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The use of deep learning techniques in the infrared and visible picture fusion domain has 

dramatically enhanced the effectiveness of image fusion approaches. Deep learning (DL) 

has significantly boosted the fusion process, improving efficiency and efficacy. This 

advancement has produced fused images that exhibit a broad spectrum of possible 

applications. Nevertheless, additional investigation and innovation are required to tackle 

the difficulties and debates related to the utilization of DL in picture fusion, guaranteeing 

the ongoing progress of this domain. Various imaging techniques are at one's disposal to 

capture and present information within the infrared and visible segments of the 

electromagnetic spectrum. These imaging modalities can encompass a diverse array of 

intricate details and features. The selection of an imaging approach carries distinct 

advantages and disadvantages contingent upon the specific application and disparities 

between infrared and visible depictions in object representation. In addition to their ability 

to convey finer elements like color, texture, shape, and contrast, visual images also conform 

to the perceptual traits inherent to human observation. Nonetheless, infrared images may 

exhibit a different level of intricacy evident in color, texture, shape, and contrast than their 

visible counterparts. Leveraging advanced deep learning technologies, the amalgamation 

of visual and infrared photographs synergizes the textural insights of visual images with the 

thermal data offered by infrared images, thereby affording a composite set of advantages. 

This article explores deep learning techniques for combining infrared and visible images, 

focusing on their application in image fusion. It reviews various fusion approaches, 

including CNNs, GANs, auto-encoders, and transformers, and evaluates fused images using 

subjective and objective methods. The survey provides a comprehensive overview of 

current research and suggests future directions in deep learning-based fusion methods. 
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1. INTRODUCTION

Image fusion improves images by combining those captured 

through different types of sensors. A reliable and instructive 

image is created to aid further processing or decision-making. 

It is essential to extract image information efficiently and 

apply fusion principles appropriately to formulate a successful 

fusion approach It is possible to extract useful information 

from input photos using feature extraction techniques, which 

can then be smoothly combined with the fused image to 

prevent artifacts from being introduced into the final image. 

This process may be carried out in several different ways. 

Various image pairs can be fused, including visible and SAR 

images, infrared and SAR images, infrared and visible images, 

and medical images such as CT and MRI scans [1, 2]. Figure 

1 summarizes the general method of fusion images. 

In addition to remote sensing and medical imaging, image 

fusion technology also finds extensive applications in security, 

surveillance, human visual assistance systems, and the 

military. Therefore, its study holds significant importance in 

these application [3]. 

Due to its wide range of applications, image fusion has 

gained significant attention in the research community in 

recent decades. With the advancement of this field, many 

image transforms and spatial filters have been developed to 

accommodate both general and specific types of images. A 

fundamental goal of image fusion is to produce visually 

appealing results while also achieving high levels of objective 

results [4]. The ability to describe details and accurately 

represent hot targets can be greatly enhanced by combining 

infrared and visible light pictures in a fusion process. It is the 

infrared sensor’s ability to detect infrared radiation that results 

in the infrared image being created. Usually, the target area of 

the image is well-lit, so distractions like darkness and smoke 

can be ignored. Despite this, the infrared sensor cannot detect 

finer details in a scene due to its insensitivity to brightness 

variations. Because visible sensor images contain a great deal 

of texture information and are highly spatially resolved, they 

are ideal for human eyesight. Visual sensors, however, can be 

influenced by smoke, darkness, etc., causing them to be hard 

to see. In light of the aforementioned complementary aspects, 

combing infrared and visible images is extremely beneficial in 

retaining the target area [5]. 

In order to integrate thermal images and visual images, the 

researchers explored various methods. A deep learning 

technique and a traditional method are the two types of 
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techniques used in this field. It is common for traditional 

methods to follow a three-step process when merging pixel-

level or predefined features. The first step is to extract features 

from the original photographs, called feature extraction. Once 

the features have been extracted, combination schemes are 

applied to combine them during feature fusion. As a final step, 

the fused image is recreated by utilizing its matching inverse 

transformation [6, 7]. The mathematical transformations used 

in traditional infrared and visible image fusion techniques can 

be further divided into six groups: multi-scale transform-based 

(MST) [8, 9], low-rank representation (LRR) [10, 11], sparse 

representation-based [12, 13], saliency-based [14, 15], 

subspace-based [16], and hybrid-based methods [17]. The 

following Figure 2 shows some examples used in the 

traditional method. 

 

 
 

Figure 1. General image fusion method 

 

  
(a) The framework of the multi-scale transform approach 

[18] 

(b) The framework of a low-rank representation (LRR) based 

fusion method [19] 

  
(c) the structure of the subspace-based technique [20] (d)The structure of the hybrid-based technique [21] 

 

Figure 2. Examples of traditional infrared and visible images 

 

By using transform operators, MST methods decompose an 

image into sub-layers, design strategies of fusion to combine 

the sub-layers, and use the inverse transformation to produce 

the final picture. The transform operator like the Laplacian 

pyramid and produced the weight map which was utilized to 

combine the relevant layers by taking into account brightness 

local entropy, contrast, and; therefore, even in low-light 

situations, excellent results can be achieved [22]. However, the 

MST method is heavily influenced by the transformation used, 

and if the fusion rules are incorrect, the results can show 

artifacts [23].  

SR (sparse representations) are an alternative to multiscale 

transforms (MST). In SR, the goal was to build a very 

comprehensive dictionary that could be used sparsely to 

indicate the input images. From the merged sparse 

representation coefficients, the output (fused) image can be 

recreated [6].  

In order to display visible and infrared pictures, the discrete 

cosine transform was applied using a fixed over-complete 

dictionary. It is possible to enhance the visual impact (quality) 

of combined pictures in target-oriented fusion techniques by 

using salience methods because salience approaches help to 

preserve the stability of the key goal area in a fused image [24]. 

A visual saliency map and guidance Gaussian filter and rolling 

were used to separate the pictures into different layers and fuse 

the layers to create a fused image to increase the amount of 

visual information in the fusion output [25]. A low-rank 

representation (LRR) decomposes pictures into sparse and 

low-rank components in a method that is efficient. The low-

rank components represent the image's global structure, while 

the sparse components represent its local details. In order to 

produce the final fused image, the sub-layers are fused 

according to appropriate rules. Although traditional image 

fusion methods have produced satisfactory results, they still 

have three limitations. The final result is determined by the 

goodness of the handcrafted features used in the combining 

process. In addition, conventional approaches, such as sparse 

representation (SR), can be computationally expensive. In 

addition, fixed fusion methods need to be tailored to different 

datasets of images [6]. Conventional image processing 

methods have limitations due to their human-made design, 

limited generalization capacity, and computational complexity. 

These methods depend on input photos and output attributes 

and may not capture crucial information or handle dynamic 

scenarios. They also need help with high-resolution or multi-

modal images and may be unable to take advantage of the 

growing amount and diversity of image data and generate a 

fused image with fewer imperfections, reducing 

computational expenses. 

Deep learning (DL) is a widely used method for picture 

fusion because of its adaptability, resilience to errors, and 

ability to reduce noise. Conventional image fusion techniques 

typically use a sequential procedure consisting of feature 

extraction, combining schemes, and inverse transformation. 
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However, this approach can lead to unwanted artifacts in the 

fused image and can be both intricate and time-consuming to 

develop. On the other hand, deep learning (DL) techniques can 

modify the weights of the fusion model using an adaptive 

mechanism. This enables the model to understand the many 

characteristics of the photos and generate a fused image with 

fewer imperfections. Deep learning approaches also exhibit 

much reduced computational expenses compared to traditional 

fusion rules, a critical factor in numerous fusion scenarios. In 

addition, deep learning algorithms can automatically extract 

features from photos, which makes them highly suitable for 

tasks such as fusion. They can also handle high-resolution or 

multi-modal images, resulting in a fused image with fewer 

flaws. Hence, deep learning algorithms have surpassed 

traditional methods and are widely employed in image fusion. 

 

 

2. FUSION METHODS OF INFRARED AND VISIBLE 

IMAGE FUSION BASED ON DEEP LEARNING 

 

By fusing multiple pictures with various characteristics into 

a single, high-quality picture, deep learning is a technique that 

uses deep neural networks. Recently, deep learning techniques 

for image fusion have grown in popularity because they can 

automatically extract features from images, which makes them 

well-suited for jobs like fusion. To overcome the drawbacks 

of traditional fusion approaches, deep learning techniques are 

used for feature extraction in several applications, including 

image classification, image processing and object recognition. 

In deep learning image fusion, there are several types of neural 

networks: convolutional neural networks, generative and 

adversarial networks, auto-encoders and transformers. Despite 

the high quality of image fusion results produced by deep 

learning techniques, there are still some areas that need 

improved. To provide a complete picture of each method, we 

now discuss its different aspects separately. 

 

2.1 Convolution neural network-based fusion approaches 

 

The fusion of infrared and visible images utilizing a deep 

learning architecture is a straightforward and efficient 

technique [26]. By splitting low-frequency data and texture 

data into two components, the authors are able to extract deep 

features from meticulous content by utilizing the multilayer 

fusion strategy of the VGG-19 network [27]. Some loss 

functions are significantly impacted on CNN's capacity for 

learning. Method proposed for transferring the style of one 

image to another utilizing CNN [28]. The process extracts 

deep features from the produced picture, the style image, and 

the content image at different layers of the VGG-19 network 

[27], then minimizes the difference between the created and 

original images' deep characteristics.  

The ResNet50 pre-trained network, as recommended in 

reference [29], was employed to extract deep features from the 

source images. This network comprises of 50 weight layers 

and 5 2D convolutional blocks. The technique of zero-phase 

component analysis was employed to standardize the deep 

features and acquire the initial weight map. Ultimately, the 

soft-max procedure was employed to get the ultimate weights 

for the source images, and the merged image was 

reconstructed using the weight-averaging strategy. Using a 

multi-channel convolutional network, three channels were 

employed for obtaining features: visible features, infrared 

features, and features that are common to both infrared and 

visible images. With the addition and averaging of the featured 

pictures, the decoding module produces the fused image, and 

in order to deal with the lack of labeled data, a variety of loss 

function techniques were utilized. By reworking the loss 

function, the visible and thermal infrared images were 

combined adaptively, and noise interference was reduced. The 

technique is computationally efficient and may preserve 

important texture details and characteristics without showing 

any obvious artifacts [30, 31]. 

Convolutional neural network (CNN) fusion methods are 

highly efficient at merging infrared and visible images, 

extracting profound characteristics, maintaining data integrity, 

and improving contrast and visibility. These technologies are 

versatile and can be applied to various circumstances and 

applications, including medical imaging, night vision, and 

remote sensing. Nevertheless, these models necessitate 

substantial quantities of training data and computational 

resources, and they may encounter problems such as 

overfitting, generalization, or transferability challenges, as 

well as potentially introducing artifacts or distortions. The 

enhancements encompass the utilization of sophisticated 

network structures, integration of pre-existing knowledge, and 

the creation of resilient assessment criteria. Artifacts can be 

managed via pre-processing techniques, skip connections, 

residual blocks, or loss functions. Potential areas for future 

research involve investigating the integration of several 

modalities, examining dynamic or temporal images, and 

implementing fusion techniques in many domains, such as 

biomedical imaging, security, surveillance, and cultural 

heritage. 

 

2.2 Generative and adversarial network-based fusion 

approaches 

 

Deep learning technology is typically used as a foundation 

for CNN model-based image fusion; however, in this case, the 

model requires ground truth, so establishing fusion picture 

standards for combining visible and infrared images is not 

practical. The ground truth is not taken into consideration 

when building a deep model that assesses the blurriness in 

each area of the source image, and then determines the weight. 

By using a network that generates countermeasures, it is 

possible to avoid the aforementioned problems by fusing 

infrared and visible images [32]. Through the use of a target 

edge-enhancement loss function, target textures were 

optimized, and the target is now more clearly visible in the 

fusion output [33]. They also created a detail loss function for 

more semantic information, as the FusionGAN may lose pixel 

information from the infrared images. To balance the 

information between the infrared and visible images, GAN 

with multi-classification restrictions was suggested [34]. In 

contrast, these methods emphasize improving visual quality, 

while ignoring the importance of facilitating the fusion of 

outcomes following high-level vision challenges by utilizing a 

prefused picture as the generator's label [35]. As a result, the 

generator has been trained to produce images that are as 

similar as possible to the prefused picture. This method 

ensures that the fused picture retains both the infrared image's 

thermal information and the rich texture of the viewable 

picture. Scientists argue that this approach outweighed its 

disadvantages even though it was computationally expensive 

due to the pre-fused picture for each training cycle. Figure 3 

shows an image fusion technique based on GAN [36]. 
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GAN-based fusion techniques have demonstrated potential 

in image fusion by producing high-quality fused images that 

incorporate significant characteristics from both infrared and 

visible images. Nevertheless, they can incur substantial 

computing costs and fail to address complex visual tasks. 

GAN-based fusion algorithms address potential artifacts by 

creating countermeasures, but their efficacy relies on the 

quality of the pre-fused image utilized throughout the training 

process. Future investigations may center on advancing more 

effective training techniques, novel loss functions, and the 

customization of the fusion process for diverse datasets. 
 

 
 

Figure 3. DDcGAN for image fusion 

 

2.3 Auto-encoder-based fusion approaches 

 

Presented an unsupervised auto-encoder network [37], the 

network elicits the feature from the original pictures using 

CNN and dense blocks. Using the appropriate fusion technique, 

the fused feature is then decoded by the decoding module, 

which incorporates the dense block into the encoding module, 

preserving as much data as possible. Figure 4 illustrates the 

auto-encoder's fusion approach. In Nestfuse, the nest 

connection architecture is utilized as the decoding network, 

while the encoder network is converted into a multi-scale 

network [38]. In order to fuse the prominent parts of the picture 

with the background information, spatial/channel attention 

fusion techniques are implemented, but multi-modal features 

cannot be successfully utilized with this handcrafted approach. 

Utilized the RGB-thermal fusion network (RTFNet) [39], a 

three-part system: an RGB encoder, an infrared encoder for 

extracting features from RGB and thermal images, and a 

decoder for restoring feature picture quality. The accuracy of 

the estimated feature map may be recovered with a new 

encoder when using RTFNet for feature extraction if the 

encoder and decoder are geographically symmetrical. As the 

method's primary application is scene segmentation, the edges 

are not crisp.  

 

 
 

Figure 4. Auto-encoder-based infrared and visible image 

fusion [39] 
 

Auto-encoder-based fusion methods, such as the 

unsupervised auto-encoder network, Nestfuse, and RTFNet, 

have shown promise in image fusion by efficiently extracting 

features and maintaining data integrity. Nevertheless, they 

encounter difficulties dealing with multi-modal signals and 

achieving precise edge recognition. Furthermore, these 

solutions need to specifically tackle the artifact management 

issue, highlighting the need for additional research and 

advancement in this domain. Potential areas for further study 

in auto-encoder image fusion methods include: 

•Enhancing the utilization of multi-modal features and the 

sharpness of edges;  

•Investigating techniques for handling artifacts;  

•Optimizing the symmetry of the encoder and decoder to 

improve the estimate of feature maps.  
 

2.4 Transformer-based fusion approaches 

 
Transformer has experienced significant success in its 

initial application to natural language processing [40], and 

while CNN focuses on local aspects, its attention mechanism 

can assist in developing long-range reliance, allowing it to 

utilize global data in both deep and shallow layers better. 

According to the vision transformer concept [41], the vision 

transformer has a lot of potential for computer vision (CV). 

Recently, CV researchers have been using more transforms, 

such as object identification, multiple object tracking, 

segmentation, and others, to do so. Transformers are based 

mainly on attention mechanisms [42]. An integrated model 

based on the transformer was suggested, and it performed well 

on several low-level visual tasks [43]. The global spatial 

dependency of transformers has been applied to several areas 

of computer vision. We focus on the overall correlation of 

picture space and channels throughout the fusion process, 

motivated by the properties of the trans-former, as proposed 

TGFuse, which involves using a lightweight transformer 

module and adversarial learning for visible and infrared image 

fusion [44]. Through the use of the transformer technique to 

build efficient global fusion interactions, shallow features 

extracted by a CNN in the transformer fusion module can 

interact with each other. This interaction simultaneously 

improves the fusion connection across channels and within the 

spatial range. By enforcing competitive consistency from the 

inputs during the training process, adversarial learning can 

enhance outcome discrimination. An improved fusion model 

for focal Transformers, based on the multi-modal feature self-

adaptive fusion technique, is proposed to provide a fused 

image that is both visually appealing and more informative by 

fusing infrared and visible information [6]. A spatio-

transformer (ST) fusion method was used to fuse images 

obtained from different sensors in the proposed technique [45]. 

There are three parts to the image fusion transformer: an 

encoder network, an ST fusion network, and a nested decoder 

network. The ST fusion network, which consists of spatial and 

transformer branches, then fuses features at multiple scales.  

Transformer-based fusion methods have demonstrated 

potential in the field of picture fusion. They efficiently 

leverage worldwide data and enhance integration linkages 

between channels within the spatial scope. Nevertheless, 

individuals could encounter difficulties when dealing with the 

intricacy of the transformer strategy and the computational 

expense of adversarial learning. 

These methods do not directly deal with the management of 

artifacts. Further research and development in this area would 

be advantageous. 

Potential enhancements can be achieved in the efficacy of 

worldwide fusion interactions and adversarial learning. 

Possible future research directions include investigating 

artifact handling approaches and optimizing the encoder's and 

decoder's symmetry to enhance feature map estimation. 
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Furthermore, prospective studies might focus on applying 

these methods to datasets with greater diversity and including 

more sophisticated attention mechanisms, which would be 

highly beneficial. 

 

 

3. ASSESSMENT OF FUSED IMAGE  

 

The optimal algorithm, approach, or measure for improved 

picture evaluation is often chosen by comparing different 

image processing approaches. For a variety of image-

enhancing tasks, including the fine-tuning of image 

resolutions for alignment, the overlaying of two picture 

products, and the mixing of images for feature extraction and 

target recognition, image fusion is a common option. Since 

image fusion is used in many geospatial and night vision 

applications as well as objectively evaluating image fusion 

algorithms [46], it is crucial to understand these methods. 

Different point-specific assessment indicators can be used by 

researchers to make quantitative references and precise image 

fusion comparisons. Subjective evaluation and objective 

evaluation can be used to categorize the available integration 

indicators [47]. 

 

3.1 Subjective evaluation approaches 

 

The subjective assessment is evaluated in absolute and 

relative terms using well-known five-level quality scales and 

obstacle scales, respectively [48]. An effective subjective 

assessment method involves visually inspecting the picture 

without any aids and carefully analyzing its characteristics, 

distortion, contrast, and image integrity to evaluate different 

fusion processes. Subjective assessors can use the assessment 

criteria to assign a quality grade to the merged picture. 

However, various people have different standards for 

evaluating the same image, and these standards can be easily 

influenced by context, environment, and other variables, 

resulting in inaccurate answers to the merged image. Given its 

poor goodness and delayed timeliness, it is not easy to assess 

fusion images using this approach in several dimensions. To 

accurately assess fusion outcomes, objective assessment 

markers must be combined [49]. 

The subjective evaluations of fused pictures are constrained 

by the divergent criteria employed by different assessors, 

which might be swayed by factors such as context, 

surroundings, and personal biases. Consequently, this can 

result in consistent and correct assessments. For instance, the 

interpretation of an image can vary among individuals due to 

their subjective perceptions, environmental influences, and 

personal biases, leading to inconsistent and incorrect 

assessments.  

 
3.2 Objective evaluation approaches 

 
Objective evaluation measures are created and utilized to 

overcome the constraints of subjective evaluations. These 

metrics use accurate formulas to produce relevant index data 

of the fused image. Image fusion benefits from their inclusion 

by offering a more standardized and consistent evaluation 

method. The fundamental principles of these metrics, 

including those derived from information theory, structural 

similarity, feature similarity, and source and output images, 

strive to offer a more quantitative and impartial evaluation of 

the quality and effectiveness of fused images. Using reference 

and non-reference standards, these metrics provide a more 

systematic and dependable approach to assessing the efficacy 

of picture fusion techniques [49, 50]. 

 

3.2.1 Metrics Based on Information Theory 

(1) Entropy (EN) 

 
1

2

0

log
L

i i

i

H P P
−

=

= −  (1) 

 

where, L is the gray level of the image from 0 to 255, Pi is the 

probability of the gray level I in the image. EN might indicate 

the texture richness and average info in the merged picture. 

The quantity of info in the fused picture is more plentiful the 

greater the EN is. And one of the most often used indicators 

for evaluating image quality is EN. If the fused picture had 

noise and artifacts, however, the value of EN would 

significantly rise and cannot accurately reflect the goodness of 

the final picture. Particularly, IR images will have a lot of 

noise. Therefore, we believe EN should only be employed as 

a secondary assessment metric on IR and VI image fusion [48, 

51, 52]. 

 

(2) Mutual Information (MI) 

MI is used to calculate the amount of info that was 

transmitted from the source image to the fusion image. 

According to information theory, MI denotes the statistical 

interdependence of two random variables [25, 53] and has the 

following mathematical definition: 

 
AB

F FA FBMI MI MI= +  (2) 

 

A high MI metric signifies that a lot of info is transmitted 

from the input pictures to the fused image, which signals good 

fusion performance, whereas MIFA and MIFB indicate the 

amount of info that went into creating the fusion pictures from 

the infrared and visible photographs, respectively. 

 

(3) Peak Signal-To-Noise Ratio (PSNR) 

SNR is used to compute the peak power to noise value of 

ower [54, 55]. These are the criteria for this metric: 

 

2

1010log
r

PSNR
MSE

  
=  

  
 (3) 

 

In Eq. (3), r denotes the fused image's peak value. A high 

PSNR value indicates that the fusion procedure is less 

damaged and that the fused picture is identical to the input 

image. 

 

3.2.2 Metrics based on structural similarity 

(1) Structural Similarity Index Measure (SSIM) 

Mathematically, SSIM between two components U and V 

is expressed as 

 

2 2 2 2

2 2
( , ) uv u v u v

u v u v u v

SSM U V
    

     
=

+ +
 (4) 

 

where, σU, σV,σUV are the variances and covariance and µU, µV 

are mean intensities. The structure, contrast, and luminance 

distortion between the fused picture and the original pictures 

are combined in the design of SSIM by modeling any image 
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distortion as a contrast distortion, mix of loss correlation, and 

radiometric [56, 57]. 
 

(2) Mean Squared Error (MSE) 

The fault and the actual distinction between the perfect or 

estimated outcomes are computed using MSE [58, 59]. 

According to its definition: 
 

( )
2

1 1

1 m n

ij ij
i j

MSE A B
mn = =

=  −  (5) 

 

where, m and n are the height and width of the picture, 

indicating the pixel rows and columns, A and B are the ideal 

and evaluate able compound pictures, respectively, and i and j 

are the pixel row and column indexes. 
 

(3) Correlation Coefficient (CC) 

CC has the following mathematical definition and assesses 

the degree of linear correlation between a fused picture and 

visible and infrared pictures [60, 61]: 
 

( )
2

r r
IF VF

CC
+

=  (6) 

 

( )( ) ( )( )

( )( ) ( )( )

, ,
1 1

2 2
, ,

1 1 1 1

H W
X i j X F i j F

i j
r
XF

H W H W
X i j X F i j F

i j i j

− − 
= =

=
 
 − −   
 = = = = 

 

(7) 

 

where, X denotes the original image. X and F represent fused 

images, and H and W stand for the length and width of the 

original picture. 

 

3.2.3 Metrics based on feature similarity 

(1) Average Gradient (AG) 

The fused image's gradient information is quantified by the 

average gradient (AG) metric, which also exemplifies its detail 

and texture [49, 62, 63], following defines: 

 

( ) ( )2 2

1 1

, ,1

2

M N
i y

i j

VF i j VF i j
AG

MN = =

+
=   (8) 

 

where, Fi=Fk,l –Fk+1,l, Fj=Fk,l–Fk,l+1, M and N represent the 

dimension of fused picture F at pixel level. The greater the 

average gradient value, the greater the data in the picture, 

resulting in a superior fused outcome. 

 

(2) Standard Deviation (SD) 

The idea is the distribution and contrast of the merged 

picture serve as the foundation for the standard deviation (SD) 

measure [2, 64]. SD is described mathematically as follows: 

 

( )( )
2

1 1

,
M N

i j

SD F i j 
= =

= −  (9) 

 

where, μ stands for the fused image's mean value. Our eyes are 

naturally drawn to areas with strong contrast as we are highly 

sensitive to visual differences. 

 

(3) Spatial Frequency (SF) 

The concept can be split into two parts: spatial column 

frequency (CF) and spatial row frequency (RF). The formulas 

for both are displayed below. Spatial frequency, which 

indicates the total activity of a picture in the spatial domain. 

 

2 2SF RF CF= +  (10) 

 

( ) ( )
2

1 1

1
, , 1

N M

i j

CF F i j F i j
M N = =

= − −  
  (11) 

 

( ) ( )
2

1 1

1
, , 1

M N

i j

RF F i j F i j
M N = =

= − −  
  (12) 

 

SF stands for both the image's spatial change and the 

precision of the details. The textures and edges get richer as 

the SF gets bigger. Additionally, it operates apart from the 

reference image. The value of SF will increase due to the 

undesired artefacts in the combined IR and VI pictures. The 

quality of the merged image cannot be accurately reflected by 

the SF in this situation [14, 48, 65]. 

 

(4) Gradient-Based Fusion Performance (QAB/F) 

Based on the presumption that the edge information in the 

original pictures is preserved in the fused picture, QAB/F 

assesses the quantity of edge info that is transmitted from the 

original photos to the fused picture [66, 67]. Following is a 

definition of QAB/F: 

 

( )

( )

1 1

1 1

, ( , ) ( , ) ( , )

( , ) ( , )

N M
AF A BF B

AB i jF
N M

A B

i j

Q i j w i j Q i j w i j

Q

w i j w i j

= =

= =

+

=

+





 
(13) 

 

3.2.4 Metrics based on source and produced images 

(1) Visual Information Fidelity (VIF) 

VIF was created based on visual information fidelity (VIF) 

and is solely utilized in image fusion [68]. The visual data 

from the original image was extracted using the VIF model by 

Han et al. [69]. After additional processing to eliminate the 

distortion of information, they were able to successfully fuse 

the visual data. The VIF, which is specifically utilized for 

fusion assessment, is generated after incorporating all of the 

visual info. summarizes the VIF calculating procedure into 

four stages. It is necessary to first filter and partition the fusion 

image into numerous blocks from the source image. Check to 

see whether any of the blocks have distorted visual data next. 

Third, check the accuracy of the visual data in each block. In 

the fourth stage, the overall index based on VIF is determined 

[69]. 

 

(2) Other measures 

The metrics QCB and QCV, which gauge how well-fused 

pictures work visually, are based on what humans see. An 

important metric for assessing an algorithm's performance is 

running time. The computational effectiveness of the model is 

assessed using the time-consuming nature of an image fusion 

technique [47, 49, 70]. 

 

 

4. EXPERIMENT 

 

The number of studies and methods in the field of image 
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merging is growing every day. The primary goal is to explore 

the present issues and potential directions for image fusion as 

they relate to diverse fields, including surveillance, 

photography, medical diagnosis, and remote sensing. The 

following data sets were used in the tests for the visual and 

infrared image fusion in this field: TNO dataset [71] is a 

collection of multispectral nighttime images captured by 

several multiband camera systems in various military-relevant 

settings. The FLIR dataset offers comparable RGB pictures 

and annotated thermography datasets. 14,452 infrared pictures 

altogether are included in the collection. The majority of the 

15,488 pairs of photos in the LLVIP collection [72] were 

captured in extremely dark environments, and each pair is 

perfectly matched in time and location. The KAIST [73] data 

collection contains different broad sceneries of a campus, a 

street, and a rural area. Each image has an associated visual 

picture and thermal picture. With a spatial resolution of 480 × 

640, the infrared and visible picture pairings in the MSRS [74] 

collection include both daylight and nighttime settings. Table 

1 shows performance of some deep learning-based image 

fusion techniques. Experiments were conducted on 10 pair of 

images collected from KAIST data set. 

Table 2 shows the results of some fusion methods based on 

deep learning conducted on 21 pair of images collected from 

TNO dataset. 

 

Table 1. The performance of some methods using 10 pair pictures from KAIST data set and the best first two values are indicated 

in bold and red Italic font 
 

Technique SF EN QAB/F SSIM MI SD VIF 

DenseFuse [37] 9.3238 6.8526 0.4735 0.8692 13.7053 81.7283 0.6875 

NestFuse [38] 9.7807 6.8745 0.5011 0.8817 13.7491 83.0530 0.7195 

TGFuse [44] 11.3149 6.9838 0.5863 0.9160 13.9676 94.7203 0.7746 

DeepFuse [75] 8.3500 6.6102 0.3847 0.9138 13.2205 66.8872 0.5752 

IFCNN [76] 11.8590 6.6454 0.4962 0.9129 13.2909 73.7053 0.6090 

U2Fusion [77] 11.0368 6.7227 0.3934 0.9147 13.4453 66.5035 0.7680 

RFN-Nest [78] 5.8457 6.7274 0.3292 0.8959 13.4547 67.8765 0.5404 

FusionGAN [79] 8.0476 6.5409 0.2682 0.6135 13.0817 61.6339 0.4928 
 

Table 2. The performance of some techniques based on deep learning using 21 pair of pictures from TNO dataset and best first 

two values are specified in bold and red Italic font 
 

Technique EN SD AG SF SSIM VIF MI 

DDcGAN [36] 7.5306 50.5463 6.3313 11.6881 0.5098 0.6387 15.0611 

DenseFuse [37] 6.9307 35.3016 2.9871 5.9371 0.6861 0.5013 13.8614 

DeepFuse [75] 6.8825 34.1770 4.0241 8.0985 0.7122 0.5529 13.6546 

IFCNN [76] 6.7259 32.0164 5.9337 11.5053 0.7193 0.3754 13.4489 

U2Fusion [77] 4.0501 37.3202 6.3172 11.7124 0.6371 0.6672 14.0979 

fusionGAN [79] 6.6094 30.5280 3.1951 6.2315 0.6826 0.2614 13.2159 

MTNO [80] 7.3101 51.6398 10.9079 21.2000 0.5598 1.0053 14.6201 

 

According to objective experimental findings, each fusion 

technique has benefits and downsides, and diverse techniques 

exhibit distinct benefits in various contexts. The integration of 

infrared and visible pictures utilizing deep learning techniques 

has led to the continual advance of enhanced new technologies. 

Evaluation criteria shown in Table 1 quantify the excellence 

and efficiency of several image fusion techniques that rely on 

deep learning. The metrics encompass measurements related 

to the differentiation in brightness, the level of detail, the 

distinctness, and the accuracy of the merged pictures. 

According to the values, the TGFuse approach demonstrates 

the top scores in most metrics, with NestFuse, and U2Fusion 

closely following. These findings indicate that TGFuse is the 

most efficient and resilient technique for image fusion, mainly 

when applied to the KAIST dataset. According to the 

information presented in Table 2, the MTNO technique 

exhibits highest scores in most criteria, with DDcGAN, 

U2Fusion, IFCNN, and DeepFuse closely trailing behind. The 

findings suggest that MTNO is the optimal and robust method 

for image fusion, mainly when used with the TNO dataset. 

FusionGAN and DenseFuse exhibit inferior performance 

across all criteria, indicating their diminished efficacy in 

picture fusion compared to the other approaches. Nevertheless, 

diverse datasets and settings may necessitate distinct 

evaluation metrics and criteria contingent upon the aim and 

application of picture fusion. 

The objective experimental findings indicate that the 

TGFuse technique achieves the highest scores in most criteria, 

especially when applied to the KAIST dataset. Similarly, the 

MTNO approach demonstrates superior performance in most 

criteria, particularly when used in the TNO dataset. Hence, the 

authors should concentrate on extensively investigating and 

enhancing the TGFuse and MTNO approaches for image 

fusion. These methods have demonstrated superior efficiency 

and durability in their specific contexts, and their ongoing 

progress through deep learning techniques has resulted in the 

creation of improved new technologies. By conducting a more 

thorough investigation of the methods and algorithms utilized 

in TGFuse and MTNO, the authors have the potential to reveal 

valuable insights that can further advance the field of image 

fusion. Furthermore, it is advantageous for the authors to 

contemplate the possible versatility of these strategies about 

other datasets and environments, as suggested by the results, 

to guarantee their strength and effectiveness in a wide range of 

picture fusion applications. 

While the image fusion technique is making some progress, 

there are still several issues for which there is no ideal answer. 

In the future, it will be necessary to enhance and explore the 

issues with picture fusion. Although several convolutional 

neural network-based image fusion models perform well, most 

of them fall short of perfection. Finally, to completely 

maintain the feature information acquired from each layer of 

convolution, the fusion approach utilizing the convolution 

neural network must give focus on improving the fluidity of 
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the intermediate layer network's features. 

 

 

5. CONCLUSIONS 

 

The "Deep Learning Methods for Fusion of Infrared and 

Visible Images: A Survey" concludes the progress made in 

image fusion, explicitly focusing on deep learning techniques. 

The survey systematically assesses the fusion methods by 

employing various picture metrics, distinguishing their 

respective contributions, advantages, and constraints. 

Furthermore, it clearly defines the current state of research on 

the fusion of infrared and visible images and provides a 

framework for possible future study directions.  

The survey highlights the notable progress of employing 

deep learning approaches in infrared and visible image fusion. 

It emphasizes the enhanced efficacy of image fusion methods, 

creating fused images with various possible uses. Nevertheless, 

the survey recognizes the current difficulties and discussions 

surrounding the application of deep learning in picture fusion. 

It highlights the necessity for further investigation and 

creativity to tackle these intricacies and guarantee the 

continuous advancement of this domain. 

From an objective and subjective standpoint, the survey's 

comprehensive assessment of the fusion algorithms offers 

significant insights into the effectiveness of different fusion 

procedures. This analysis discerns the advantages and 

constraints of various methodologies, providing a 

comprehensive comprehension of their efficacy in varied 

circumstances. The survey's emphasis on objective and 

subjective judgments highlights the need to use a complete 

evaluation methodology to appropriately measure the quality 

and efficiency of image fusion techniques. 

The "Deep Learning Methods for Fusion of Infrared and 

Visible Images: A Survey" is a helpful resource for scholars 

and practitioners in image fusion. This presentation 

demonstrates the progress made possible by deep learning and 

highlights the unresolved obstacles and the prospective 

directions for future research. The survey enhances the 

improvement and innovation in the field of image fusion by 

offering a comprehensive and unbiased evaluation of the 

present state of the art. 
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