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Seeds play an essential role in corn cultivation. Seed is one of the determining factors for 

plants to grow well. Corn seeds generally are diploid, with two chromosomes in one set. 

Besides diploid, there are haploid seeds that only have one chromosome. The haploid is 

only 0.1% of the total natural corn seed. Engineering technology development produced 

double haploid (DH). Corn seed yields can genetically improve plants. DH can shorten the 

period and improve breeding efficiency. In this article, we classify the image of corn 

seeds—public data from a rovile dataset with 1,230 haploid and 1,770 diploid images. The 

research steps included pre-processing, resizing, and undersampling the majority class for 

balanced data. Then, split 80% training and 20% testing data. The training data uses 5-fold 

cross-validation. Classification using a Convolutional Neural Network (CNN) with 

modified VGG architecture was made by adding two dropout layers 0.5 after the dense 

layer. The CNN architecture also uses transfer learning and fine-tuning techniques. Transfer 

learning improves performance, minimizes computing, and reduces training time. Fine 

tuning aims to taking a model that has been trained on a specific task and then piecing 

together the last few layers of that model to solve a new task. The model from the cross-

validation results is then used for data testing. The test results show that the performance 

for accuracy, precision, recall, f1-score, and AUC is 96.83%, 95.9%, 98.87%, 97.36%, and 

96.39%, respectively. 
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1. INTRODUCTION

Corn has many roles as food, feed, industrial raw material, 

and even cosmetic ingredients. Currently, the production of 

corn as feed is the most significant part of the utilization of 

corn products. The potential and demand that tends to increase 

is an opportunity and a challenge to increase production in 

quality and quantity [1, 2]. 

There are generally diploid and haploid seeds. Diploid seeds 

are present in most of the corn. Diploid seeds have two 

chromosomes in one set. In contrast, haploid seeds have only 

one chromosome in a group. Haploid seeds are substances that 

produce high-quality seeds. However, only 0.1% of haploid 

seeds are natural. Chromosomal engineering produces double 

haploid (DH) seeds. DH can increase corn's growth production 

and productivity [3, 4]. 

The manual selection of haploid seeds is strict because only 

very few diploid seeds are found, requiring a long process and 

a high error rate. Separation of seeds can be through 

differences in color in the embryo. Separation through color 

differences makes it possible to classify images. This research 

performs image classification for haploid and diploid seeds. It 

isn't easy to distinguish these two types of seeds by the naked 

eye, except with detailed observations. Figure 1 shows the 

visual difference between haploid and diploid seeds [5]. 

Haploid seeds have a colorless embryo, whereas diploid 

seeds tend to be dark brown. 

Figure 1. Haploid and diploid corn seeds 

An alternative for selecting haploid and diploid seeds is 

through computer vision (CV). This knowledge includes 

artificial intelligence, which trains computers to interpret and 

understand the visual world. CV involves image processing, 

machine learning, and deep learning. Image processing aims 

to improve images to make mining tasks easier. Meanwhile, 

machine learning and deep learning play a role in the feature 

extraction and image mining processes (classification, 

clustering, recognition, segmentation, and detection). The 

haploid and diploid seeds can be differentiated by 

classification mining. 

The feature extraction process uses machine learning. The 

limitation of machine learning is determining features 

manually. Therefore, we use deep learning (DL). DL 

techniques extract simple to complex features from 

experimental datasets. In DL, feature extraction and 

classification only use one method. One that has widespread 

use is the Convolutional Neural Network (CNN) [5]. 
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The benefits of classifying using computer vision compared 

to manual selection are: 

1. cost and time effective. Classification with computer

vision can save costs and time.

2. possible to automate, because the system already has

a model to be tested.

3. minimizing errors, through the system built we can

avoid repeated errors.

4. The system built is adaptive, meaning that its

classification capabilities can always be optimized.

Classification is essential in grouping an image based on

class. Classification using the Convolutional Neural Network 

(CNN) with the popular transfer learning approach produces 

good performance. The transfer learning (TL) approach is used 

by utilizing a model that has been trained. TL provides faster 

training time than conventional methods. Generally, the model 

uses weights from the ImageNet dataset [6]. 

CNN has various architectural models. In previous studies, 

classification was done using the transfer learning pre-trained 

network from AlexNet, VGG, GoogleNet, and Resnet. 

Researchers reported that VGG-19 produced the highest 

accuracy at 94.22% [7]. In addition, other studies classify 

haploid and diploid using pre-trained networks such as 

Alexnet, GoogleNet, Resnet, and VGG. The classifier layer 

uses a decision tree, k-nearest Neighbor, and Support Vector 

Machine (SVM). Pre-trained network ResNet50 produces the 

highest accuracy of 91.4% [8]. 

In previous studies, the data between classes needed to be 

balanced. Therefore, there is an opportunity to improve 

performance. This study carried out the process of balancing 

the data with undersampling techniques. 

Novelties in this research include: 

1. The technique of balancing data using random

undersampling. The number of data images consists of 1,230 

haploid and 1,770 diploid. This research uses the same amount 

of data, namely 1,230 images for each class. 

2. CNN architecture uses modified VGG19 with two

dropout layers 0.5. This can drastically reduce resource usage 

compared to using VGG19. 

3. Use of transfer learning and fine-tuning on the

modified VGG19 CNN architecture. 

2. METHODOLOGY

Classification of haploid-diploid corn seed images has the 

following steps: 

(1) Data collection. The public data that can be downloaded

via the Robotics, Vision, and Learning Research Group

website (rovile.org).

(2) Pre-processing. The image data is changed to size 224.

Next, balanced data is performed with randomized

undersampling. Data on the majority class is reduced to the

same amount as the minority class.

(3) Split training and testing data 80:20.

(4) The training process includes:

(a) Split training and validation data using 5-fold cross-

validation. The data will be divided into five parts.

(b) The training data is processed using a transfer

learning approach using the modified VGG-19

architecture at the beginning of freezing on 14 feature

extraction layers. Furthermore, the classification

layer uses fine-tuning as validation for new training

data.

(c) The output is the model selected from 5-fold cross-

validation—the model based on the highest value of

AUC.

(5) The testing process is carried out in three steps, including:

(a) Input the image dataset to predict 20% of testing data.

(b) The testing is classified using the model result from

the training process.

(c) The performance uses accuracy, precision, recall, f1-

score, and Area Under Curve (AUC).

The complete steps of the proposed research are shown in 

Figure 2. 

Figure 2. System proposed 

2.1 Randomized undersampling 

Randomized undersampling aims to balance data between 

classes. Undersampling is done by reducing the data in the 

majority class to the same as the minority class. The 

undersampling process is done by dropping randomized data 

on the majority class. The undersampling illustration is shown 

in Figure 3. 

Figure 3. Technique undersampling 

2.2 Visual Geometry Group (VGG) 

VGG is one of the CNN series that won second place in the 

2014 ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). However, VGG became the primary winner in the 

localization task. VGG is from the University of Oxford. Well-

known VGG models are the VGG16 and VGG19. In this study, 

the VGG19 is used. The architecture comprises 19 layers, 

including 16 convolutional layers and three fully connected 

layers. Besides that, it has five max-pooling and one softmax 

layer. The number of parameters on VGG19 is over 144 

million [9]. Therefore, this study uses modified VGG19 with 

more than 46 million parameters. The complete architecture of 

the modified VGG19 is shown in Table 1. 

Modified VGG19 can be found in the classification layer; 

two dropout layers are 0.5 after the dense layer. Dropout 

performs random parameter deletion according to the input 

dropout value. 
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Table 1. Architecture of VGG19 

 
No. Layer (type) Output Shape Param # 

1. input_1 (InputLayer) (None, 224, 224, 3) 0 

2. block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

3. block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

4. block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 

5. block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 

6. block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 

7. block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 

8. block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 

9. block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 

10. block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 

11. block3_conv4 (Conv2D) (None, 56, 56, 256) 590080 

12. block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 

13. block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 

14. block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 

15. block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 

16. block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808 

17. block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 

18. block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 

19. block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 

20. block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 

21. block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808 

22. block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 

23. to flatten (None, 25088) 0 

24. dense (Dense) (None, 1024) 25691136 

25. dropout (Dropout) (None, 1024) 0 

26. dense_1 (Dense) (None, 1024) 1049600 

27. dropout_1 (Dropout) (None, 1024) 0 

28. dense _2(Dense) (None, 2) 2050 

Total params: 46,767,170 

Trainable params: 26,742,786 

Non-trainable params: 20,024,384 

 

 

Modified VGG19 has more than 46 million parameters, 

comprising 26 million trainable and 20 million non-trainable 

parameters. The difference between trainable and non-

trainable parameters is updating the value of parameters. If 

trainable is updating, non-trainable is not updating during 

training. 

The number of parameters in VGG19 is 144 million, so it 

takes more time to process them. Modified VGG19 adds 

dropout 0.5 twice. It can save resources by more than 66.67% 

(from 144 million to 46 million parameters). 

 

2.3 Transfer learning and fine-tuning 

 

Transfer learning (TL) aims to save computing resources. 

The system does not need to conduct training dataset 

experiments from the start. Transfer learning uses resources 

from previously trained pre-trained networks to new tasks. In 

this study, CNN uses the weights and biases of imagenet. 

Meanwhile, fine-tuning aims to perform tuning according to 

the experimental dataset. Generally, fine-tuning is applied to 

the classification layer. If the results do not meet expectations, 

fine-tuning can be used for the final block convolutional layers 

that extract complex features.  

Transfer learning uses an initial freeze, the first until the 

fourteenth convolution layer. Freeze layers aim to skip training 

on the basic features generated by the extraction feature layers. 

Furthermore, the fifteenth and sixteenth convolutional layers 

conduct training on the classification task of the new dataset. 

Figure 4 shows the steps of transfer learning [10, 11]. 

 

 

 
 

Figure 4. Transfer learning 
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Figure 4 shows an illustration of the transfer learning. Image 

data uses size 224. The convolutional layer block consists of 

the convolutional layer and max-pooling. The first up to the 

fourteenth convolutional layer is frozen and immediately 

retrieved from the imagenet weight. 

The pre-trained network weights are not updated during 

training. One way to improve model performance is by 

training the weights of the VGG-19. The adjustments were 

made to some of the top layers rather than the entire VGG-19 

layer. 

The extraction feature layers learn simple and standard 

features in almost every image: the higher the layer, the more 

specific the features. Fine-tuning is done by unfreezing some 

of the classification layers. This technique makes refining the 

model more relevant for a particular task. The goal is to adapt 

special features to the new dataset. The model from the 

previous training is continued; this step can improve the 

model's performance. 

Modification of VGG-19 was carried out in the classifier 

section with modifications according to fine-tuning carried out 

as a test scenario with unfreeze starting at layer 15. Fine-tuning 

aims to adapt the pre-trained model to new tasks—adaptation 

by training the corn seed image dataset. Fine-tuning is to 

retrain the model on new data. The classification layer section 

has a fully connected layer with activation of the rectified 

linear unit (relu) and softmax.  

 

2.4 Cross-validation 

 

When the training process requires proper validation, this 

research uses 5-fold cross-validation, which divides the 

training data into two parts: training and validation. Split into 

80% training data and 20% validation data. At this stage, the 

aim is to get the model with the performance from five training 

and validation data variations. The model is saved for 

experiments using testing data [12, 13]. 

 

2.5 Performance measures 

 

The confusion matrix is used in the model evaluation 

process as a solution to determine the performance of the CNN 

model. In the binary classification task, the confusion matrix 

includes four indices: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN) [14-16]. An 

illustration of the confusion matrix can be seen in Figure 5. 

 

 
 

Figure 5. Confusion matrix 

 

Performance measures include precision, recall, accuracy, 

f1-score, and Area Under Curve (AUC). The precision is 

determined by dividing the number of true positives by the 

total number of positive predictions made. The recall 

represents the accurate prediction of positive cases, indicating 

the total number of cases correctly identified. To determine the 

accuracy of a dataset, one must divide the total number of 

correct predictions by the overall dataset size. The f1-score is 

a measure of a model's accuracy, considering both precision 

and recall. 
 

𝐴𝑐𝑐. =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐. =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑟𝑒𝑐. =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑇𝑃

2 × (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 (4) 

 

𝐴𝑈𝐶 =  
1

2
 (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (5) 

 

If the accuracy, precision, recall, and f1-score can be 

obtained with the confusion matrix, the Receiver Operating 

Characteristic (ROC) curve shows the AUC value.  

 

 

3. RESULT AND DISCUSSION 
 

3.1 Test environment  

 

This section describes the hardware and software testing 

environment used for experiments and test scenarios. The 

hardware consists of Google Colaboratory, Python 3, 12 GB 

RAM, Tesla T4 GPU, 78 GB Disk, Intel(R) Xeon(R) CPU @ 

2.00GHz. Tensorflow Libraries 2.9.2, Keras 2.9.0. Numpy 

1.21.6. Open CV 4.6.0.66, Seaborn 0.11.2, Scikit Learn 1.0.2, 

and Imblearn 0.8.1. 

 

3.2 Experiment scenario 

 

The test has four experiment scenarios. It aims to get the 

results. Comparison of imbalanced and balanced data and fine-

tuning are the differentiating factors. Testing has four plans, 

including: 

(1) Imbalanced data without fine-tuning 

(2) Imbalanced data with fine-tuning 

(3) Balanced data without fine-tuning 

(4) Balanced data with fine-tuning 

 

3.3 The dataset 

 

Rovile public data has two classes, 1.230 haploid, and 

1.770 diploid—total image data of 3,000. Split data training, 

validation, and testing are shown in Table 2. 

 

Table 2. Split data 

 

 Imbalanced Data Balanced Data 

 Haploid Diploid Haploid Diploid 

Training  787 1133 787 787 

Validation 197 283 197 283 

Testing 246 354 246 354 

Total 1230 1770 1230 1338 

 

In addition to balancing the data, it is necessary to initialize 

the hyperparameter values, learning rate 0.0001, epoch 64, and 

batch-size 32. Meanwhile, the Optimizer uses Adaptive 

Moment Estimation (Adam) [17]. The Adam optimizer 

combines two approaches: momentum and Adaptive sub-
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gradient from Root Means Square Propagation (RMSProp) 

[18] and Gradient Descent with Momentum (GDM) [19]. 

 

3.4 Result 

 

3.4.1 Training with 5-fold cross-validation 

The training data is split into training and validation data 

using 5-fold cross-validation. Tables 3 through 6 show the 

performance measures from the training results from the first 

until the fourth scenario. 

 

Table 3. Result of the first scenario 

 
fold Acc. Prec. Rec. f1-score AUC 

1 0.85 0.88 0.86 0.87 0.8462 

2 0.86 0.88 0.88 0.88 0.8536 

3 0.84 0.88 0.83 0.86 0.8365 

4 0.88 0.92 0.88 0.90 0.8798 

5 0.86 0.88 0.88 0.88 0.8519 

 

Table 4. The result of the second scenario 

 
fold Acc. Prec. Rec. f1-score AUC 

1 0.91 0.91 0.93 0.92 0.9063 

2 0.97 0.99 0.95 0.97 0.9667 

3 0.98 1.00 0.98 0.99 0.9833 

4 0.99 1.00 0.98 0.99 0.9875 

5 0.99 1.00 0.99 0.99 0.9917 

 

Table 5. The result of the third scenario 

 
fold Acc. Prec. Rec. f1-score AUC 

1 0.87 0.91 0.82 0.86 0.8706 

2 0.88 0.92 0.84 0.88 0.8807 

3 0.86 0.93 0.78 0.85 0.8629 

4 0.85 0.87 0.83 0.85 0.8524 

5 0.85 0.88 0.81 0.84 0.8499 

 

Table 6. Result of the fourth scenario 

 
fold Acc. Prec. Rec. f1-score AUC 

1 0.93 0.97 0.90 0.93 0.9340 

2 0.96 0.99 0.93 0.96 0.9619 

3 0.95 0.99 0.91 0.95 0.9518 

4 0.97 0.98 0.95 0.97 0.9669 

5 0.99 0.98 0.99 0.99 0.9873 

 

Table 3 shows the results of the 5-fold cross-validation from 

scenarios 1 and 2. The training results in the first scenario 

(imagined data and without fine-tuning) show that fold-4 has 

the performance with an accuracy of 0.88, precision of 0.92, 

recall of 0.88, f1-score of 0.90, and AUC 0.8798. 

Table 4 shows the result of the second scenario, using 

imbalanced data and fine-tuning to produce the performance 

on fold-5. The version achieved is accuracy 0.99, precision 

1.00, recall 0.99, f1-score 0.99, and AUC 0.9917. 

Tables 5 and 6 show the results of the third and fourth 

scenarios. After performing 5-fold cross-validation, the result 

is in the third scenario (balanced data without fine-tuning), 

fold-2—performance with accuracy 0.88, precision 0.92, 

recall 0.84, f1-score 0.88, and AUC 0.8807. 

For fourth scenario (balanced data and fine-tuning). The 

training results show that the model is produced at fold-5. The 

performance consists of accuracy 0.99, precision 0.98, recall 

0.99, f1-score 0.99, and AUC 0.9873. 

Accuracy and val_accuracy are metrics for evaluating 

model performance on classification tasks. Both calculate the 

ratio between the number of correct predictions and the total 

number of predictions made by the model, but there are 

differences in the data used. Accuracy is calculated on training 

data the model operates in the learning process, while 

val_accuracy is calculated on validation data not used in 

training. In model training, the main goal is to optimize the 

accuracy value of the training data so that the model can learn 

the patterns contained in the data. However, model 

performance is measured on training and validation data that 

the model has never seen before. If model performance on 

training data increases but performance on data validation 

decreases, this can indicate overfitting. 

Val_accuracy that is lower than accuracy indicates that the 

model is learned from the training data and cannot generalize 

well to new data. Generalization is the ability of a model to 

produce accurate predictions on data that has never been seen 

before. Figure 6 shows that the accuracy and val_accuracy 

during the model training process can be generalized well to 

data that has never been seen before. The test results with the 

model are obtained in scenario 2. The model produced in 

scenario 2 is in fold-5. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 

Figure 6. Graphics of accuracy and validation accuracy in 

the second scenario. (a) until (e) is fold-1 until fold-5 (x-

axis=epoch, y-axis=accuracy) 

 

3.4.2 Time of training 

This section describes the time needed to carry out the 

training process. Figure 7 shows the time required to train each 

fold of the second scenario. 

 

 
 

Figure 7. The training time of the second scenario (in sec.) 

 

Model training takes time, using Google Colaboratory Pro, 

the training time for the second experiment can be seen in 

Figure 7. Each fold that is trained requires a different training 

time from one another. One reason for the difference in 

training time is that the model training uses early stopping. It 

makes the model automatically stop according to the 

command given. They are making the amount of training for 

each model different. In the first test experiment, the time 

needed is around 150 to 400 seconds.  

 

3.4.3 Receiver Operating Characteristic (ROC) 

 

 
 

Figure 8. ROC result of the second scenario 

 

The ROC Curve is a graph that evaluates the performance 

of a classification model in distinguishing between positive 

and negative classes. The ROC Curve line that is further away 

from the diagonal line indicates better model performance. 

The AUC value is the area under the ROC curve and provides 

a numerical value for model performance; the more significant 

the AUC value, the better the model performance [20-22]. 

Figure 8 shows the ROC with the AUC value in the second 

scenario.  

ROC compares the true positive rate and false positive rate. 

The second scenario gained AUC 0.9917 in fold-5, as 

discussed in Table 4.  

 

3.5 Testing experiment 

 

The model from each scenario is used for experiments with 

testing data because there is no guarantee that the model from 

a system is optimal for testing in different methods. The testing 

data is 20%, excluding training and validation data. 

When training a model, the dataset will usually be divided 

into three parts: training, validation, and testing data. The 

purpose of testing data is to test the model's performance on 

data the model has never seen before. In the model training 

process, we use the training data to teach the model how to 

recognize patterns and learn the relationship between features 

and labels. However, a model that is too adapted to the training 

data can cause overfitting. Therefore, we need validation data 

to evaluate model performance on data that has never been 

seen before and avoid overfitting. 

After we have succeeded in selecting the model using 

validation data, we need to test the model's performance on 

testing data that the model has never seen before. It is essential 

to ensure that the model is optimal for training and validation 

data and generally usable for data that has never been seen 

before. Testing data can provide a more accurate evaluation of 

model performance and measure how well the model can be 

used in real situations. It helps to ensure that the model not 

only remembers the patterns present in the training data but 

also generalizes and performs well on data it has never seen 

before. Table 7 presents the results of the model performance 

from each experiment conducted on the testing data. The 

fourth test experiment gave the model performance results. 

 

Table 7. The model testing results for each scenario 

 

Scenario Acc. Prec. Rec. f1-score AUC 

1 0.918 0.896 0.975 0.934 0.906 

2 0.952 0.931 0.992 0.960 0.943 

3 0.907 0.907 0.938 0.922 0.899 

4 0.968 0.959 0.989 0.974 0.964 

 

After completing the training and validation process, the 

model is used to predict the testing data. The confusion matrix 

is used to measure model performance by comparing the 

number of correct and incorrect predictions made by the 

classifier in the model's testing set, as shown in Table 7. 

Because there are only two classes, haploid and diploid, in this 

study, the positive class has been determined as haploid, and 

the negative class has been selected as diploid. Among the 

samples labeled as haploid in the dataset is the TP data 

predicted by the haploid algorithm, which is haploid. What the 

algorithm predicts to be diploid but haploid is called FP. 

Among the samples labeled as diploid in the data set, so-called 

TNs are indicated by the algorithm as diploid. The algorithm 
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also predicted data as haploid, but the truth is diploid is called 

FN. Table 8 shows the confusion matrix from the 20% testing 

results. 

 

Table 8. Confusion matrix of all scenarios 

 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

206a 40b 220a 26b 212a 34b 231a 15b 

9c 345d 3c 351d 22c 332d 4c 350d 
aTP; bFP; cFN; dTN 

 

 
 

Figure 9. Sample of right and wrong recognition 

 

The testing data is classified using the model obtained from 

the previous learning process. Scenario 4 gets the testing 

results. The results show an accuracy of 0.968, a precision of 

0.959, a recall of 0.989, an f1-score of 0.974, and an AUC of 

0.964. Figure 9 shows an example of an image successfully 

recognized correctly (text: blue) and incorrectly (text: red). 

Table 8 shows that of the four test scenarios, haploid seeds 

have a higher FP value than diploid seeds. The difference 

between haploid and diploid seeds lies in the embryo's color 

and the endosperm at the top of the seeds. The embryo tends 

to be colorless in haploid seeds, and the endosperm is paler. 

On the other hand, diploid seeds have a more apparent dark 

brown color in the embryo and endosperm. Experiments show 

that there are more classification errors in haploid seeds. 

 

 

4. CONCLUSION 

 

This study used transfer learning and fine-tuning 

approaches to the modified VGG-19 model for classifying 

haploid and diploid corn seed images. It modified VGG-19 by 

adding twice dropout 0.5 after the dense layer. The transfer 

learning approach provides an advantage in applying a 

previously trained model to new data. Four test scenarios are 

carried out: unbalanced data without fine-tuning, unbalanced 

data with fine-tuning, balanced data without fine-tuning, and 

flat data with fine-tuning. The undersampling technique is 

used to balance between haploid and diploid data. Data 

balancing gives the result that with proportional data, it can 

minimize prediction errors from classes that have less data. 

This study shows that the VGG-19 model can be used 

effectively for image classification of corn seeds. With 

balanced data and the application of fine-tuning, it has got the 

performance. The results show accuracy, precision, recall, f1-

score, and AUC are 96.83%, 95.9%, 98.87%, 97.36%, and 

96.39%. 

This research has limitations, including that the resulting 

performance can still be improved. Next, the experiment can 

use multiclass for other types of corn seeds. Tuning can also 

be done to determine the influence of each CNN 

hyperparameter (learning rate, epoch, batch size) 

This research can be used as an alternative to support the 

classification of haploid and diploid corn seeds. The system 

can be implemented automatically to recognize the data 

entered for further development directly.  
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