
Application of Smoothing Labels to Alleviate Overconfident of the GAN's Discriminator

Asraa Jalil Saeed1* , Ahmed A. Hashim2

1 Iraqi Commission for Computers and Informatics, Information Institute for Postgraduate Studies, Baghdad 10011, Iraq
2 Department of Business Information Technology, College of business Informatics, University of Information Technology and

Communications (UoITC), Baghdad 10053, Iraq

Corresponding Author Email: phd202110680@iips.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380204 ABSTRACT

Received: 13 November 2023

Revised: 31 January 2024

Accepted: 12 March 2024

Available online: 24 April 2024

A Deep Convolutional Generative Adversarial Network (DCGAN) suffers from a vanishing

gradient issue in the generator due to the overconfidence of the discriminator. This paper

explores the effects of using noise injection and gradually changing label smoothing (CLS)

towards hard labels and two-sided label smoothing to enhance the stability of the DCGAN.

Different models are trained on CIFAR-10 datasets that contains 60,000 32×32 color

images divided into 10 categories and CIFAR-100 datasets that contains 60,000 32×32

color images divided into 100 categories, compared with each other using Fréchet Inception

distance (FID), and Inception Score (IS) evaluation metrics. A noticeable improvement in

generalization was found in almost all cases, and the best was when using CLS for both real

and fake labels of two-sided smoothing labels. The modified DCGAN performs better than

traditional DCGAN, boosting the best Fréchet Inception distance from 132.31 to 95.52 and

the Inception Score (IS) from 25.123 to 64.27 on the CIFAR-10 dataset, the FID from

137.84 to 109.42, and the IS from 19.65 to 61.04 on the challenging CIFAR-100 dataset.

Keywords:

changed smoothing label, DCGAN, noise

injection, vanishing gradient issue

1. INTRODUCTION

Generative Adversarial Networks (GANs) are an important

algorithm for generating photorealistic images in computer

vision. GAN has gained wide popularity and attention since its

invention in 2014 [1]. Its general architecture consists of two

competing networks, one of which is the generator and the

other is the discriminator [2]. The DCGAN is a type of GAN

used in several areas, such as generating images, text-to-image

translation, and image-to-image translation [3, 4].

In 2015, DCGAN was introduced by Alec Radford as an

innovation in GANs using convolutional neural networks

(CNNs) in order to contain convolutional layers similar to

CNN layers [5]. CNNs, known for using convolutional layers,

are state-of-the-art in most computer vision applications [6].

Figure 1. The generator’s architecture of DCGAN [5]

The architecture of the generator is shown in Figure 1, there

are four deconvolution layers, the kernel size is 5×5 and the

stride is 2 for each layer [5].

While the discriminator has four convolution layers with

last layer is fully connected as shown in Figure 2, the kernel is

also 5×5 and stride is 2. This model of DCGAN is applied on

the LSUN bedrooms, and FACES dataset [5].

Figure 2. Discriminator’s architecture of DCGAN [7]

Radford added batch normalization at each layer, which

stabilizes the training process [8]. The ReLU activation

function was used for hidden layers, Tanh for the final layer in

the generator, and Leaky ReLU (0.2) for the discriminator [9].

Due to the DCGAN architecture, built on CNNs, leaky ReLU

activation, batch normalization, and other key design choices,

offers significant advantages over traditional GANs. It’s

stability, high-quality image generation, scalability, and wide

applicability make it a powerful tool for various tasks in

generative modeling, as it allows the model to learn

hierarchical features from the data [10]. However because the

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 407-415

Journal homepage: http://iieta.org/journals/ria

407

https://orcid.org/0009-0009-9302-0492
https://orcid.org/0000-0003-1277-8605
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380204&domain=pdf

sub-networks (generator and discriminator) are competitive

and they both try to reduce their own loss functions as much

as possible, DCGAN still suffers from instability [11]. There

are three main causes of instability: non-convergence,

vanishing gradients, or mode collapse, viewed as a problem

[12]. The vanishing gradients problem may happen when the

discriminator is overconfident, especially at the beginning of

training, which leads to squashing the gradients of the

generator [13]. Table 1 illustrates the explanation of each

cause and how they relate to the stability issue in DCGANs.

Table 1. The instability issue in DCGANs

Cause of Instability Explanation Relation to Stability in DCGANs

Vanishing or

Exploding Gradient

Problem

The vanishing means that the gradients get smaller, and the

weight updates generated by the optimization process may

likewise become very small.

This results in minimum weight modifications throughout

training.

The issue occurs during backpropagation, it is

difficult to update the weights efficiently, which

might significantly slow down or hinder the

training process.

So Ineffective weight updates cause slow or

unstable training.

Mode Collapse

Problem

Generators create a limited number of samples, which results in

a lack of variety.

The limited diversity of generated samples

influences stability.

Non-Convergence

Problem

This problem occurs due to the min-max game that is used as a

loss function; it is neither convex nor concave, which leads to

oscillation and divergence of the generator and discriminator

during training.

Batch normalization is critical for maintaining

stability and improving convergence.

Overconfidence of

the Discriminator

An overconfident discriminator tends to provide gradients close

to zero to the generator, which might result in vanishing

gradients and restrict the generator's learning. The generator

might be unable to enhance its ability to provide realistic

samples.

The discriminator in DCGANs can become

overconfident, especially in the early stages of

training when it hasn't yet seen a diverse set of

real and generated samples.

DCGAN faces challenges such as the vanishing gradient

problem, which impedes effective training by causing slow

convergence or stagnation. This issue is particularly relevant

for both the generator and discriminator networks.

The other challenge for the DCGAN is overconfident

discriminator, consider the generator as an artist working

under the discriminator's criticism to create a work of art. The

discriminator's feedback must pass across network layers and

return to the generator during training. However, these

gradients tend to vanish, leaving the generator with warped

and feeble instructions, like whispers in a long corridor.

Several techniques, like label smoothing, dropout in the

discriminator, noise injection to the discriminator, or adjusting

the loss functions, which help keep consistency during training

[14, 15], are effective at alleviating overconfidence in the

GAN's discriminator and instability.

The objectives of this paper are to make DCGAN more

stable by adding two techniques together with DCGAN to

address the overconfidence of the discriminator: using noise

injection, and gradually changing label smoothing (CLS).

2. RELATED WORK

There are two types of smoothing labels that alleviate the

over-confidence of the discriminator: one-sided and two-sided

label smoothing. The term "one-sided label smoothing" refers

to the method used by Ian in his 2016 article [16], which

included substituting the real target values with a fraction of a

true one, say, 0.9. While Salman used this technique in the

same year but with positive and negative smoothing values

[17], by using ∝, β in Eq. (1):

𝐷(𝑥) = (∝ 𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))/(𝑝𝑑𝑎𝑡𝑎(𝑥)
+ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))

(1)

where, pdata represents the probability of the real distribution

that is close to 0 and pmodel represents the probability of the

generated distribution that is large and therefore causing the

problem, therefore smoothing only the positive labels ∝,

having zeros for negative labels.

One potential weakness of one-sided label smoothing is the

potential loss of discriminative power in the discriminator. In

GANs, the discriminator's role is crucial in distinguishing

between real and generated samples. Label smoothing

involves assigning less extreme labels to real samples,

essentially introducing some level of uncertainty or ambiguity

[18].

While this can prevent the generator from becoming overly

confident, it might also make the discriminator less effective

at accurately discerning real data from generated data [19].

In 2021, the effect of noise and stochastic two-sided label

smoothing on model convergence is investigated in Zhang

[20]'s article. This may provide improved solutions to the

vanishing gradient problem and more regularizing effects than

the one-sided approach.

In general, label smoothing is a simple, effective

regularization approach to overcome the overfitting issue with

the training set distribution in any deep neural network.

Although such label smoothing can provide excellent

regularization and keep trained models from becoming

overconfident, it is treated by assigning them the same fixed

probability. As a result, the probability assigned to the

generated samples should take into account their similarities

to the real sample; treating may limit the diversity of the

generated samples, influence stability, and restrict the model's

effectiveness [20].

In the early stages of GAN training, the discriminator is

typically overconfident due to the limited data available. This

can prevent the generator from learning effectively.

Smoothing labels, which assign real and fake labels with

probabilities (0.9, 0.1) instead of binary values, can help

address this problem by providing the generator with more

nuanced feedback.

So we propose a novel approach, starting with a smoothing

label of 0.9 for real samples and 0.1 for fake samples. As

training progresses, we gradually reduce the smoothing factor

by a small value (0.001) at each iteration.

408

Noise injection was first utilized to address overfitting in

deep learning networks [15]; more recently, it has been

connected with GAN to address instability [21-23]. Noise

injection is also utilized to create high-resolution images

especially if injected into the generator at each layer [24]. In

this paper, a proposed noise injection to the discriminator of

the DCGAN was used to enhance stability with all scenarios.

Injecting noise into the discriminator's input to penalize the

gradients of the discriminator and makes it more resilient to

variations in the input data.

Table 2. Summary of noise injection with pros and cons

N
o

is
e

in
je

ct
io

n
 w

it
h

Network Type Reference Pros Cons

Deep learning [15] Address overfitting Slow down the convergence.

The generator [23, 24]

High-resolution images +

Reduces GAN

vulnerability

Better for modest-size training sets + it still faces a

trade-off between stability and generation quality.

Adaptive, and tune the noise

with the discriminator

(modulation of features via

multiplicative noise)

[22] Improves stability

Doesn't elaborate on how to optimally tune the noise

attributes (distribution, variance). Finding the right

settings might require experimentation and potentially

be data-dependent.

The discriminator [21]

Improves stability and

convergence during GAN

training

Diffusion-GAN computationally expensive, particularly

during the training phase + sensitive to the choice of

hyperparameters, such as the number of diffusion steps,

noise schedule, and generator architecture.

The discriminator's input Our work

Increase diversity,

Stability, mitigate mode

collapse, overconfident

discriminator

Complement with smoothing labels together to give a

better results.

The main reasons why injecting noise technique is used in

the discriminator not in the generator is due to the

regularization, stability during training, increasing diversity,

and mitigating mode collapse, which could be seen in Table 2.

3. PROPOSED METHOD

To inhibit the discriminator, a novel smoothing technique

(CSL) was used as follows:

(1) The real label was changed gradually, starting at 0.9

instead of 1 and increasing gradually by 0.001 until reaching

1. (0.9, 0.901, 0.902, …, 1).

(2) Changed gradually smooth labels with both real and fake

labels, starting from 0.9 for the real label and increasing

gradually by 0.001, and 0.1 for the fake label and decreasing

gradually by 0.001 until it reached 0. (0.1, 0.099, 0.098, ..., 0).

(3) This technique was used on the CIFAR-10 and CIFAR-

100 datasets for 200 iterations. When reaching 100 iterations,

the real and fake labels became 1 and 0, respectively.

Now that we have passed the beginning of training and the

discriminator has become more accurate, we will try to utilize

the hard label (0 and 1) or soft label (0.1 and 0.9) values to

collect and evaluate several answers objectively. All methods

above use noise injection simultaneously to the discriminator

that reduces the euclidean case of the distribution.

Figure 3. (a) The discriminator at initial training, (b) The generator is unable to enhance its ability to provide realistic samples, (c)

Overconfidence of the discriminator, (d) When use noise injection with input the discriminator. x is real data, z is noise vector, 𝑥̅

is input real with some epsilon noise, (ε) The discriminator function (D blue line), dot black curve is real data distribution, green

line is fake data distribution

409

Five layers of transpose convolution for the generator were

built and then ReLU was utilized as an activation function in

the four layers and Tanh in the final layer. The kernel size that

is used in each layer is [4×4], while the discriminator is built

with five layers of convolution. After each layer, there is

LeakyReLU with slop (0.2), except the final layer has sigmoid

to attain classification (0 or 1), 0 for fake, and 1 for the real

image. Batch normalization (BN) was added before activation

functions ReLU and LeakyReLU to maintain stability. Table

3 illustrates the architecture of DCGAN.

A deep examination of the impact of the gradually changed

label smoothing (CLS) application in multiple scenarios and

considering DCGAN without smoothing labels as a

benchmark to compare all scenarios and know the best

approach with the CIFAR-10 and CIFAR-100 datasets. The

noise was injected into the discriminator to increase stability.

Table 3. The architecture of modified DCGAN for

generating 64×64 images

Generator Stride Padding
Output

Shape

Input — — 100×1×1

ConvTranspose + ReLU 1 0 512×4×4

ConvTranspose + BN +

ReLU
2 1 256×8×8

ConvTranspose + BN +

ReLU
2 1 128×16×16

ConvTranspose + BN +

ReLU
2 1 64×32×32

ConvTranspose + Tanh 2 1 3×64×64

Discriminator

Input — — 3×64×64

Convolution + LeakyReLU 2 1 64×32×32

Convolution +BN +

LeakyReLU
2 1 128×16×16

Convolution +BN +

LeakyReLU
2 1 256×8×8

Convolution +BN +

LeakyReLU
2 1 512×4×4

Convolution + Sigmoid 1 0 1

Injecting noise prevents the discriminator from overfitting

to specific data patterns; this helps it generalize better,

enhances its ability to handle variations in the generated

samples, and prevents it from becoming too confident in its

predictions and potentially diverging during the adversarial

training process. Injecting noise with the discriminator makes

it harder for the discriminator to exploit specific patterns

consistently. Figure 3 shows how training is more stable when

using noise in the input of the discriminator.

4. EVALUATION METRIC

Fréchet inception distance (FID) [25] and Inception Score

(IS) [17] are commonly metrics that evaluate generative

algorithms. In 2016, Salimans and his colleagues created the

inception score (IS). Before creating the IS metric, humans are

left to see a generative image and provide a visual assessment

of it. Still, these assessments are subjective and prone to

significant variation depending on the viewer's tastes and

prejudices. The IS metric's score can be anywhere from worst

(0) to best (∞) [17]. Eq. (2) describes how the IS score is

calculated:

IS(G)=exp⁡(𝐸𝑥~𝑝𝑔⁡𝐷𝐾𝐿(𝑝(𝑦|𝑥)||⁡p(y)⁡)) (2)

where, DKL is Kullback-Leibler divergence, the conditional

probability distribution is p(y|x), the marginal probability

distribution is p(y), Ex~pg is the sum and average of all results.

In 2017, Fréchet inception distance (FID) is used as a

measure of the similarity of synthetic images to real ones

better than the Inception Score (IS) [25]. The FID is a

similarity metric between curves that accounts for the position

and sequence of points on the curves. Additionally, it may be

used to determine the distance between two distributions [26],

and it is more consistent with evaluating human vision, so it

was used in this article to find out how much image quality

improves when stability is improved [27]. When the FID value

is low, the distance between the generated and actual data

distributions is small, indicating high-quality and diverse

images [28]. Eq. 3 describes how the FID is calculated [29]:

𝐹𝐼𝐷(𝑟, 𝑔) = ‖𝜇𝑟 − 𝜇𝑔‖2

− 𝑇𝑟(∑𝑟 + ∑𝑔 − 2 ∗ √∑𝑟 + ∑𝑔)
(3)

where, μr and μg are the means array, Tr is the trace of the

matrix, and ∑r and ∑g is the covariance array of the vectors.

In this paper, FID was used to test quality-generated images

using improved DCGAN, which means more quality images

have stability training. The loss function curve for both the

network generator and discriminator was also drawn in this

work to see the convergence and oscillation of training.

5. IMPLEMENTATION DETAILS

The trained approach produces 64×64-pixel images. Both

the discriminator and the generator have their learning rates set

to the default values of 0.0003 and 0.0001, respectively. 200

training epochs are used for the CIFAR-10 and CIFAR-100

datasets. For all models, the Adam optimizer with β1=0.5 and

β2=0.999 was used for training.

The first case is a benchmark for constructing DCGAN

without the use of a smoothing label and noise injection. The

second scenario is when using 0.9 for the real label and 0.1 for

the fake label due to the overconfidence of the discriminator

at the beginning of the training, and then increasing and

decreasing the real and fake labels at the same time by 0.001.

That’s to say, after 100 iterations the real and fake labels will

become hard labels (0, 1). In this situation, there are two

scenarios for testing, the first approach stays on the hard label

until we finish the training, and the second approach converts

to a two-sided smoothing label with 0.9 for real and 0.1 for

fake.

The third trained the same way as the second approach, but

with a real label only at 0.9 and increasing gradually until

access to the 100 epoch, and here there are two ways, one

towards the hard label and the other towards the one-sided

smoothing label. The same scenarios were applied to the

second dataset, as shown in Table 4, which shows that the FID,

and IS metrics of modified DCGAN perform better with CSL

and noise injection.

410

Table 4. FID score comparison with a changed smoothing

Scenario Method
CIFAR-10 CIFAR-100

FID IS FID IS

1 DCGAN without a smoothing label and no noise injection (NI) (traditional DCGAN) 132.31 25.123 137.84 19.65

2 DCGAN + NI+ CSL (real and fake labels) + hard label (1, 0) 111.43 46.89 113.20 42.62

3
DCGAN + NI + CSL (real and fake labels) + two-sided smoothing label (0.9, 0.1)

(Best CLS)
95.52 64.27 109.42 61.04

4 DCGAN + NI+ CSL (real only) + hard label (1) 104.03 52.11 114.26 48.21

5 DCGAN + NI+ CSL (real only) + one-sided smoothing label (0.9) 104.87 58.29 112.54 54.29

6. RESULT

A modified DCGAN shows better performance than

traditional DCGAN in all scenarios, significantly in the Best

CLS scenario as illustrated in Table 4, with a lower FID (95.52)

on the CIFAR-10 dataset and a lower FID (109.42) on the

CIFAR-100 dataset, and with best IS (64.27) on the CIFAR-

10 dataset and a best IS (61.04) on the CIFAR-100 dataset.

Figure 4 and Figure 5 illustrate that the modified DCGAN can

better generate samples that approximate the original image.

Figures 6 and 7 show how the FID curves decrease, and

Figures 8 and 9 show how the IS curves increase with a

modified DCGAN for all scenarios throughout the training. In

Figures 10 and 11, you can see that convergence got better by

looking at the loss functions for both the network generator

and the discriminator. These loss functions show convergence

and oscillation of training.

(a) Real images (b) Fake image by method 1

(c) Fake image by method 2 (d) Fake image by method 3

(e) Fake image by method 4 (f) Fake image by method 5

Figure 4. Comparisons of images generated with real images by different methods using CIFAR-10

411

(a) Real images (b) Fake image by method 1

(c) Fake image by method 2 (d) Fake image by method 3

(e) Fake image by method 4 (f) Fake image by method 5

Figure 5. Comparisons of images generated with real images by different methods using CIFAR-100

Figure 6. FID curves for the five methods in Table 4 use

CIFAR-10

Figure 7. FID curves for the five methods in Table 4 use

CIFAR-100

Figure 8. IS curves for the five methods in Table 4 use

CIFAR-10

Figure 9. IS curves for the five methods in Table 4 use

CIFAR-100

412

(a) Without smoothing label (b) CSL + hard label + noise injection

(c) CSL + two-sided smoothing label + noise injection (d) CSL for real label + hard label + noise injection

(e) CSL for real label + one-sided smooth label+ noise injection

Figure 10. Loss function curves for discriminator and generator, use the CIFAR-10 dataset

(a) Without smoothing label (b) CSL + hard label + noise injection

413

(c) CSL + two-sided smoothing label + noise injection (d) CSL for real label + hard label + noise injection

(e) CSL for real label + one-sided smooth label+ noise injection

Figure 11. Loss function curves for discriminator and generator, use the CIFAR-100 dataset

7. CONCLUSIONS

In this paper, a modified DCGAN incorporates a novel

technique called Changed Label Smoothing and also uses

noise injection in the discriminator. These techniques, when

combined, will alleviate the overconfidence of the

discriminator that affects the training of the generator, so they

will address the vanishing gradient problem.

The modified DCGAN achieves this performance on the

CIFAR-10 and CIFAR-100 datasets. Although both the

CIFAR-10 and CIFAR-100 datasets include the same features,

such as 60,000 32×32 color images, the best results were

achieved using CIFAR-10. The reason for that is because they

differ in number and kinds of classes. The proposed approach

(Changed Label Smoothing) may be applied in other GAN

architectures or may be combined with other techniques.

REFERENCES

[1] Arora, J., Tushir, M., Kherwa, P., Rathee, S. (2023).

Generative adversarial networks: A comprehensive

review. Data Wrangling: Concepts, Applications and

Tools, 213-234.

https://doi.org/10.1002/9781119879862.ch10

[2] Liu, G., Liu, Y., Tang, L., Bavirisetti, D.P., Wang, X.

(2023). A Generative Adversarial Network for infrared

and visible image fusion using adaptive dense generator

and Markovian discriminator. Optik, 288: 171139.

https://doi.org/10.1016/j.ijleo.2023.171139

[3] Kaddoura, S. (2023). Real-world applications. In A

Primer on Generative Adversarial Networks, pp. 27-81.

https://doi.org/10.1007/978-3-031-32661-5_3

[4] Rasheed, A.S., Finjan, R.H., Hashim, A.A., Al-Saeedi,

M.M. (2021). 3D face creation via 2D images within

blender virtual environment. Indonesian Journal of

Electrical Engineering and Computer Science, 21(1):

457-464. https://doi.org/10.11591/ijeecs.v21.i1.pp457-

464

[5] Radford, A., Metz, L., Chintala, S. (2015). Unsupervised

representation learning with deep convolutional

generative adversarial networks. arXiv preprint

arXiv:1511.06434. https://arxiv.org/abs/1511.06434

[6] Quiroga, F.M. (2021). Invariance and same-equivariance

measures for convolutional neural networks. CLEI

Electronic Journal, 24(1): 8.

https://doi.org/10.19153/cleiej.24.1.8

[7] Bushra, S.N., Maheswari, K.U. (2021). Crime

investigation using DCGAN by Forensic Sketch-to-Face

Transformation (STF)-A review. In 2021 5th

International Conference on Computing Methodologies

and Communication (ICCMC), pp. 1343-1348.

https://doi.org/10.1109/ICCMC51019.2021.9418417.

[8] Finjan, R.H., Rasheed, A.S., Hashim, A.A., Murtdha, M.

(2021). Arabic handwritten digits recognition based on

convolutional neural networks with resnet-34 model.

Indonesian Journal of Electrical Engineering and

Computer Science, 21(1): 174-178.

https://doi.org/10.11591/ijeecs.v21.i1.pp174-178

[9] Liu, B.Q., Lv, J.W., Fan, X.Y., Luo, J., Zou, T.Y. (2022).

Application of an improved DCGAN for image

generation. Mobile Information Systems, 2022: 9005552.

https://doi.org/10.1155/2022/9005552

[10] Wu, A.N., Stouffs, R., Biljecki, F. (2022). Generative

adversarial networks in the built environment: A

comprehensive review of the application of GANs across

414

data types and scales. Building and Environment, 223,

109477. https://doi.org/10.1016/j.buildenv.2022.109477

[11] Kumar, J.K. (2022). Alma mater studiorum-università di

bologna. School of engineering and architecture.

[12] Wiatrak, M., Albrecht, S.V., Nystrom, A. (2019).

Stabilizing generative adversarial networks: A survey.

arXiv preprint arXiv:1910.00927.

https://doi.org/10.48550/arXiv.1910.00927

[13] Saeed, A.J., Hashim, A.A. (2023). Precise GANs

classification based on multi-scale comprehensive

performance analysis. Journal of Engineering Science &

Technology Review, 16(3): 18.

https://doi.org/10.25103/jestr.163.18

[14] Zhong, H., Yu, S., Trinh, H., Lv, Y., Yuan, R., Wang, Y.

(2023). Fine-tuning transfer learning based on DCGAN

integrated with self-attention and spectral normalization

for bearing fault diagnosis. Measurement, 210: 112421.

https://doi.org/10.1016/j.measurement.2022.112421

[15] Chu, X., Zhang, B. (2020). Noisy differentiable

architecture search. arXiv preprint arXiv:2005.03566.

https://arxiv.org/abs/2005.03566

[16] Goodfellow, I. (2016). Nips 2016 tutorial: Generative

adversarial networks. arXiv preprint arXiv:1701.00160.

https://doi.org/10.48550/arXiv.1701.00160

[17] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,

Radford, A., Chen, X. (2016). Improved techniques for

training GANS. Advances in neural information

processing systems, 29.

https://proceedings.neurips.cc/paper_files/paper/2016/fil

e/8a3363abe792db2d8761d6403605aeb7-Paper.pdf.

[18] Chandrasegaran, K., Tran, N.T., Zhao, Y., Cheung, N.M.

(2022). Revisiting label smoothing and knowledge

distillation compatibility: What was missing?. In

International Conference on Machine Learning, pp.

2890-2916. https://doi.org/10.3390/app11104699

[19] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna,

Z. (2016). Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 2818-

2826. https://doi.org/10.1109/cvpr.2016.308

[20] Zhang, C.B., Jiang, P.T., Hou, Q., Wei, Y., Han, Q., Li,

Z., Cheng, M.M. (2021). Delving deep into label

smoothing. IEEE Transactions on Image Processing, 30:

5984-5996. https://doi.org/10.36227/techrxiv.22714999

[21] Wang, Z., Zheng, H., He, P., Chen, W., Zhou, M. (2022).

Diffusion-GAN: Training GANs with diffusion. arXiv

preprint arXiv:2206.02262.

https://doi.org/10.48550/arXiv.2206.02262

[22] Ni, Y., Koniusz, P. (2024). NICE: NoIse-modulated

consistency regularization for data-efficient GANs.

Advances in Neural Information Processing Systems, 36.

[23] Arjovsky, M., Bottou, L. (2017). Towards principled

methods for training generative adversarial networks.

arXiv preprint arXiv:1701.04862.

https://arxiv.org/pdf/1701.04862.pdf

[24] Feng, R., Zhao, D., Zha, Z.J. (2021). Understanding

noise injection in GANs. In international conference on

machine learning, pp. 3284-3293.

https://ar5iv.labs.arxiv.org/html/2006.05891

[25] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,

Hochreiter, S. (2017). Gans trained by a two time-scale

update rule converge to a local nash equilibrium.

Advances in neural information processing systems, 30.

https://doi.org/10.18034/ajase.v8i1.9

[26] Lee, J., Lee, M. (2023). FIDGAN: A generative

adversarial network with an inception distance. In 2023

International Conference on Artificial Intelligence in

Information and Communication (ICAIIC).

https://doi.org/10.1109/icaiic57133.2023.10066964

[27] Andreou, I., Mouelle, N. (2023). Evaluating generative

adversarial networks for particle hit generation in a

cylindrical drift chamber using Fréchet inception

distance. Journal of Instrumentation, 18(06): P06007.

https://doi.org/10.1088/1748-0221/18/06/p06007

[28] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang,

X., Metaxas, D.N. (2018). Stackgan++: Realistic image

synthesis with stacked generative adversarial networks.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41(8): 1947-1962.

https://doi.org/10.1109/tpami.2018.2856256

[29] Nunn, E.J., Khadivi, P., Samavi, S. (2021). Compound

frechet inception distance for quality assessment of gan

created images. arXiv preprint arXiv:2106.08575.

https://arxiv.org/abs/2106.08575

415

