Inception architecture, 

also known as GoogLeNet, was developed to address the 

challenge of increasing the depth and width of CNNs while 

managing computational complexity [17]. Squeezenet is a 

popular CNN architecture designed to create smaller neural 

networks with fewer parameters, allowing for easier fitting 

into computer memory and transmission over networks [18]. 

EfficientNet, introduced by a research team at Google, was 

described in the study [19] as a new method for scaling CNN 

architectures. Furthermore, DenseNet is a type of CNNs that 

exploits dense connections between layers through dense 

blocks, where all layers (with appropriate feature map sizes) 

are directly adjacent to each other [20]. Finally, MobileNet is 

designed to be computationally efficient and suitable for 

mobile devices and embedded devices thus making it a 

promising approach for automated farming [21].  

Although many studies have explored the use of 

convolutional neural network architectures, there seems to be 

a limited comparative analysis of these architectures 

specifically for potato leaf disease classification. The optimal 

architecture for accurate and efficient potato leaf disease 

classification is still unclear. Moreover, the variations in 

disease type, severity, and image quality in potato leaf disease 

datasets present unique challenges that may require 

customized CNN architectures. 

This research provides valuable insight into the most 

effective CNN architectures to determine which one is best 

suited for a given disease detection task. This could include 

comparing accuracy, computational efficiency, and other 

relevant metrics, taking into account the nuances of the dataset 

and the specific characteristics of potato diseases. This 

research not only contributes to the broader field of potato leaf 

disease classification but also provides practical guidance for 

agricultural practitioners seeking better disease detection and 

management strategies for potato production. 

The paper is organized as follows: Section 2 presents a 

comprehensive review of the relevant literature, providing the 

historical context of previous research. Section 3 describes the 

materials and methods used to detect potato leaf diseases. 

Section 4 presents the results and discussion. Finally, in 

Section 5, we summarize the paper with concluding remarks 

and present future research. 

 

 

2. RELATED WORK 
 

The importance of automating plant disease diagnosis has 

been increasingly recognized in the agricultural domain. Early 

work in this area mainly used traditional machine learning 

techniques. Hylmi et al. [22] conducted a study on the 

detection of potato leaf disease using a multi-class support 

vector machine based on texture, color, and shape features. 

The study, which began with leaf spot extraction and used 

RGB histograms, GLCM, and contour calculations, achieved 

a 97.56% accuracy rate. Another study used K-Means 

clustering to enhance potato production and the model 

achieved a 97% accuracy rate [23]. Rusli et al. [24] proposed 

a potato leaf disease classification technique using image 

processing and artificial neural network (ANN) methods, 

aimed at early detection of plant diseases to reduce losses in 

agricultural production. Another study introduced an image 

processing and machine learning-based system to identify and 

classify potato leaf diseases, specifically Early Blight (EB) and 

Late Blight (LB), crucial for enhancing crop production in 

Bangladesh. By utilizing image segmentation on 450 images 

from the Plant Village database and employing seven classifier 

algorithms, the study found the Random Forest classifier to be 

the most effective, achieving a 97% accuracy rate in 

distinguishing diseased and healthy leaves [25]. 

These traditional methods often require more manual input 

and are not as efficient as machine learning-based approaches. 

Additionally, these methods often struggle with adapting to 

data variations and typically require more frequent 

adjustments and maintenance [26].  

On the other hand, the emergence of Deep Learning and 

specifically Convolutional Neural Networks has 

revolutionized this field. CNNs have shown significant 

advantages in capturing hierarchical features in images, thus 

eliminating the need for manual feature extraction. Some 

studies have provided a comprehensive overview of the 

application of CNNs for plant disease classification, 

highlighting the advantages of deep learning architectures over 

traditional methods [27-31]. 

Over the years, several deep CNN architectures have been 

proposed and compared in the context of plant disease 

classification. VGG-16 is a convolutional neural network 

architecture that has been used in several studies to detect plant 

diseases with high accuracy [32]. The VGG-16 model was 

used to detect 19 different classes of plant diseases with an 

accuracy of about 95.2% [33]. Another study used transfer 

learning with VGG-16 to classify multi-plant leaf disease 

images with high accuracy [34]. In addition, a study proposed a 

VGG-19 model with transfer learning and image segmentation 

for tomato leaf disease classification [35]. 

MobileNet is a type of CNN architecture optimized for 

mobile devices. It is a lightweight and efficient model that can 

be used for real-time image classification tasks. The study 

proposed a method for detecting and classifying plant diseases 

using CNNs based on MobileNet. The authors achieved 98.3% 

accuracy on a dataset of 38,800 images of 15 different plant 

diseases [36]. Another study offered a method to identify plant 

diseases based on leaf patterns using MobileNetV2 [21]. The 

authors achieved 97.5% accuracy on the same dataset in the 

previous study. Similarly, Mishra et al. [14] used transfer 

learning with MobileNet-V1 to identify potato plant lesion 

features. The authors achieved 94.5% accuracy on a dataset of 

1200 potato plant leaf images. A study enhanced deep residual 

CNNs for plant leaf disease detection using MobileNet, 

achieving 96.6% accuracy [37]. The authors achieved 96.6% 

accuracy. 

Similar to the previous two architectures, the success of 

AlexNet had a great impact on the fields of deep learning and 

computer vision. It demonstrated the potential of deep neural 

networks for image classification tasks and paved the way for 

the development of more advanced CNN architectures [38]. 

Several studies have used the AlexNet architecture to develop 

deep learning models for agricultural plant disease detection, 

with satisfactory results [39-41]. 

ResNet is one of the most popular CNN architectures for 
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image classification. ResNet has proven to be flexible in 

detecting plant foliar diseases and identifying disease types 

with high accuracy [42]. A ResNet-based approach has been 

proposed to detect and classify plant leaf diseases, which are a 

serious problem for food safety [43]. Another study proposed 

a customized PDICNet model using ResNet-50 for plant leaf 

disease identification and classification, employing a deep 

learning convolutional neural network (DLCNN) classifier 

model to achieve improved classification performance [44]. 

Overall, these architectures have proven to be effective deep 

learning architectures for plant disease detection and 

classification, with various studies achieving high accuracy in 

identifying different types of diseases. Their efficiency in 

processing large amounts of data and classifying them 

accurately can help in the early detection and prevention of 

plant diseases, ultimately leading to increased crop yields and 

economic growth in the agricultural sector. 

While there have been many studies focusing on crop-

specific disease detection, research specifically addressing 

potato foliar diseases is relatively limited. Little research has 

been done to compare the effectiveness of different CNN 

architectures for this particular application. This research 

provides a comprehensive comparison of several CNN 

architectures, namely VGG-16, VGG19, MobileNetV2, 

AlexNet, and ResNet50 for potato leaf disease classification. 

This comparison is crucial for advancing the field, as it not 

only addresses a specific research deficiency but also 

potentially identifies the most effective deep learning 

strategies for tackling potato leaf diseases. 

The research objective of this study is to provide a 

comprehensive comparison of various Convolutional Neural 

Network (CNN) architectures for the classification of potato 

leaf diseases. This comparison aims to identify the most 

effective CNN model in accurately detecting and classifying 

potato leaf diseases, addressing a significant void in the 

current agricultural research landscape. By evaluating the 

performance of several leading CNN architectures, including 

VGG-16, VGG19, MobileNetV2, AlexNet, and ResNet50, 

this research seeks to contribute valuable insights into the 

optimization of deep learning techniques for the early 

detection and prevention of diseases in potato crops, ultimately 

aiding in the enhancement of agricultural productivity and 

food security. 

 

 

3. MATERIALS AND METHODS 
 

3.1 Dataset description 

 

The PlantVillage dataset, an open, accessible, standardized 

and reliable database created by Hughes & Salathe in 2015 

[45], serves as a valuable resource in the fields of agriculture 

and plant pathology. It comprises a vast collection of 

annotated images featuring a variety of plant species, 

including corn, pepper, potato, and tomato, among others. This 

dataset provides detailed information on the diseases 

diagnosed for each plant type and is freely available for use in 

developing and testing various models, including those based 

on machine learning and deep learning, aimed at disease 

detection and classification. This research specifically focused 

on the potato plant diseases section of the PlantVillage dataset, 

which includes 2,152 potato leaf images categorized into three 

groups: healthy, early blight, and late blight. Example images 

of diseased potato plant leaves are displayed in Figure 1. The 

early and late diseased potato leaf images represent the two 

stages of potato leaf disease that damage the plant. 

 

 
 

Figure 1. Samples of some diseased potato plant leaves 

 

Table 1 provides data that categorizes leaves into three 

classes based on their health status or the presence of a 

particular disease. The identified diseases are Early blight 

(labeled 0) and Late blight (labeled 1). There is also a category 

for leaves that are considered Healthy (labeled 2). Both Early 

blight and Late blight had the same number of samples, 1000 

leaves each. The healthy leaf category includes a sample of 

152 leaves. Overall, the data consisted of 2,152 samples. 

 

Table 1. Number of potato leaf images in each class of the 

PlantVillage dataset 

 
Class Total 

Early blight (0) 1,000 

Late blight (1) 1,000 

Healthy (2) 152 

Total 2,152 

 

3.2 Pre-processing 

 

Pre-processing is the process of preparing and refining 

image data before its utilization in a deep learning model. This 

stage is crucial in the classification of plant leaf diseases, 

aiming to enhance the performance and accuracy of the 

classification model. By effectively preparing image data, pre-

processing enables classification models to operate with 

greater accuracy and efficiency, thereby improving the 

detection and classification of potato leaf diseases. 

In this research, the pre-processing steps undertaken include 

resizing and scaling. Convolutional Neural Networks (CNNs) 

require images of uniform size for input. Consequently, all 

images in the dataset were resized to uniform dimensions of 

256×256 pixels. Following resizing, rescaling is applied, 

wherein the original pixel values ranging from 0 to 255 are 

scaled down to a range between 0 and 1. This adjustment 

facilitates model convergence during training and minimizes 

variations in input values. 

The subsequent step involves dividing the dataset into 

training, validation, and test data, adopting a distribution ratio 

of 70% for training data, 20% for validation data, and 10% for 

test data, as detailed in Table 2. 
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Table 2. Number of images in each training, validation, and 

testing class 

 

Class 
Early  

Blight 

Late 

Blight 
Healthy Total 

Total Data Training 700 700 106 1506 

Total Data Validation 200 200 30 430 

Total Data Testing 100 100 16 216 

 

The training data are enriched through a data augmentation 

process to create variations for model development. This 

process includes generating image variations using techniques 

such as 45° rotation, along with horizontal and vertical flips. 

A rotation of 45° is selected for its ability to introduce 

substantial variation, beneficial for accommodating leaves that 

may fall or be positioned in a range of unpredictable 

orientations. By enhancing data variation, data augmentation 

aids the model in generalizing more effectively to previously 

unseen data, thereby minimizing the risk of overfitting. Figure 

2 shows an example image of the augmentation process. 

 

 
 

Figure 2. Augmented image 

 

3.3 Model selection and system requirements 

 

Five pre-trained models, namely VGG16, VGG19, 

MobileNetV2, ResNet50, and AlexNet were explored and 

trained using the PyTorch library. The selection of these 

specific architectures was based on their proven superior 

accuracy over alternative models. Additionally, this choice 

was guided by a thorough evaluation of their unique features 

and capabilities, which are particularly suited to the demands 

of classifying intricate leaf disease patterns. This makes them 

collectively adept at addressing the complexities and 

challenges associated with leaf disease imagery. 

To aid the processing and analysis of images in this study 

on potato plant leaf disease detection and classification, 

additional libraries such as Pillow, NumPy, and Matplotlib 

were utilized. The integration of these Python libraries into the 

research workflow markedly enhances this process. Each 

library serves a distinct purpose, ranging from image 

manipulation and numerical computations to data 

visualization, thereby streamlining the research process and 

facilitating deeper insights into the dataset and the models' 

performance. 

The training process employs Compute Unified Device 

Architecture (CUDA) technology, which facilitates the 

efficient use of Graphics Processing Unit (GPU) resources for 

both preprocessing and training tasks. CUDA harnesses the 

parallel processing capabilities of GPUs, significantly 

accelerating not just the model training process but also the 

preprocessing phase. Deep learning models such as VGG16, 

VGG19, MobileNetV2, ResNet50, and AlexNet require 

considerable computational power due to their deep 

architectures and the complexity of their operations. By 

utilizing CUDA-enabled GPUs, the time needed for training 

these models is substantially reduced. This makes it feasible to 

explore these architectures and hyperparameters within a 

reasonable timeframe, ensuring a comprehensive application 

of CUDA's capabilities. 

 

3.4 Hyperparameter tuning 

 

The models were implemented using TensorFlow version 

2.13.0 with a total of 2,152 potato leaf images. The models 

were trained using 1,506 augmented images, with the training 

spanning 50 epochs and including 5 dropouts. They were then 

tested using 216 original images. Furthermore, this study used 

ReLU as the activation function and Stochastic Gradient 

Descent (SGD) Optimizer with a learning rate of 0.001 to set 

the weights of the neurons in the neural network, as 

summarized in Table 3. 

 

Table 3. Summary of model parameters used 

 

Optimizer 
Batch 

Size 

Number of 

Epoch 
Dropout 

Activation 

Function 

Learning 

Rate 

SGD 32 50 5 ReLU 0,001 

 

3.5 Evaluation 

 

The ternary (3-class) confusion matrix presented in Table 4 

shows the classification predictions for three classes: Early 

blight, Late blight, and Healthy. True Positives (correct 

predictions) for Early blight, Late blight, and Healthy are 

abbreviated as 'teb' (true early blight), 'tlb' (true late blight), 

and 'th' (true healthy), respectively. False Positives (incorrect 

predictions) include Early blight predicted as Late blight, 

abbreviated as 'eblb'; Early blight predicted as Healthy is 

abbreviated as 'ebh'; Late blight predicted as Early blight as 

'lbeb'; Late blight predicted as Healthy as 'lbh'; Healthy 

predicted as Early blight as 'heb'; and Healthy predicted as 

Late blight as 'hlb'. Correct predictions are represented by the 

main diagonals (teb, tlb, and th). All non-diagonal elements 

represent misclassification. 

 

Table 4. Ternary classification confusion matrix 

 

Actual Class 
Predicted Class 

Early blight Late blight Healthy 

Early blight teb eblb ebh 

Late blight lbeb tlb lbh 

Healthy heb hlb th 

 

Several measures in computer vision and machine learning 

are defined based on this classification confusion matrix. For 

example, the evaluation measures such as precision, recall, F1 

Score, accuracy, and specificity, which are used for assessing 

image classifiers, are shown in Eqs. (1)-(11). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐸𝑎𝑟𝑙𝑦𝑏𝑙𝑖𝑔ℎ𝑡 =
𝑡𝑒𝑏

𝑡𝑒𝑏+𝑙𝑏𝑒𝑏+ℎ𝑒𝑏
   (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐿𝑎𝑡𝑒𝑏𝑙𝑖𝑔ℎ𝑡 =
𝑡𝑙𝑏

𝑒𝑏𝑙𝑏 + 𝑡𝑙𝑏 + ℎ𝑙𝑏
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐻𝑒𝑎𝑙𝑡ℎ𝑦 =
𝑡ℎ

𝑒𝑏ℎ + 𝑙𝑏ℎ + 𝑡ℎ
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝐸𝑎𝑟𝑙𝑦𝑏𝑙𝑖𝑔ℎ𝑡 =
𝑡𝑒𝑏

𝑡𝑒𝑏 + 𝑒𝑏𝑙𝑏 + 𝑒𝑏ℎ
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝐿𝑎𝑡𝑒𝑏𝑙𝑖𝑔ℎ𝑡 =
𝑡𝑙𝑏

𝑡𝑙𝑏 + 𝑙𝑏𝑒𝑏 + 𝑙𝑏ℎ
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝐻𝑒𝑎𝑙𝑡ℎ𝑦 =
𝑡ℎ

𝑡ℎ+ℎ𝑒𝑏+ℎ𝑙𝑏
   (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝐸𝑎𝑟𝑙𝑦𝑏𝑙𝑖𝑔ℎ𝑡 =  
𝑡𝑙𝑏 + 𝑡ℎ

𝑡𝑙𝑏 + 𝑡ℎ + 𝑙𝑏𝑒𝑏 + ℎ𝑒𝑏
 (7) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝐿𝑎𝑡𝑒𝑏𝑙𝑖𝑔ℎ𝑡 =  
𝑡𝑒𝑏 + 𝑡ℎ

𝑡𝑒𝑏 + 𝑡ℎ + 𝑒𝑏𝑙𝑏 + ℎ𝑙𝑏
 (8) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝐻𝑒𝑎𝑙𝑡ℎ𝑦 =  
𝑡𝑒𝑏 + 𝑡𝑙𝑏

𝑡𝑒𝑏 + 𝑡𝑙𝑏 + 𝑒𝑏ℎ + 𝑙𝑏ℎ
 (9) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2(𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (10) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑒𝑏 + 𝑡𝑙𝑏 + 𝑡ℎ

𝑡𝑒𝑏 + 𝑡𝑙𝑏 + 𝑡ℎ + 𝑓𝑒𝑏 + 𝑓𝑙𝑏 + 𝑓ℎ
 (11) 

 

 

4. RESULTS AND DISCUSSION 

 

Table 5 shows data for 216 samples divided into 3 

classifications using the VGG16 architecture. Of these, 204 

samples (94.4%) were correctly classified, leaving 12 samples 

(5.6%) misclassified. In the Early blight category, 94 samples 

were correctly predicted, while 5 were incorrectly predicted as 

Late blight and one as Healthy, totaling 6 misclassifications. 

The Late blight category had 96 correct predictions, with 3 

misclassified as Early blight and 1 as Healthy, for a total of 4 

misclassifications. Finally, in the Healthy category, 14 

samples were classified correctly, but 2 were misclassified: 

one as Early blight and the other as Late blight. 

 

Table 5. Confusion matrix of classification results 

 

Actual Class 
Predicted Class 

Early blight Late blight Healthy 

Early blight 94 5 1 

Late blight 3 96 1 

Healthy 1 1 14 

 

The classification report and confusion matrix for the five 

architectures is shown in Table 6. Both tools provide valuable 

insights and together can provide a comprehensive view of the 

model's performance across all classes. All architectures 

performed well across all three classes, with classes 0 and 1 

having the highest number of instances. Class 2, representing 

the Healthy category, has fewer instances and slightly lower 

precision, recall, and F1Score compared to the other two 

classes. 

The classification report and confusion matrix reveal that 

VGG16 and VGG19 deliver high performance in precision 

and recall, signifying their capability to accurately identify 

potato leaf diseases with minimal error. However, their 

extensive depth necessitates greater computational resources, 

which should be factored into their practical deployment. A 

high support value for certain classes suggests adequate 

training data for those specific conditions, but it may also 

reflect a potential bias towards more frequently occurring 

classes in the dataset. 

The classification report for MobileNetV2 demonstrates a 

well-balanced trade-off between precision and recall, with its 

f1-score evidencing a robust capability to classify various 

disease classes. Uniform support across classes implies that 

the model has been trained on a balanced dataset, which is 

advantageous for its generalization capabilities. Designed with 

mobile applications in mind, MobileNetV2 has faster 

inference times compared to VGG16 and VGG19, making it 

highly beneficial for real-time applications. 

ResNet50’s classification report indicates the most 

consistent performance among the models, with high precision, 

recall, and f1-score values, reflecting its exceptional ability to 

recognize diverse disease classes. This consistency is 

attributed to ResNet50's use of skip connections, which 

effectively address the vanishing gradient problem common in 

deep networks such as VGG16 and VGG19. 

As one of the pioneering architectures, AlexNet does not 

have the architectural complexity of newer models, but still 

shows good performance. The classification report suggests 

that AlexNet remains a competitive choice, particularly when 

limited by resources, although it may not be as efficient as 

MobileNetV2 or as accurate as ResNet50. 

Analysis of the classification reports and confusion matrices 

provides insight into each model's performance under similar 

conditions. By comparing the results of these reports on 

different architectures for detecting potato leaf diseases, 

researchers or practitioners can determine which models are 

most suitable for implementation in real agricultural settings 

based on criteria such as accuracy, speed of inference, and 

resource requirements. 

Table 7 displays the performance metrics of five popular 

CNN architectures: VGG16, VGG19, MobileNetV2, 

ResNet50, and AlexNet, including training accuracy, 

validation accuracy, training loss, validation loss, and testing 

accuracy. Training and validation accuracies were relatively 

consistent across models, ranging from 92% to 96% for 

training accuracy and 93% to 96% for validation accuracy. 

This consistency indicates that all models have learned 

reasonably well from the training data and have a comparable 

ability to generalize to unseen data. The training and validation 

loss values are also consistent across models. The values 

indicate that none of the models significantly overfits the 

training data, as the losses are relatively close for both the 

training and validation sets. The testing accuracy, which 

measures the performance of the architecture on unseen data, 

shows little variation. ResNet50 achieved the highest testing 

accuracy at 97%, followed by MobileNetV2 and AlexNet, 

both at 95%. VGG16 and VGG19 achieved 94% and 90% 

accuracy, respectively. ResNet50 showed the best overall 

performance for this particular task, as it had the highest 

testing accuracy. All pre-trained models showed relatively 

good generalization as validation and testing accuracies were 

close. ResNet50 stands out as an architecture with relatively 

low training and validation losses, indicating that it can be 

computationally efficient while maintaining strong 

performance. ResNet50 appears to be the best in terms of 

testing accuracy and training efficiency on this dataset. 
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Table 6. Classification report and confusion matrix of five different architectures, (a) VGG16, (b) VGG19, (c) MobileNetV2, (d) 

ResNet50, (e) AlexNet 

 

 

 

 

Actual Class 

Predicted Class 

Early 

Blight 
Late Blight Healthy 

Early blight 94 5 1 

Late blight 3 96 1 

Healthy 1 1 14 
 

(a) Classification report and confusion matrix of VGG16 

 

 

 

 

Actual Class 

Predicted Class 

Early 

Blight 
Late Blight Healthy 

Early blight 90 6 4 

Late blight 4 92 4 

Healthy 2 2 12 
 

(b) Classification report and confusion matrix of VGG19 

 

 

 

 

Actual Class 

Predicted Class 

Early 

Blight 
Late Blight Healthy 

Early blight 96 4 0 

Late blight 1 96 3 

Healthy 1 1 14 
 

(c) Classification report and confusion matrix of MobileNetV2 

 

 

 

 

Actual Class 

Predicted Class 

Early 

Blight 
Late Blight Healthy 

Early blight 97 2 1 

Late blight 2 98 0 

Healthy 2 0 14 
 

(d) Classification report and confusion matrix of ResNet50 

 

 

 

 

Actual Class 

Predicted Class 

Early 

Blight 
Late Blight Healthy 

Early blight 94 4 2 

Late blight 3 96 1 

Healthy 1 0 15 
 

(e) Classification report and confusion matrix of AlexNet 
 

 

Table 7. Summary of training, validation, and testing results using five pre-trained CNN 

 
Pre-Trained Model Training Acc (%) Validation Acc (%) Training Loss Validation Loss Testing Acc (%) 

VGG16 95 94 0.0358 0.0430 94 

VGG19 92 94 0.2935 0.0555 90 

MobileNetV2 94 95 0.0771 0.0630 95 

ResNet50 96 96 0.0174 0.0171 97 

AlexNet 94 93 0.0602 0.0966 95 
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Table 8 presents predictions from a classification task aimed 

at identifying diseases across three potato leaf classes. VGG16 

performed well in all classes, with high precision, recall, and 

F1Score for Early blight and Late blight the diseases. However, 

VGG16 showed lower performance for the Healthy class, with 

accuracy, precision, recall, and an F1Score of 88%. The 

negative prediction rate was highest for the Healthy class, 

indicating a higher rate of misclassification within this 

category. 

 

Table 8. Comparison of architectural performance in 

measuring accuracy, precision, recall, and f1 score 

 

Architectures 

Performance 

Classes 

Early 

Blight 

Late 

Blight 
Healthy 

VGG16 

Accuracy 

Precision 

Recall 

F1 Score 

Positive Prediction 

Negative Prediction 

 

96% 

96% 

94% 

95% 

94% 

6% 

 

94% 

94% 

96% 

95% 

96% 

4% 

 

88% 

88% 

88% 

88% 

88% 

12% 

VGG19 

Accuracy 

Precision 

Recall 

F1 Score 

Positive Prediction 

Negative Prediction 

 

94% 

94% 

90% 

92% 

90% 

10% 

 

92% 

92% 

92% 

92% 

92% 

8% 

 

60% 

60% 

75% 

67% 

75% 

25% 

MobileNetV2 

Accuracy 

Precision 

Recall 

F1 Score 

Positive Prediction 

Negative Prediction 

 

98% 

98% 

96% 

97% 

96% 

4% 

 

95% 

95% 

96% 

96% 

94% 

4% 

 

82% 

82% 

88% 

85% 

88% 

12% 

ResNet50 

Accuracy 

Precision 

Recall 

F1 Score 

Positive Prediction 

Negative Prediction 

 

96% 

96% 

97% 

97% 

97% 

3% 

 

96% 

98% 

98% 

98% 

98% 

2% 

 

83% 

93% 

88% 

90% 

88% 

12% 

AlexNet 

Accuracy 

Precision 

Recall 

F1 Score 

Positive Prediction 

Negative Prediction 

 

96% 

96% 

94% 

95% 

94% 

6% 

 

97% 

96% 

96% 

96% 

96% 

4% 

 

82% 

83% 

94% 

88% 

94% 

6% 

 

VGG19 also performed relatively well for Early blight and 

Late blight, with high precision, recall, and F1 scores for both 

classes. However, it performed significantly lower for the 

Healthy class, with 60% accuracy. This architecture had the 

highest recall (75%) for the Healthy class but also exhibited a 

higher rate of false negatives prediction for the Healthy class. 

MobileNetV2 stands out for its outstanding performance in 

classifying Early blight and Late blight, with high accuracy, 

precision, recall, and F1 scores. However, it is less accurate 

for the Healthy class, with accuracy, precision, recall, and F1 

scores of 82%, 82%, 88%, and 85%, respectively.  

ResNet50 excelled in classifying Late blight, with high 

accuracy, precision, recall, and F1 score. ResNet50 also 

performed well for Early blight, with high accuracy and 

balanced precision and recall. However, it performed 

relatively lower for the Healthy class, with 83% accuracy. 

AlexNet performed well for Late blight and Early blight, with 

high accuracy, precision, recall, and F1 scores. It performed 

slightly lower for the Healthy class, with an accuracy of 82%. 

The architecture had a relatively low negative prediction rate 

across all classes, indicating a lower level of misclassification 

than other classes. 

Each architecture has strengths and weaknesses in 

classifying the three classes, with varying levels of accuracy, 

precision, recall, and F1 score. The Healthy class consistently 

presented challenges across all architectures, with a higher 

negative prediction rate, indicating a tendency to misclassify 

non-healthy instances as Healthy. 

 

 
 

Figure 3. First image to predict 

 

The prediction for the first image was as follows: the actual 

label is Potato Early blight, and the predicted label is also 

Potato Early blight. The model correctly predicted the class for 

the first image as Potato Early blight, which matches the actual 

label (Figure 3). 

The accuracy and specificity values of the different CNN 

architectures when applied with transfer learning are shown in 

Table 9. Specificity is an important metric in many contexts, 

including image classification. Specificity for each class is 

calculated by considering one class as the positive class and 

the rest as the negative class. It provides insight into how well 

the classification system identifies negative classes. This is 

particularly important in cases where avoiding false positives 

is as critical as identifying true positives. In datasets where one 

class significantly outnumbers the others (imbalanced 

datasets), like in this study where the healthy leaf dataset is not 

balanced with the other two, specificity becomes an important 

measure. It ensures that the model's ability to correctly identify 

the less frequent class (often the negative class) is not 

overlooked. ResNet50 has the highest accuracy (97%) among 

the given architectures. ResNet50 also achieved the highest 

specificity (98%). On the other hand, VGG19 has both the 

lowest accuracy (90%) and the lowest specificity (94%). 

 

Table 9. Accuracy and specificity score of different CNN 

architectures with transfer learning 

 
Architecture(s) Accuracy (%) Specificity (%) 

VGG16 94 97 

VGG19 90 94 

MobileNetV2 95 97 

ResNet50 97 98 

AlexNet 95 97 

 

A snapshot of the prediction results for three classes of 

foliar diseases of potato plants is shown in Figure 4. The data 

presented highlight the predictive model’s performance in 

classifying potato leaves into three health status categories: 

Early blight, Late blight, and Healthy. The figure demonstrates 
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remarkable accuracy in these predictions. In each case, the 

predicted label matches the actual label. The model exhibits 

high confidence in its predictions, with confidence scores 

often approaching 100%. The lowest confidence score was 

98.68%, which is still very high in the context of a 

classification task. 

 

 
 

Figure 4. Image prediction results 

 

On multiple instances of the same category, the model 

consistently predicted the correct label. This shows that the 

model is not only accurate but also reliable in its predictions 

for this dataset. Overall, the model is very good at classifying 

potato leaves based on their health status. The model not only 

provides correct classification but also shows high confidence 

in its predictions. This high performance indicates that the 

model has been well-trained and most likely exposed to a wide 

variety of samples during the training phase. The results 

presented make a compelling case for using the model in real-

world applications, given its demonstrated ability to identify 

the health status of potato leaves with remarkable accuracy and 

confidence.  

Table 10 provides a comprehensive review of research 

studies on potato leaf disease detection, using a variety of 

computational models from 2019 to 2024. These studies 

employ a range of methods, predominantly Convolutional 

Neural Network (CNN) architectures, in addition to traditional 

machine learning techniques. 

Afonso et al. [7] utilized ResNet18 and achieved a notable 

95% accuracy. The table also details various approaches such 

as the InceptionV3 model by Chugh et al. [9], which yielded a 

90% accuracy, and a modified AlexNet architecture by Bajpai 

et al. [10] that reached a 61% accuracy. 

The R-CNN-GC model, employed by SERT [11], achieved 

94% accuracy. Nazir et al. [12] attained a 98% accuracy with 

EfficientPNet, and Mishra et al. [14] led with a 99% accuracy 

using MobileNet-V1. 

Furthermore, the table highlights the ongoing challenge in 

accurately classifying healthy leaves, as evidenced by the 

varying performance of models such as VGG16 and VGG19 

architectures by Sholihati et al. [16], which achieved 

accuracies ranging from 91% to 93%. 

Additionally, the table lists more traditional machine 

learning methods such as Random Forest, Logistic Regression, 

K-Nearest Neighbors, Decision Tree, Naïve Bayes, Linear 

Discriminant Analysis, and Support Vector Machine. These 

methods have achieved accuracies ranging from 91% to 97%, 

as implemented by Iqbal and Tadukler [25]. 

 

Table 10. Comparison of the proposed model with state-of-the-art models in potato leaf disease detection accuracy 

 
Author(s) / References Year Method Accuracy (%) 

Afonso et al. [7] 2019 ResNet18 95 

Lee et al. [8] 2020 CNN 99 

Chugh, et al. [9] 2020 InceptionV3 90 

Bajpai, et al. [10] 2023 Modified AlexNet 61 

SERT [11] 2021 R-CNN-GC 94 

Nazir et al. [12] 2023 EfficientPNet 98 

Mishra et al. [14] 2021 MobileNet-V1 99 

Sholihati et al. [16] 2020 VGG16 and VGG19 91-93 

Hylmi at al. [22] 2022 Support Vector Machine 97 

Nishad et al. [23] 2022 

VGG16 97 

VGG19 94 

ReNet50 67 

Rusli et al. [24] 2022 K-Means 94 

Iqbal and Talukder [25] 2020 

Random Forest 97 

Logistic Regression 94 

K-Nearest Neighbors 91 

Decision Tree 91 

Naïve Bayes 84 

Linear Discriminant Analysis 78 

Support Vector Machine 37 

Proposed Model 2024 

VGG16 94 

VGG19 90 

MobileNetV2 95 

ResNet50 97 

AlexNet 95 
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This research presents a comparative study of a multi-model 

approach that includes VGG16, VGG19, MobileNetV2, 

ResNet50, and AlexNet, with respective accuracies of 94%, 

90%, 95%, 97%, and 95%. This study posits the proposed 

models as competitive counterparts to existing state-of-the-art 

models, potentially providing novel insights into potato leaf 

disease detection and advancing agricultural technology. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

The evaluation of various pre-trained convolutional neural 

network architectures: VGG16, VGG19, MobileNetV2, 

ResNet50, and AlexNet, revealed different strengths and 

weaknesses in classifying the three leaf conditions. Notably, 

ResNet50 emerged as the most outstanding, achieving the 

highest testing accuracy of 97% and specificity of 98%. 

Conversely, VGG19 had the lowest values for accuracy and 

specificity, at 90% and 94% respectively. Although several 

architectures showed commendable performance in 

classifying potato leaf diseases, ResNet50 proved to be the 

most effective and efficient model in this study. By providing 

reliable and efficient disease detection methodologies, such 

research can significantly contribute to sustainable farming 

practices, reducing pesticide use, and enhancing crop 

management strategies globally. This research highlights the 

importance of specificity as a metric, especially in contexts 

such as image classification, to determine accuracy in 

identifying negative or non-diseased classes. For future 

research, exploring the integration of these CNN models with 

IoT-based agricultural sensors could not only open new 

avenues for real-time field monitoring and disease 

management but also enhance precision agriculture practices. 

Additionally, investigating the adaptability of these models to 

other crop diseases and environmental conditions would 

further validate their utility in diverse agricultural scenarios, 

paving the way for more resilient food production systems. 
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