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A Deep Convolutional Generative Adversarial Network (DCGAN) suffers from a vanishing 

gradient issue in the generator due to the overconfidence of the discriminator. This paper 

explores the effects of using noise injection and gradually changing label smoothing (CLS) 

towards hard labels and two-sided label smoothing to enhance the stability of the DCGAN. 

Different models are trained on CIFAR-10 datasets that contains 60,000 32×32 color 

images divided into 10 categories and CIFAR-100 datasets that contains 60,000 32×32 

color images divided into 100 categories, compared with each other using Fréchet Inception 

distance (FID), and Inception Score (IS) evaluation metrics. A noticeable improvement in 

generalization was found in almost all cases, and the best was when using CLS for both real 

and fake labels of two-sided smoothing labels. The modified DCGAN performs better than 

traditional DCGAN, boosting the best Fréchet Inception distance from 132.31 to 95.52 and 

the Inception Score (IS) from 25.123 to 64.27 on the CIFAR-10 dataset, the FID from 

137.84 to 109.42, and the IS from 19.65 to 61.04 on the challenging CIFAR-100 dataset. 
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1. INTRODUCTION

Generative Adversarial Networks (GANs) are an important 

algorithm for generating photorealistic images in computer 

vision. GAN has gained wide popularity and attention since its 

invention in 2014 [1]. Its general architecture consists of two 

competing networks, one of which is the generator and the 

other is the discriminator [2]. The DCGAN is a type of GAN 

used in several areas, such as generating images, text-to-image 

translation, and image-to-image translation [3, 4]. 

In 2015, DCGAN was introduced by Alec Radford as an 

innovation in GANs using convolutional neural networks 

(CNNs) in order to contain convolutional layers similar to 

CNN layers [5]. CNNs, known for using convolutional layers, 

are state-of-the-art in most computer vision applications [6]. 

Figure 1. The generator’s architecture of DCGAN [5] 

The architecture of the generator is shown in Figure 1, there 

are four deconvolution layers, the kernel size is 5×5 and the 

stride is 2 for each layer [5].  

While the discriminator has four convolution layers with 

last layer is fully connected as shown in Figure 2, the kernel is 

also 5×5 and stride is 2. This model of DCGAN is applied on 

the LSUN bedrooms, and FACES dataset [5]. 

Figure 2. Discriminator’s architecture of DCGAN [7] 

Radford added batch normalization at each layer, which 

stabilizes the training process [8]. The ReLU activation 

function was used for hidden layers, Tanh for the final layer in 

the generator, and Leaky ReLU (0.2) for the discriminator [9]. 

Due to the DCGAN architecture, built on CNNs, leaky ReLU 

activation, batch normalization, and other key design choices, 

offers significant advantages over traditional GANs. It’s 

stability, high-quality image generation, scalability, and wide 

applicability make it a powerful tool for various tasks in 

generative modeling, as it allows the model to learn 

hierarchical features from the data [10]. However because the 
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sub-networks (generator and discriminator) are competitive 

and they both try to reduce their own loss functions as much 

as possible, DCGAN still suffers from instability [11]. There 

are three main causes of instability: non-convergence, 

vanishing gradients, or mode collapse, viewed as a problem 

[12]. The vanishing gradients problem may happen when the 

discriminator is overconfident, especially at the beginning of 

training, which leads to squashing the gradients of the 

generator [13]. Table 1 illustrates the explanation of each 

cause and how they relate to the stability issue in DCGANs. 

Table 1. The instability issue in DCGANs 

Cause of Instability Explanation Relation to Stability in DCGANs 

Vanishing or 

Exploding Gradient 

Problem 

The vanishing means that the gradients get smaller, and the 

weight updates generated by the optimization process may 

likewise become very small. 

This results in minimum weight modifications throughout 

training. 

The issue occurs during backpropagation, it is 

difficult to update the weights efficiently, which 

might significantly slow down or hinder the 

training process. 

So Ineffective weight updates cause slow or 

unstable training. 

Mode Collapse 

Problem 

Generators create a limited number of samples, which results in 

a lack of variety. 

The limited diversity of generated samples 

influences stability. 

Non-Convergence 

Problem 

This problem occurs due to the min-max game that is used as a 

loss function; it is neither convex nor concave, which leads to 

oscillation and divergence of the generator and discriminator 

during training. 

Batch normalization is critical for maintaining 

stability and improving convergence. 

Overconfidence of 

the Discriminator 

An overconfident discriminator tends to provide gradients close 

to zero to the generator, which might result in vanishing 

gradients and restrict the generator's learning. The generator 

might be unable to enhance its ability to provide realistic 

samples. 

The discriminator in DCGANs can become 

overconfident, especially in the early stages of 

training when it hasn't yet seen a diverse set of 

real and generated samples. 

DCGAN faces challenges such as the vanishing gradient 

problem, which impedes effective training by causing slow 

convergence or stagnation. This issue is particularly relevant 

for both the generator and discriminator networks.  

The other challenge for the DCGAN is overconfident 

discriminator, consider the generator as an artist working 

under the discriminator's criticism to create a work of art. The 

discriminator's feedback must pass across network layers and 

return to the generator during training. However, these 

gradients tend to vanish, leaving the generator with warped 

and feeble instructions, like whispers in a long corridor.  

Several techniques, like label smoothing, dropout in the 

discriminator, noise injection to the discriminator, or adjusting 

the loss functions, which help keep consistency during training 

[14, 15], are effective at alleviating overconfidence in the 

GAN's discriminator and instability. 

The objectives of this paper are to make DCGAN more 

stable by adding two techniques together with DCGAN to 

address the overconfidence of the discriminator: using noise 

injection, and gradually changing label smoothing (CLS). 

2. RELATED WORK

There are two types of smoothing labels that alleviate the 

over-confidence of the discriminator: one-sided and two-sided 

label smoothing. The term "one-sided label smoothing" refers 

to the method used by Ian in his 2016 article [16], which 

included substituting the real target values with a fraction of a 

true one, say, 0.9. While Salman used this technique in the 

same year but with positive and negative smoothing values 

[17], by using ∝, β in Eq. (1): 

𝐷(𝑥) = (∝ 𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝛽𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))/(𝑝𝑑𝑎𝑡𝑎(𝑥)
+ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))

(1) 

where, pdata represents the probability of the real distribution 

that is close to 0 and pmodel represents the probability of the 

generated distribution that is large and therefore causing the 

problem, therefore smoothing only the positive labels ∝, 

having zeros for negative labels. 

One potential weakness of one-sided label smoothing is the 

potential loss of discriminative power in the discriminator. In 

GANs, the discriminator's role is crucial in distinguishing 

between real and generated samples. Label smoothing 

involves assigning less extreme labels to real samples, 

essentially introducing some level of uncertainty or ambiguity 

[18]. 

While this can prevent the generator from becoming overly 

confident, it might also make the discriminator less effective 

at accurately discerning real data from generated data [19]. 

In 2021, the effect of noise and stochastic two-sided label 

smoothing on model convergence is investigated in Zhang 

[20]'s article. This may provide improved solutions to the 

vanishing gradient problem and more regularizing effects than 

the one-sided approach. 

In general, label smoothing is a simple, effective 

regularization approach to overcome the overfitting issue with 

the training set distribution in any deep neural network. 

Although such label smoothing can provide excellent 

regularization and keep trained models from becoming 

overconfident, it is treated by assigning them the same fixed 

probability. As a result, the probability assigned to the 

generated samples should take into account their similarities 

to the real sample; treating may limit the diversity of the 

generated samples, influence stability, and restrict the model's 

effectiveness [20].  

In the early stages of GAN training, the discriminator is 

typically overconfident due to the limited data available. This 

can prevent the generator from learning effectively. 

Smoothing labels, which assign real and fake labels with 

probabilities (0.9, 0.1) instead of binary values, can help 

address this problem by providing the generator with more 

nuanced feedback. 

So we propose a novel approach, starting with a smoothing 

label of 0.9 for real samples and 0.1 for fake samples. As 

training progresses, we gradually reduce the smoothing factor 

by a small value (0.001) at each iteration. 
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Noise injection was first utilized to address overfitting in 

deep learning networks [15]; more recently, it has been 

connected with GAN to address instability [21-23]. Noise 

injection is also utilized to create high-resolution images 

especially if injected into the generator at each layer [24]. In 

this paper, a proposed noise injection to the discriminator of 

the DCGAN was used to enhance stability with all scenarios.  

Injecting noise into the discriminator's input to penalize the 

gradients of the discriminator and makes it more resilient to 

variations in the input data.  

 

Table 2. Summary of noise injection with pros and cons 
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Network Type Reference Pros Cons 

Deep learning [15] Address overfitting Slow down the convergence. 

The generator [23, 24] 

High-resolution images + 

Reduces GAN 

vulnerability 

Better for modest-size training sets + it still faces a 

trade-off between stability and generation quality. 

Adaptive, and tune the noise 

with the discriminator 

(modulation of features via 

multiplicative noise) 

[22] Improves stability 

Doesn't elaborate on how to optimally tune the noise 

attributes (distribution, variance). Finding the right 

settings might require experimentation and potentially 

be data-dependent. 

The discriminator [21] 

Improves stability and 

convergence during GAN 

training 

Diffusion-GAN computationally expensive, particularly 

during the training phase + sensitive to the choice of 

hyperparameters, such as the number of diffusion steps, 

noise schedule, and generator architecture. 

The discriminator's input Our work 

Increase diversity, 

Stability, mitigate mode 

collapse, overconfident 

discriminator 

Complement with smoothing labels together to give a 

better results. 

 

The main reasons why injecting noise technique is used in 

the discriminator not in the generator is due to the 

regularization, stability during training, increasing diversity, 

and mitigating mode collapse, which could be seen in Table 2. 
 

 

3. PROPOSED METHOD 

 

To inhibit the discriminator, a novel smoothing technique 

(CSL) was used as follows:  

(1) The real label was changed gradually, starting at 0.9 

instead of 1 and increasing gradually by 0.001 until reaching 

1. (0.9, 0.901, 0.902, …, 1). 

(2) Changed gradually smooth labels with both real and fake 

labels, starting from 0.9 for the real label and increasing 

gradually by 0.001, and 0.1 for the fake label and decreasing 

gradually by 0.001 until it reached 0. (0.1, 0.099, 0.098, ..., 0). 

(3) This technique was used on the CIFAR-10 and CIFAR-

100 datasets for 200 iterations. When reaching 100 iterations, 

the real and fake labels became 1 and 0, respectively. 

Now that we have passed the beginning of training and the 

discriminator has become more accurate, we will try to utilize 

the hard label (0 and 1) or soft label (0.1 and 0.9) values to 

collect and evaluate several answers objectively. All methods 

above use noise injection simultaneously to the discriminator 

that reduces the euclidean case of the distribution. 

 

 
 

Figure 3. (a) The discriminator at initial training, (b) The generator is unable to enhance its ability to provide realistic samples, (c) 

Overconfidence of the discriminator, (d) When use noise injection with input the discriminator. x is real data, z is noise vector, 𝑥̅ 

is input real with some epsilon noise, (ε) The discriminator function (D blue line), dot black curve is real data distribution, green 

line is fake data distribution 
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Five layers of transpose convolution for the generator were 

built and then ReLU was utilized as an activation function in 

the four layers and Tanh in the final layer. The kernel size that 

is used in each layer is [4×4], while the discriminator is built 

with five layers of convolution. After each layer, there is 

LeakyReLU with slop (0.2), except the final layer has sigmoid 

to attain classification (0 or 1), 0 for fake, and 1 for the real 

image. Batch normalization (BN) was added before activation 

functions ReLU and LeakyReLU to maintain stability. Table 

3 illustrates the architecture of DCGAN. 

A deep examination of the impact of the gradually changed 

label smoothing (CLS) application in multiple scenarios and 

considering DCGAN without smoothing labels as a 

benchmark to compare all scenarios and know the best 

approach with the CIFAR-10 and CIFAR-100 datasets. The 

noise was injected into the discriminator to increase stability. 

 

Table 3. The architecture of modified DCGAN for 

generating 64×64 images 

 

Generator Stride Padding 
Output 

Shape 

Input — — 100×1×1 

ConvTranspose + ReLU 1 0 512×4×4 

ConvTranspose + BN + 

ReLU 
2 1 256×8×8 

ConvTranspose + BN + 

ReLU 
2 1 128×16×16 

ConvTranspose + BN + 

ReLU 
2 1 64×32×32 

ConvTranspose + Tanh 2 1 3×64×64 

Discriminator    

Input — — 3×64×64 

Convolution + LeakyReLU 2 1 64×32×32 

Convolution +BN + 

LeakyReLU 
2 1 128×16×16 

Convolution +BN + 

LeakyReLU 
2 1 256×8×8 

Convolution +BN + 

LeakyReLU 
2 1 512×4×4 

Convolution + Sigmoid 1 0 1 

 

Injecting noise prevents the discriminator from overfitting 

to specific data patterns; this helps it generalize better, 

enhances its ability to handle variations in the generated 

samples, and prevents it from becoming too confident in its 

predictions and potentially diverging during the adversarial 

training process. Injecting noise with the discriminator makes 

it harder for the discriminator to exploit specific patterns 

consistently. Figure 3 shows how training is more stable when 

using noise in the input of the discriminator. 

 

 

4. EVALUATION METRIC 

 

Fréchet inception distance (FID) [25] and Inception Score 

(IS) [17] are commonly metrics that evaluate generative 

algorithms. In 2016, Salimans and his colleagues created the 

inception score (IS). Before creating the IS metric, humans are 

left to see a generative image and provide a visual assessment 

of it. Still, these assessments are subjective and prone to 

significant variation depending on the viewer's tastes and 

prejudices. The IS metric's score can be anywhere from worst 

(0) to best (∞) [17]. Eq. (2) describes how the IS score is 

calculated: 

 

IS(G)=exp⁡(𝐸𝑥~𝑝𝑔⁡𝐷𝐾𝐿(𝑝(𝑦|𝑥)||⁡p(y)⁡)) (2) 

 

where, DKL is Kullback-Leibler divergence, the conditional 

probability distribution is p(y|x), the marginal probability 

distribution is p(y), Ex~pg is the sum and average of all results. 

In 2017, Fréchet inception distance (FID) is used as a 

measure of the similarity of synthetic images to real ones 

better than the Inception Score (IS) [25]. The FID is a 

similarity metric between curves that accounts for the position 

and sequence of points on the curves. Additionally, it may be 

used to determine the distance between two distributions [26], 

and it is more consistent with evaluating human vision, so it 

was used in this article to find out how much image quality 

improves when stability is improved [27]. When the FID value 

is low, the distance between the generated and actual data 

distributions is small, indicating high-quality and diverse 

images [28]. Eq. 3 describes how the FID is calculated [29]: 

 
𝐹𝐼𝐷(𝑟, 𝑔) = ‖𝜇𝑟 − 𝜇𝑔‖2

− 𝑇𝑟(∑𝑟 + ∑𝑔 − 2 ∗ √∑𝑟 + ∑𝑔) 
(3) 

 

where, μr and μg are the means array, Tr is the trace of the 

matrix, and ∑r and ∑g is the covariance array of the vectors. 

In this paper, FID was used to test quality-generated images 

using improved DCGAN, which means more quality images 

have stability training. The loss function curve for both the 

network generator and discriminator was also drawn in this 

work to see the convergence and oscillation of training. 

 

 

5. IMPLEMENTATION DETAILS 

 

The trained approach produces 64×64-pixel images. Both 

the discriminator and the generator have their learning rates set 

to the default values of 0.0003 and 0.0001, respectively. 200 

training epochs are used for the CIFAR-10 and CIFAR-100 

datasets. For all models, the Adam optimizer with β1=0.5 and 

β2=0.999 was used for training. 

The first case is a benchmark for constructing DCGAN 

without the use of a smoothing label and noise injection. The 

second scenario is when using 0.9 for the real label and 0.1 for 

the fake label due to the overconfidence of the discriminator 

at the beginning of the training, and then increasing and 

decreasing the real and fake labels at the same time by 0.001. 

That’s to say, after 100 iterations the real and fake labels will 

become hard labels (0, 1). In this situation, there are two 

scenarios for testing, the first approach stays on the hard label 

until we finish the training, and the second approach converts 

to a two-sided smoothing label with 0.9 for real and 0.1 for 

fake. 

The third trained the same way as the second approach, but 

with a real label only at 0.9 and increasing gradually until 

access to the 100 epoch, and here there are two ways, one 

towards the hard label and the other towards the one-sided 

smoothing label. The same scenarios were applied to the 

second dataset, as shown in Table 4, which shows that the FID, 

and IS metrics of modified DCGAN perform better with CSL 

and noise injection. 

 

 

 

410



Table 4. FID score comparison with a changed smoothing 

Scenario Method 
CIFAR-10 CIFAR-100 

FID IS FID IS 

1 DCGAN without a smoothing label and no noise injection (NI) (traditional DCGAN) 132.31 25.123 137.84 19.65 

2 DCGAN + NI+ CSL (real and fake labels) + hard label (1, 0) 111.43 46.89 113.20 42.62 

3 
DCGAN + NI + CSL (real and fake labels) + two-sided smoothing label (0.9, 0.1) 

(Best CLS) 
95.52 64.27 109.42 61.04 

4 DCGAN + NI+ CSL (real only) + hard label (1) 104.03 52.11 114.26 48.21 

5 DCGAN + NI+ CSL (real only) + one-sided smoothing label (0.9) 104.87 58.29 112.54 54.29

6. RESULT

A modified DCGAN shows better performance than 

traditional DCGAN in all scenarios, significantly in the Best 

CLS scenario as illustrated in Table 4, with a lower FID (95.52) 

on the CIFAR-10 dataset and a lower FID (109.42) on the 

CIFAR-100 dataset, and with best IS (64.27) on the CIFAR-

10 dataset and a best IS (61.04) on the CIFAR-100 dataset. 

Figure 4 and Figure 5 illustrate that the modified DCGAN can 

better generate samples that approximate the original image. 

Figures 6 and 7 show how the FID curves decrease, and 

Figures 8 and 9 show how the IS curves increase with a 

modified DCGAN for all scenarios throughout the training. In 

Figures 10 and 11, you can see that convergence got better by 

looking at the loss functions for both the network generator 

and the discriminator. These loss functions show convergence 

and oscillation of training. 

(a) Real images (b) Fake image by method 1

(c) Fake image by method 2 (d) Fake image by method 3

(e) Fake image by method 4 (f) Fake image by method 5

Figure 4. Comparisons of images generated with real images by different methods using CIFAR-10 
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(a) Real images (b) Fake image by method 1 

  
(c) Fake image by method 2 (d) Fake image by method 3 

  
(e) Fake image by method 4 (f) Fake image by method 5 

 

Figure 5. Comparisons of images generated with real images by different methods using CIFAR-100 

 

 
 

Figure 6. FID curves for the five methods in Table 4 use 

CIFAR-10 

Figure 7. FID curves for the five methods in Table 4 use 

CIFAR-100 

  
 

Figure 8. IS curves for the five methods in Table 4 use 

CIFAR-10 

 

Figure 9. IS curves for the five methods in Table 4 use 

CIFAR-100 
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(a) Without smoothing label (b) CSL + hard label + noise injection

(c) CSL + two-sided smoothing label + noise injection (d) CSL for real label + hard label + noise injection

(e) CSL for real label + one-sided smooth label+ noise injection

Figure 10. Loss function curves for discriminator and generator, use the CIFAR-10 dataset 

(a) Without smoothing label (b) CSL + hard label + noise injection
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(c) CSL + two-sided smoothing label + noise injection (d) CSL for real label + hard label + noise injection

(e) CSL for real label + one-sided smooth label+ noise injection

Figure 11. Loss function curves for discriminator and generator, use the CIFAR-100 dataset 

7. CONCLUSIONS

In this paper, a modified DCGAN incorporates a novel 

technique called Changed Label Smoothing and also uses 

noise injection in the discriminator. These techniques, when 

combined, will alleviate the overconfidence of the 

discriminator that affects the training of the generator, so they 

will address the vanishing gradient problem. 

The modified DCGAN achieves this performance on the 

CIFAR-10 and CIFAR-100 datasets. Although both the 

CIFAR-10 and CIFAR-100 datasets include the same features, 

such as 60,000 32×32 color images, the best results were 

achieved using CIFAR-10. The reason for that is because they 

differ in number and kinds of classes. The proposed approach 

(Changed Label Smoothing) may be applied in other GAN 

architectures or may be combined with other techniques. 
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