
Transfer Learning and Fine Tuning in Modified VGG for Haploid Diploid Corn Seed

Images Classification

Wahyudi Setiawan1 , Moch. Andyka Saputra2, Meidya Koeshardianto2 , Riries Rulaningtyas3*

1 Department of Information Systems, University of Trunojoyo Madura, Bangkalan 69162, East Java, Indonesia
2 Department of Informatics, University of Trunojoyo Madura, Bangkalan 69162, East Java, Indonesia
3 Department of Physics, Universitas Airlangga, Surabaya 60115, East Java, Indonesia

Corresponding Author Email: riries-r@fst.unair.ac.id

https://doi.org/10.18280/ria.380211 ABSTRACT

Received: 27 August 2023

Revised: 1 December 2023

Accepted: 18 January 2024

Available online: 24 April 2024

Seeds play an essential role in corn cultivation. Seed is one of the determining factors for

plants to grow well. Corn seeds generally are diploid, with two chromosomes in one set.

Besides diploid, there are haploid seeds that only have one chromosome. The haploid is

only 0.1% of the total natural corn seed. Engineering technology development produced

double haploid (DH). Corn seed yields can genetically improve plants. DH can shorten the

period and improve breeding efficiency. In this article, we classify the image of corn

seeds—public data from a rovile dataset with 1,230 haploid and 1,770 diploid images. The

research steps included pre-processing, resizing, and undersampling the majority class for

balanced data. Then, split 80% training and 20% testing data. The training data uses 5-fold

cross-validation. Classification using a Convolutional Neural Network (CNN) with

modified VGG architecture was made by adding two dropout layers 0.5 after the dense

layer. The CNN architecture also uses transfer learning and fine-tuning techniques. Transfer

learning improves performance, minimizes computing, and reduces training time. Fine

tuning aims to taking a model that has been trained on a specific task and then piecing

together the last few layers of that model to solve a new task. The model from the cross-

validation results is then used for data testing. The test results show that the performance

for accuracy, precision, recall, f1-score, and AUC is 96.83%, 95.9%, 98.87%, 97.36%, and

96.39%, respectively.

Keywords:

image classification, haploid-diploid, corn

seed, VGG, transfer learning, fine-tuning,

Convolutional Neural Network

1. INTRODUCTION

Corn has many roles as food, feed, industrial raw material,

and even cosmetic ingredients. Currently, the production of

corn as feed is the most significant part of the utilization of

corn products. The potential and demand that tends to increase

is an opportunity and a challenge to increase production in

quality and quantity [1, 2].

There are generally diploid and haploid seeds. Diploid seeds

are present in most of the corn. Diploid seeds have two

chromosomes in one set. In contrast, haploid seeds have only

one chromosome in a group. Haploid seeds are substances that

produce high-quality seeds. However, only 0.1% of haploid

seeds are natural. Chromosomal engineering produces double

haploid (DH) seeds. DH can increase corn's growth production

and productivity [3, 4].

The manual selection of haploid seeds is strict because only

very few diploid seeds are found, requiring a long process and

a high error rate. Separation of seeds can be through

differences in color in the embryo. Separation through color

differences makes it possible to classify images. This research

performs image classification for haploid and diploid seeds. It

isn't easy to distinguish these two types of seeds by the naked

eye, except with detailed observations. Figure 1 shows the

visual difference between haploid and diploid seeds [5].

Haploid seeds have a colorless embryo, whereas diploid

seeds tend to be dark brown.

Figure 1. Haploid and diploid corn seeds

An alternative for selecting haploid and diploid seeds is

through computer vision (CV). This knowledge includes

artificial intelligence, which trains computers to interpret and

understand the visual world. CV involves image processing,

machine learning, and deep learning. Image processing aims

to improve images to make mining tasks easier. Meanwhile,

machine learning and deep learning play a role in the feature

extraction and image mining processes (classification,

clustering, recognition, segmentation, and detection). The

haploid and diploid seeds can be differentiated by

classification mining.

The feature extraction process uses machine learning. The

limitation of machine learning is determining features

manually. Therefore, we use deep learning (DL). DL

techniques extract simple to complex features from

experimental datasets. In DL, feature extraction and

classification only use one method. One that has widespread

use is the Convolutional Neural Network (CNN) [5].

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 483-490

Journal homepage: http://iieta.org/journals/ria

483

https://orcid.org/0000-0003-0068-1443
https://orcid.org/0000-0002-8813-7188
https://orcid.org/0000-0001-7058-1566
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380211&domain=pdf

The benefits of classifying using computer vision compared

to manual selection are:

1. cost and time effective. Classification with computer

vision can save costs and time.

2. possible to automate, because the system already has

a model to be tested.

3. minimizing errors, through the system built we can

avoid repeated errors.

4. The system built is adaptive, meaning that its

classification capabilities can always be optimized.

Classification is essential in grouping an image based on

class. Classification using the Convolutional Neural Network

(CNN) with the popular transfer learning approach produces

good performance. The transfer learning (TL) approach is used

by utilizing a model that has been trained. TL provides faster

training time than conventional methods. Generally, the model

uses weights from the ImageNet dataset [6].

CNN has various architectural models. In previous studies,

classification was done using the transfer learning pre-trained

network from AlexNet, VGG, GoogleNet, and Resnet.

Researchers reported that VGG-19 produced the highest

accuracy at 94.22% [7]. In addition, other studies classify

haploid and diploid using pre-trained networks such as

Alexnet, GoogleNet, Resnet, and VGG. The classifier layer

uses a decision tree, k-nearest Neighbor, and Support Vector

Machine (SVM). Pre-trained network ResNet50 produces the

highest accuracy of 91.4% [8].

In previous studies, the data between classes needed to be

balanced. Therefore, there is an opportunity to improve

performance. This study carried out the process of balancing

the data with undersampling techniques.

Novelties in this research include:

1. The technique of balancing data using random

undersampling. The number of data images consists of 1,230

haploid and 1,770 diploid. This research uses the same amount

of data, namely 1,230 images for each class.

2. CNN architecture uses modified VGG19 with two

dropout layers 0.5. This can drastically reduce resource usage

compared to using VGG19.

3. Use of transfer learning and fine-tuning on the

modified VGG19 CNN architecture.

2. METHODOLOGY

Classification of haploid-diploid corn seed images has the

following steps:

(1) Data collection. The public data that can be downloaded

via the Robotics, Vision, and Learning Research Group

website (rovile.org).

(2) Pre-processing. The image data is changed to size 224.

Next, balanced data is performed with randomized

undersampling. Data on the majority class is reduced to the

same amount as the minority class.

(3) Split training and testing data 80:20.

(4) The training process includes:

(a) Split training and validation data using 5-fold cross-

validation. The data will be divided into five parts.

(b) The training data is processed using a transfer

learning approach using the modified VGG-19

architecture at the beginning of freezing on 14 feature

extraction layers. Furthermore, the classification

layer uses fine-tuning as validation for new training

data.

(c) The output is the model selected from 5-fold cross-

validation—the model based on the highest value of

AUC.

(5) The testing process is carried out in three steps, including:

(a) Input the image dataset to predict 20% of testing data.

(b) The testing is classified using the model result from

the training process.

(c) The performance uses accuracy, precision, recall, f1-

score, and Area Under Curve (AUC).

The complete steps of the proposed research are shown in

Figure 2.

Figure 2. System proposed

2.1 Randomized undersampling

Randomized undersampling aims to balance data between

classes. Undersampling is done by reducing the data in the

majority class to the same as the minority class. The

undersampling process is done by dropping randomized data

on the majority class. The undersampling illustration is shown

in Figure 3.

Figure 3. Technique undersampling

2.2 Visual Geometry Group (VGG)

VGG is one of the CNN series that won second place in the

2014 ImageNet Large Scale Visual Recognition Challenge

(ILSVRC). However, VGG became the primary winner in the

localization task. VGG is from the University of Oxford. Well-

known VGG models are the VGG16 and VGG19. In this study,

the VGG19 is used. The architecture comprises 19 layers,

including 16 convolutional layers and three fully connected

layers. Besides that, it has five max-pooling and one softmax

layer. The number of parameters on VGG19 is over 144

million [9]. Therefore, this study uses modified VGG19 with

more than 46 million parameters. The complete architecture of

the modified VGG19 is shown in Table 1.

Modified VGG19 can be found in the classification layer;

two dropout layers are 0.5 after the dense layer. Dropout

performs random parameter deletion according to the input

dropout value.

484

Table 1. Architecture of VGG19

No. Layer (type) Output Shape Param #

1. input_1 (InputLayer) (None, 224, 224, 3) 0

2. block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

3. block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

4. block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

5. block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

6. block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

7. block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

8. block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

9. block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

10. block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

11. block3_conv4 (Conv2D) (None, 56, 56, 256) 590080

12. block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

13. block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

14. block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

15. block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

16. block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808

17. block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

18. block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

19. block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

20. block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

21. block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808

22. block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

23. to flatten (None, 25088) 0

24. dense (Dense) (None, 1024) 25691136

25. dropout (Dropout) (None, 1024) 0

26. dense_1 (Dense) (None, 1024) 1049600

27. dropout_1 (Dropout) (None, 1024) 0

28. dense _2(Dense) (None, 2) 2050

Total params: 46,767,170

Trainable params: 26,742,786

Non-trainable params: 20,024,384

Modified VGG19 has more than 46 million parameters,

comprising 26 million trainable and 20 million non-trainable

parameters. The difference between trainable and non-

trainable parameters is updating the value of parameters. If

trainable is updating, non-trainable is not updating during

training.

The number of parameters in VGG19 is 144 million, so it

takes more time to process them. Modified VGG19 adds

dropout 0.5 twice. It can save resources by more than 66.67%

(from 144 million to 46 million parameters).

2.3 Transfer learning and fine-tuning

Transfer learning (TL) aims to save computing resources.

The system does not need to conduct training dataset

experiments from the start. Transfer learning uses resources

from previously trained pre-trained networks to new tasks. In

this study, CNN uses the weights and biases of imagenet.

Meanwhile, fine-tuning aims to perform tuning according to

the experimental dataset. Generally, fine-tuning is applied to

the classification layer. If the results do not meet expectations,

fine-tuning can be used for the final block convolutional layers

that extract complex features.

Transfer learning uses an initial freeze, the first until the

fourteenth convolution layer. Freeze layers aim to skip training

on the basic features generated by the extraction feature layers.

Furthermore, the fifteenth and sixteenth convolutional layers

conduct training on the classification task of the new dataset.

Figure 4 shows the steps of transfer learning [10, 11].

Figure 4. Transfer learning

485

Figure 4 shows an illustration of the transfer learning. Image

data uses size 224. The convolutional layer block consists of

the convolutional layer and max-pooling. The first up to the

fourteenth convolutional layer is frozen and immediately

retrieved from the imagenet weight.

The pre-trained network weights are not updated during

training. One way to improve model performance is by

training the weights of the VGG-19. The adjustments were

made to some of the top layers rather than the entire VGG-19

layer.

The extraction feature layers learn simple and standard

features in almost every image: the higher the layer, the more

specific the features. Fine-tuning is done by unfreezing some

of the classification layers. This technique makes refining the

model more relevant for a particular task. The goal is to adapt

special features to the new dataset. The model from the

previous training is continued; this step can improve the

model's performance.

Modification of VGG-19 was carried out in the classifier

section with modifications according to fine-tuning carried out

as a test scenario with unfreeze starting at layer 15. Fine-tuning

aims to adapt the pre-trained model to new tasks—adaptation

by training the corn seed image dataset. Fine-tuning is to

retrain the model on new data. The classification layer section

has a fully connected layer with activation of the rectified

linear unit (relu) and softmax.

2.4 Cross-validation

When the training process requires proper validation, this

research uses 5-fold cross-validation, which divides the

training data into two parts: training and validation. Split into

80% training data and 20% validation data. At this stage, the

aim is to get the model with the performance from five training

and validation data variations. The model is saved for

experiments using testing data [12, 13].

2.5 Performance measures

The confusion matrix is used in the model evaluation

process as a solution to determine the performance of the CNN

model. In the binary classification task, the confusion matrix

includes four indices: True Positive (TP), True Negative (TN),

False Positive (FP), and False Negative (FN) [14-16]. An

illustration of the confusion matrix can be seen in Figure 5.

Figure 5. Confusion matrix

Performance measures include precision, recall, accuracy,

f1-score, and Area Under Curve (AUC). The precision is

determined by dividing the number of true positives by the

total number of positive predictions made. The recall

represents the accurate prediction of positive cases, indicating

the total number of cases correctly identified. To determine the

accuracy of a dataset, one must divide the total number of

correct predictions by the overall dataset size. The f1-score is

a measure of a model's accuracy, considering both precision

and recall.

𝐴𝑐𝑐. =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑟𝑒𝑐. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)
 (4)

𝐴𝑈𝐶 =
1

2
 (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) (5)

If the accuracy, precision, recall, and f1-score can be

obtained with the confusion matrix, the Receiver Operating

Characteristic (ROC) curve shows the AUC value.

3. RESULT AND DISCUSSION

3.1 Test environment

This section describes the hardware and software testing

environment used for experiments and test scenarios. The

hardware consists of Google Colaboratory, Python 3, 12 GB

RAM, Tesla T4 GPU, 78 GB Disk, Intel(R) Xeon(R) CPU @

2.00GHz. Tensorflow Libraries 2.9.2, Keras 2.9.0. Numpy

1.21.6. Open CV 4.6.0.66, Seaborn 0.11.2, Scikit Learn 1.0.2,

and Imblearn 0.8.1.

3.2 Experiment scenario

The test has four experiment scenarios. It aims to get the

results. Comparison of imbalanced and balanced data and fine-

tuning are the differentiating factors. Testing has four plans,

including:

(1) Imbalanced data without fine-tuning

(2) Imbalanced data with fine-tuning

(3) Balanced data without fine-tuning

(4) Balanced data with fine-tuning

3.3 The dataset

Rovile public data has two classes, 1.230 haploid, and

1.770 diploid—total image data of 3,000. Split data training,

validation, and testing are shown in Table 2.

Table 2. Split data

 Imbalanced Data Balanced Data

 Haploid Diploid Haploid Diploid

Training 787 1133 787 787

Validation 197 283 197 283

Testing 246 354 246 354

Total 1230 1770 1230 1338

In addition to balancing the data, it is necessary to initialize

the hyperparameter values, learning rate 0.0001, epoch 64, and

batch-size 32. Meanwhile, the Optimizer uses Adaptive

Moment Estimation (Adam) [17]. The Adam optimizer

combines two approaches: momentum and Adaptive sub-

486

gradient from Root Means Square Propagation (RMSProp)

[18] and Gradient Descent with Momentum (GDM) [19].

3.4 Result

3.4.1 Training with 5-fold cross-validation

The training data is split into training and validation data

using 5-fold cross-validation. Tables 3 through 6 show the

performance measures from the training results from the first

until the fourth scenario.

Table 3. Result of the first scenario

fold Acc. Prec. Rec. f1-score AUC

1 0.85 0.88 0.86 0.87 0.8462

2 0.86 0.88 0.88 0.88 0.8536

3 0.84 0.88 0.83 0.86 0.8365

4 0.88 0.92 0.88 0.90 0.8798

5 0.86 0.88 0.88 0.88 0.8519

Table 4. The result of the second scenario

fold Acc. Prec. Rec. f1-score AUC

1 0.91 0.91 0.93 0.92 0.9063

2 0.97 0.99 0.95 0.97 0.9667

3 0.98 1.00 0.98 0.99 0.9833

4 0.99 1.00 0.98 0.99 0.9875

5 0.99 1.00 0.99 0.99 0.9917

Table 5. The result of the third scenario

fold Acc. Prec. Rec. f1-score AUC

1 0.87 0.91 0.82 0.86 0.8706

2 0.88 0.92 0.84 0.88 0.8807

3 0.86 0.93 0.78 0.85 0.8629

4 0.85 0.87 0.83 0.85 0.8524

5 0.85 0.88 0.81 0.84 0.8499

Table 6. Result of the fourth scenario

fold Acc. Prec. Rec. f1-score AUC

1 0.93 0.97 0.90 0.93 0.9340

2 0.96 0.99 0.93 0.96 0.9619

3 0.95 0.99 0.91 0.95 0.9518

4 0.97 0.98 0.95 0.97 0.9669

5 0.99 0.98 0.99 0.99 0.9873

Table 3 shows the results of the 5-fold cross-validation from

scenarios 1 and 2. The training results in the first scenario

(imagined data and without fine-tuning) show that fold-4 has

the performance with an accuracy of 0.88, precision of 0.92,

recall of 0.88, f1-score of 0.90, and AUC 0.8798.

Table 4 shows the result of the second scenario, using

imbalanced data and fine-tuning to produce the performance

on fold-5. The version achieved is accuracy 0.99, precision

1.00, recall 0.99, f1-score 0.99, and AUC 0.9917.

Tables 5 and 6 show the results of the third and fourth

scenarios. After performing 5-fold cross-validation, the result

is in the third scenario (balanced data without fine-tuning),

fold-2—performance with accuracy 0.88, precision 0.92,

recall 0.84, f1-score 0.88, and AUC 0.8807.

For fourth scenario (balanced data and fine-tuning). The

training results show that the model is produced at fold-5. The

performance consists of accuracy 0.99, precision 0.98, recall

0.99, f1-score 0.99, and AUC 0.9873.

Accuracy and val_accuracy are metrics for evaluating

model performance on classification tasks. Both calculate the

ratio between the number of correct predictions and the total

number of predictions made by the model, but there are

differences in the data used. Accuracy is calculated on training

data the model operates in the learning process, while

val_accuracy is calculated on validation data not used in

training. In model training, the main goal is to optimize the

accuracy value of the training data so that the model can learn

the patterns contained in the data. However, model

performance is measured on training and validation data that

the model has never seen before. If model performance on

training data increases but performance on data validation

decreases, this can indicate overfitting.

Val_accuracy that is lower than accuracy indicates that the

model is learned from the training data and cannot generalize

well to new data. Generalization is the ability of a model to

produce accurate predictions on data that has never been seen

before. Figure 6 shows that the accuracy and val_accuracy

during the model training process can be generalized well to

data that has never been seen before. The test results with the

model are obtained in scenario 2. The model produced in

scenario 2 is in fold-5.

(a)

(b)

(c)

(d)

487

(e)

Figure 6. Graphics of accuracy and validation accuracy in

the second scenario. (a) until (e) is fold-1 until fold-5 (x-

axis=epoch, y-axis=accuracy)

3.4.2 Time of training

This section describes the time needed to carry out the

training process. Figure 7 shows the time required to train each

fold of the second scenario.

Figure 7. The training time of the second scenario (in sec.)

Model training takes time, using Google Colaboratory Pro,

the training time for the second experiment can be seen in

Figure 7. Each fold that is trained requires a different training

time from one another. One reason for the difference in

training time is that the model training uses early stopping. It

makes the model automatically stop according to the

command given. They are making the amount of training for

each model different. In the first test experiment, the time

needed is around 150 to 400 seconds.

3.4.3 Receiver Operating Characteristic (ROC)

Figure 8. ROC result of the second scenario

The ROC Curve is a graph that evaluates the performance

of a classification model in distinguishing between positive

and negative classes. The ROC Curve line that is further away

from the diagonal line indicates better model performance.

The AUC value is the area under the ROC curve and provides

a numerical value for model performance; the more significant

the AUC value, the better the model performance [20-22].

Figure 8 shows the ROC with the AUC value in the second

scenario.

ROC compares the true positive rate and false positive rate.

The second scenario gained AUC 0.9917 in fold-5, as

discussed in Table 4.

3.5 Testing experiment

The model from each scenario is used for experiments with

testing data because there is no guarantee that the model from

a system is optimal for testing in different methods. The testing

data is 20%, excluding training and validation data.

When training a model, the dataset will usually be divided

into three parts: training, validation, and testing data. The

purpose of testing data is to test the model's performance on

data the model has never seen before. In the model training

process, we use the training data to teach the model how to

recognize patterns and learn the relationship between features

and labels. However, a model that is too adapted to the training

data can cause overfitting. Therefore, we need validation data

to evaluate model performance on data that has never been

seen before and avoid overfitting.

After we have succeeded in selecting the model using

validation data, we need to test the model's performance on

testing data that the model has never seen before. It is essential

to ensure that the model is optimal for training and validation

data and generally usable for data that has never been seen

before. Testing data can provide a more accurate evaluation of

model performance and measure how well the model can be

used in real situations. It helps to ensure that the model not

only remembers the patterns present in the training data but

also generalizes and performs well on data it has never seen

before. Table 7 presents the results of the model performance

from each experiment conducted on the testing data. The

fourth test experiment gave the model performance results.

Table 7. The model testing results for each scenario

Scenario Acc. Prec. Rec. f1-score AUC

1 0.918 0.896 0.975 0.934 0.906

2 0.952 0.931 0.992 0.960 0.943

3 0.907 0.907 0.938 0.922 0.899

4 0.968 0.959 0.989 0.974 0.964

After completing the training and validation process, the

model is used to predict the testing data. The confusion matrix

is used to measure model performance by comparing the

number of correct and incorrect predictions made by the

classifier in the model's testing set, as shown in Table 7.

Because there are only two classes, haploid and diploid, in this

study, the positive class has been determined as haploid, and

the negative class has been selected as diploid. Among the

samples labeled as haploid in the dataset is the TP data

predicted by the haploid algorithm, which is haploid. What the

algorithm predicts to be diploid but haploid is called FP.

Among the samples labeled as diploid in the data set, so-called

TNs are indicated by the algorithm as diploid. The algorithm

488

also predicted data as haploid, but the truth is diploid is called

FN. Table 8 shows the confusion matrix from the 20% testing

results.

Table 8. Confusion matrix of all scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

206a 40b 220a 26b 212a 34b 231a 15b

9c 345d 3c 351d 22c 332d 4c 350d
aTP; bFP; cFN; dTN

Figure 9. Sample of right and wrong recognition

The testing data is classified using the model obtained from

the previous learning process. Scenario 4 gets the testing

results. The results show an accuracy of 0.968, a precision of

0.959, a recall of 0.989, an f1-score of 0.974, and an AUC of

0.964. Figure 9 shows an example of an image successfully

recognized correctly (text: blue) and incorrectly (text: red).

Table 8 shows that of the four test scenarios, haploid seeds

have a higher FP value than diploid seeds. The difference

between haploid and diploid seeds lies in the embryo's color

and the endosperm at the top of the seeds. The embryo tends

to be colorless in haploid seeds, and the endosperm is paler.

On the other hand, diploid seeds have a more apparent dark

brown color in the embryo and endosperm. Experiments show

that there are more classification errors in haploid seeds.

4. CONCLUSION

This study used transfer learning and fine-tuning

approaches to the modified VGG-19 model for classifying

haploid and diploid corn seed images. It modified VGG-19 by

adding twice dropout 0.5 after the dense layer. The transfer

learning approach provides an advantage in applying a

previously trained model to new data. Four test scenarios are

carried out: unbalanced data without fine-tuning, unbalanced

data with fine-tuning, balanced data without fine-tuning, and

flat data with fine-tuning. The undersampling technique is

used to balance between haploid and diploid data. Data

balancing gives the result that with proportional data, it can

minimize prediction errors from classes that have less data.

This study shows that the VGG-19 model can be used

effectively for image classification of corn seeds. With

balanced data and the application of fine-tuning, it has got the

performance. The results show accuracy, precision, recall, f1-

score, and AUC are 96.83%, 95.9%, 98.87%, 97.36%, and

96.39%.

This research has limitations, including that the resulting

performance can still be improved. Next, the experiment can

use multiclass for other types of corn seeds. Tuning can also

be done to determine the influence of each CNN

hyperparameter (learning rate, epoch, batch size)

This research can be used as an alternative to support the

classification of haploid and diploid corn seeds. The system

can be implemented automatically to recognize the data

entered for further development directly.

ACKNOWLEDGMENT

This research funded by Penelitian Mandiri - National

Collaborative Research - University of Trunojoyo Madura

2023.

REFERENCES

[1] Berman, J., Zorrilla-López, U., Farré, G., Zhu, C.,

Sandmann, G., Twyman, R.M.,Christou, P. (2015).

Nutritionally important carotenoids as consumer

products. Phytochemistry Reviews, 14(5): 727-743

https://doi.org/10.1007/s11101-014-9373-1

[2] Panikkai, S., Nurmalina, R., Mulatsih, S., Purwati, H.

(2017). Analisis ketersediaan jagung nasional menuju

swasembada dengan pendekatan model dinamik. Inform.

Pertan., 26(1): 41.

[3] Chaikam, V., Molenaar, W., Melchinger, A.E.,

Boddupalli, P.M. (2019). Doubled haploid technology

for line development in maize: Technical advances and

prospects. Theoretical and Applied Genetics, 132(12):

3227-3243. https://doi.org/10.1007/s00122-019-03433-

x

[4] Turgut, İ. (2019). Production of double haploid plants

using in vivo haploid techniques in corn. Journal of

Agricultural Sciences, 25(1): 62-69.

https://doi.org/10.15832/ankutbd.539000

[5] Altuntaş, Y., Kocamaz, A.F., Cömert, Z., Cengiz, R.,

Esmeray, M. (2018). Identification of haploid maize

seeds using gray level co-occurrence matrix and machine

learning techniques. In 2018 International Conference on

Artificial Intelligence and Data Processing (IDAP), pp.

1-5. https://doi.org/10.1109/IDAP.2018.8620740

[6] Liao, W., Wang, X., An, D., Wei, Y. (2019).

Hyperspectral imaging technology and transfer learning

utilized in haploid maize seeds identification. In 2019

International Conference on High Performance Big Data

and Intelligent Systems (HPBD&IS), pp.157-162.

https://doi.org/10.1109/HPBDIS.2019.8735457

[7] Altuntaş, Y., Cömert, Z., Kocamaz, A.F. (2019).

Identification of haploid and diploid maize seeds using

convolutional neural networks and a transfer learning

approach. Computers and Electronics in Agriculture,

163(40): 104874.

https://doi.org/10.1016/j.compag.2019.104874

[8] Dönmez, E. (2020). Classification of haploid and diploid

maize seeds based on pre-trained convolutional neural

networks. Celal Bayar University Journal of Science,

16(3): 323-331.

https://doi.org/10.18466/cbayarfbe.742889

[9] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556. 1-14,

https://doi.org/10.48550/arXiv.1409.1556

[10] Kim, Y.G., Kim, S., Cho, C.E., Song, I.H., Lee, H.J.,

Ahn, S., Kim, N. (2020). Effectiveness of transfer

learning for enhancing tumor classification with a

convolutional neural network on frozen sections.

489

Scientific Reports, 10(1): 21899.

https://doi.org/10.1038/s41598-020-78129-0

[11] Marlow, R., Kuriyakose, S., Mesaros, N., Han, H.H.,

Tomlinson, R., Faust, S.N., Finn, A. (2018). A phase III,

open-label, randomised multicentre study to evaluate the

immunogenicity and safety of a booster dose of two

different reduced antigen diphtheria-tetanus-acellular

pertussis-polio vaccines, when co-administered with

measles-mumps-rubella vaccine in 3 and 4-year-old

healthy children in the UK. Vaccine, 36(17): 2300-2306.

https://doi.org/10.1016/j.vaccine.2018.03.021

[12] Arlot, S., Lerasle, M. (2012). Choice of V for V-fold

cross-validation in least-squares density estimation. The

Journal of Machine Learning Research, 17: 1-50.

https://doi.org/10.48550/arXiv.1210.5830

[13] Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., Ridella,

S. (2012). The'K'in K-fold Cross Validation. In ESANN

pp. 441-446.

[14] Luque, A., Carrasco, A., Martín, A., de Las Heras, A.

(2019). The impact of class imbalance in classification

performance metrics based on the binary confusion

matrix. Pattern Recognition, 91: 216-231.

https://doi.org/10.1016/j.patcog.2019.02.023

[15] Belavkin, R., Pardalos, P., Principe, J. (2022). Value of

information in the binary case and confusion matrix. In

Physical Sciences Forum, 5(1): 8.

[16] Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M.,

Matilainen, P., Mononen, J. (2018). Evaluation of the

confusion matrix method in the validation of an

automated system for measuring feeding behaviour of

cattle. Behavioural processes, 148: 56-62.

https://doi.org/10.1016/j.beproc.2018.01.004

[17] Kingma, D.P., Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

in ICLR, 2015: 1-15.

https://doi.org/10.48550/arXiv.1412.6980

[18] Hinton, G., Srivastava, N., Swersky, K. (2012). Lecture

6a overview of mini–batch gradient descent. Coursera

Lecture slides.

[19] Ruder, S. (2016). An overview of gradient descent

optimization algorithms. arXiv preprint

arXiv:1609.04747. 1-14.

https://doi.org/10.48550/arXiv.1609.04747

[20] Muschelli III, J. (2020). ROC and AUC with a binary

predictor: A potentially misleading metric. Journal of

classification, 37(3): 696-670.

https://doi.org/10.1007/s00357-019-09345-1

[21] Huang, J., Ling, C.X. (2005). Using AUC and accuracy

in evaluating learning algorithms. IEEE Transactions on

knowledge and Data Engineering, 17(3): 299-310.

https://doi.org/10.1109/TKDE.2005.50

[22] Narkhede, S. (2018). Understanding auc-roc curve.

Towards data science, 26(1): 220-227.

490

