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Noise cancellation remains a significant challenge in signal processing, particularly when 

addressing non-stationary and time-varying noise sources. Traditional approaches, such as 

the Normalized Least Mean Square (NLMS) algorithm, are often limited by the fixed step 

size parameter, which dictates the trade-off between convergence rate and system 

robustness. In this study, an innovative Variable Step Size NLMS (VSS-NLMS) algorithm 

is introduced, designed to dynamically adjust the step size parameter, thereby optimizing 

performance criteria including precision, robustness, convergence rate, and tracking ability. 

Employing system identification techniques within an adaptive filtering framework, this 

research advances the NLMS algorithm by incorporating a variable step size parameter that 

adapts in real-time to the noise environment. The proposed VSS-NLMS algorithm is 

evaluated through extensive simulations, demonstrating a significant enhancement in the 

balance between Mean Square Error (MSE) reduction and convergence rate over both the 

conventional NLMS and Recursive Least Squares (RLS) algorithms, whilst maintaining 

computational simplicity. In the context of adaptive filters, the VSS-NLSM algorithm 

represents a substantial improvement for noise cancellation applications, particularly in 

scenarios characterized by variable noise dynamics. The results presented herein confirm 

that the VSS-NLMS algorithm not only achieves a superior trade-off between 

accuracy/robustness and convergence rate/tracking but also sets a new benchmark for 

adaptive noise cancellation strategies in complex acoustic environments. 
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1. INTRODUCTION

In dynamic environments where conditions are uncertain or 

exhibit non-stationary behavior, conventional fixed step size 

filters often fail to deliver optimal performance. Adaptive 

filters, by contrast, are adept at monitoring environmental 

fluctuations and accordingly adjusting the filter's weight 

vector coefficients, thereby providing efficient outcomes [1]. 

Among the current suite of adaptive algorithms, the Least 

Mean Square (LMS) and its variant, the NLMS, are 

particularly prominent. The LMS algorithm's widespread 

adoption can be attributed to its implementation simplicity. 

Despite its simplicity, the LMS algorithm suffers from 

drawbacks such as slow convergence and subpar tracking 

capabilities when contrasted with the NLMS algorithm, which 

is favored for real-time applications. Both algorithms are 

designed to update their coefficients with a minimal number 

of operations, rendering them suitable for digital 

implementations [2]. 

Speech processing has emerged as a crucial field within the 

engineering sciences, experiencing an exponential growth 

since the 1960s, spurred by advancements in 

telecommunications technologies. These innovations, 

particularly in hands-free telephony and teleconferencing, 

have introduced new challenges related to various 

disturbances, including additive noise. 

With the advent of modern telecommunications systems, 

the pursuit of adaptive filtering has become an increasingly 

significant research area. While adaptive filtering has proven 

effective in linear systems, where the input-output relationship 

is straightforward, its application to nonlinear systems has 

been limited. It is within this context that nonlinear filters, 

such as the proposed VSS-NLMS algorithm, demonstrate their 

merit, offering enhanced tracking performance [3-5]. 

The quest for an adaptive filter that performs adeptly in non-

stationary and time-varying scenarios has led to the 

development of various algorithms with variable step sizes, 

aiming to balance rapid convergence with minimal 

misadjustment. This paper introduces a novel VSS-NLSM 

algorithm that augments the convergence rate and tracking by 

leveraging the input signal for both linear and nonlinear 

components, in conjunction with the previous step size. 
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This approach yields a new VSS-NLMS algorithm that 

retains the computational simplicity of its predecessors while 

providing improved performance. A fresh formulation for the 

adaptive algorithm's iterative step size is also proposed. The 

developed algorithm boasts easy computational structure, 

facilitating its application across diverse scenarios, such as 

learning curves and tracking a Pseudo-Random Binary 

Sequence (PRBS) in noisy conditions. 

Simulation results in noise cancellation contexts underscore 

the superior performance of the newly developed VSS-NLMS 

algorithm, confirming its potential in advanced signal 

processing applications. 

 

 

2. ADAPTIVE FILTERING 

 

To get the best estimation of the system noise, with an 

adaptive algorithm, the adaptive filtering technique modifies 

the filter parameters to complete the optimum noise 

cancellation result. It is appropriate for real-time processing 

because it requires a small calculation [6]. 

Adaptive filtering is used in various domains, like radar 

navigation, voice signal processing, and wireless 

communication. Different sources of noise deteriorate the 

radar signal, from the target to the reception. The objective of 

the adaptive filters is to find out if noise reduction in receiving 

radar signals can be achieved. Sadly, since the frequency of 

the detected radar signals is unknown, we do not know their 

frequencies. We use adaptive filters like LMS and NLMS, 

which adapt their parameters according to the radar signal that 

they receive. 

In nature, acoustic noise tends to affect speech signals. 

Therefore, before being stored, transmitted, or played out, the 

speech signal needs to be filtered through an adaptive filter, 

whether in voice signal processing or the field of wireless 

communication. In recent years, numerous audio applications, 

like mobile telephones and automatic speech recognition 

systems, have become extremely demanding, requiring the use 

of adaptive algorithms like the LMS or NLMS algorithm to 

reduce noise [7]. These algorithms must have an acceptable 

balance between convergence rate/tracking and 

accuracy/robustness. 

The proposed VSS-NLMS algorithm offers the best accord 

between convergence rate/tracking and the 

accuracy/robustness compared to LMS and NLMS algorithms, 

which makes it likely to improve these different applications. 

The adaptive filter is the subject of significant signal-

processing research. The efficiencies of the adaptive filter 

algorithms are determined by steady-state error and the 

convergence rate. Both the basic LMS algorithm with the basic 

fixed step size LMS algorithm are unsuitable in adaptive signal 

filtering because they have a poor convergence speed with a 

high steady-state error, but conflicts between these crucial 

elements exist. Distinct step sizes have various steady-state 

errors and convergence rates. In contrast to the big step size, 

with a rapid convergence rate but a significant steady-state 

error, the slow step size has a slower convergence rate and a 

small steady-state error [3]. 

 

2.1 Least mean square algorithm (LMS) 

 

Figure 1 illustrates the basic concept of adaptive filtering: 

x(n) corresponds to our input signal, d(n) represents desired 

response signal, y(n) indicates the output signal, e(n) indicates 

the signal's error, and is the difference between d(n) and y(n), 

and ε(n) denotes system noise [8]. 

Bernard Widrow and Marcian Hopf of Stanford University 

presented the concept of adaptive filtering derived from the 

LMS approach. 

Due to its simple implementation, the LMS is a well-liked 

learning algorithm. The steepest-descent approach, which 

calculates the gradient vector from the provided data, is 

simplified by this method [9]. The basis of the impulse 

response filter that serves as the foundation of the conventional 

LMS algorithm recursively minimizes the MSE to get the ideal 

filter weights. The most used adaptive filtering technique is the 

LMS algorithm [10]. 

 

 
 

Figure 1. Principle of adaptive filtering 

 

The LMS algorithm is commonly utilized in system 

identification, channel equalization, and acoustic echo 

cancellation due to its mathematical ease, robustness, and 

other applications [11-14]. 

One of the first versions of the LMS algorithm is given by 

[15]. It is obtained by an iterative solution of Eq. (1) using the 

concept of least squares. 

 

𝐻∗ = 𝑅−1𝑃 (1) 

 

where, R=E[x(n)x(n)T] is the autocorrelation matrix of the 

input signal 𝑥(𝑛). This matrix is defined positive, by Toeplitz; 

P=E[x(n)d(n)] is the intercorrelation vector between the input 

signal x(n) and the desired signal d(n). 

The basic version of the LMS algorithm, Eq. (2), is given 

by [2, 9, 16-20]. 

 

ℎ(𝑛 + 1) = ℎ(𝑛) + 2 ∗ 𝜇 ∗ 𝑒(𝑛) ∗ 𝑥(𝑛) (2) 

 

where, h(n) is the vector of the filter coefficients, µ is the step 

size or convergence factor, e(n) is the error signal, x(n) is the 

observed sequence of input data. 

We will have the algorithm's convergence when the step 

size μ meets the condition 0 < 𝜇 <
1

𝜆𝑚𝑎𝑥
 [21, 22]. 

where, λmax is the maximum eigenvalue of the autocorrelation 

matrix of the input signal x(n). 

 

2.2 NLMS algorithm 

 

The LMS algorithm is one of the most useful adaptive 

algorithms accessible in the literature. The ease of 

implementation, due to its mathematical simplicity, is the 

major factor. The NLMS algorithm, a normalized variation of 

the LMS algorithm [23], is also commonly utilized. In real-
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time applications, the NLMS method has been applied more 

frequently. Comparing the LMS algorithm to the NLMS 

algorithm, the LMS algorithm has a slower steady-state error, 

a lower convergence rate, and poor tracking, in addition to 

being less robust than the NLMS algorithm [2]. The NLMS 

algorithm has varying step size which makes it converge faster 

than the LMS algorithm. 

The formula for its weight coefficient update is given by 

Sun et al. [3]. 

 

ℎ(𝑛 + 1) = ℎ(𝑛) +
𝜇

𝑥𝑇(𝑛) ∗ 𝑥(𝑛)
∗ 𝑒(𝑛) ∗ 𝑥(𝑛) (3) 

 

where, h(n) is the vector of the filter coefficients, µ is the step 

size or convergence factor, e(n) is the error signal, x(n) is the 

observed sequence of input data, xT(n) is the transpose of x(n). 

The algorithm will converge when the step size μ meets the 

condition 0<μ<2 [4, 6, 24-26]. 

 

2.2.1 Variable step size (VSS) NLMS 

Different Variable Step-Size (VSS) algorithms are already 

developed since earlier 1990s. Since choosing the step sizes in 

various iterations is an unresolved issue, the assumption of 

employing low step-size values inside the steady-state zone 

and high values if the adaptive filter coefficients are distant 

from the ideal solution has been examined in many 

publications [27].  

One of the initial approaches suggested in the work [28] is 

a VSS-LMS algorithm that modifies its step size utilizing the 

squared instantaneous estimation error. 

Both convergence rate and steady-state error affect the 

performance of the adaptive filter. Therefore, in the NLMS 

algorithm, the trade-off between convergence rate and steady-

state error is not resolved, hence the need to introduce a VSS-

NLMS algorithm. 

 

 

3. NOISE CANCELLATION 

 

3.1 Principle of the adaptive noise cancellation 

 

Extracting the information in an additionally noisy signal is 

a traditional problem in signal processing. The operator has a 

noisy signal.  

The goal is to filter the input signal, x(n), with an adaptive 

filter to align it with the desired signal, y(n). To create an error 

signal e(n), the desired signal, y(n), is deducted from the 

filtered signal, u(n). The error signal 𝑒(𝑛) guides an adaptive 

algorithm to generate the filter coefficients in a way that 

reduces the error signal, Figure 2. 

 

 
 

Figure 2. Adaptative noise cancellation scheme 

In a noise-cancelling system, the goal is to generate a system 

output e(n)=[s(n)+v(n)]-u(n) that closely matches the signal 

s(n) in terms of least squares. This goal is accomplished by 

modifying the filter coefficients, using an adaptive algorithm, 

and providing the system output as feedback to the adaptive 

filter to minimize the error signal e(n), so that it reduces the 

error between the estimated noise and the actual noise. 

 

3.2 Noise cancellation techniques 

 

Noise cancellation is one of the problems encountered in 

signal processing. To remedy this phenomenon, there are a 

variety of techniques in the literature that operate differently. 

Over the past few decades, different methods have been 

developed to solve this problem. Spectral subtraction, Wiener 

filter, and beamforming have been proposed to achieve 

optimal performance in the noise cancellation domain. 

Spectral subtraction uses fixed values of the subtraction 

parameter, which is its major weakness, making it unable to 

adjust noise characteristics and variable noise levels. 

Moreover, most additive noise, especially in speech signals, 

has a non-flat spectrum, so optimizing the parameters is not 

trivial task. 

Moreover, several limitations constrain the performance 

and usability of a Wiener filter for noise cancellation in signal 

processing. Utilizing a Wiener filter has several limitations, so 

that it necessitates knowledge of the noise signal, the power 

spectra of the input signal, and the true signal beforehand. In 

many situations, obtaining this might be complicated or 

impractical, particularly when the signal and noise are non-

Gaussian or non-stationary. Utilizing a Wiener filter has the 

additional limitation of being linear, which makes it incapable 

of handling nonlinear phenomena. 

Despite several benefits [29], beamforming has one 

significant drawback: it demands large computing resources 

[30, 31]. 

The adaptive noise cancellation algorithms can track the 

signal adaptively in non-stationary contexts. Their frequency 

response has the distinctive characteristic of being self-

modifying, changing their behaviors over time and enabling 

the filter to adjust its response as the parameters of the input 

signal change [16]. Hence their importance in noise 

cancellation, especially the proposed VSS-NLMS algorithm. 

 

 

4. PROPOSED ALGORITHM AND CONVERGENCE 

CONDITIONS 

 

This section presents the new approach we propose for 

updating the coefficient vectors of the linear and nonlinear 

parts of the adaptive filter. We will also develop the 

convergence conditions of the algorithm. 

Figure 3 illustrates a typical application of the adaptive filter. 

The selection of the system input signal is a matter of taking 

an excitation signal with a homogeneous spectral density 

covering the entire bandwidth of the process (a transmission 

channel) to be identified. In the case of the application, we are 

interested in, a Pseudo Random Binary Sequence (PRBS) is 

used as an input signal that allows an excellent temporal 

identification. 

A Pseudo Random Binary Sequence (PRBS) is transmitted 

through a communication channel. On reception, an Additive 

White Gaussian Noise (AWGN), an archetype of noise 

patterns encountered in practice, is added to the received 
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signal before the "sum" signal is injected at the input of the 

adaptive filter.  

The error signal, the variation between the desired response 

with the filter's output, is used to adjust the filter coefficients 

to better eliminate the noise or unwanted signal. 

 

 
 

Figure 3. Digital channel equalization 

 

Referring to Figure 3, the transfer function of the adaptive 

equalizer will have the relation given by Eq. (4), where the 

index n indicates the number of iterations. 

 

ℎ(𝑛) = ℎ(𝑛 − 1) +
𝜇 ∗ 𝑒(𝑛) ∗ 𝑥(𝑛)

𝑥𝑇(𝑛) ∗ 𝑥(𝑛)
 (4) 

 

The error e(n) is given by e(n)=d(n)-y(n). 

The laws of iterative adaptations of the linear and nonlinear 

parts are given by Eq. (5): 

 

𝜇𝑖(𝑛) = 𝜇𝑖(𝑛 − 1) +
1

∑ 𝑥2(𝑛 − 𝑗)𝑁,𝑀2

𝑗=1

 𝑖 = 1 𝑜𝑟 2 (5) 

 

where, N and M2 are, respectively, the orders of the linear and 

nonlinear parts of the filter. 

In order to simplify the expression of the step sizes, Eq. (5), 

we will make the following changes of variables: 

 

∆1= 𝑥2(𝑛) − 𝑥2(𝑛 − 𝑁 + 1) (6) 

 

∆2= 𝑥2(𝑛) − 𝑥2(𝑛 − (𝑀 − 1)2) (7) 

 

After the first N and M2 initialization iterations, the 

expressions of the step sizes of the linear and nonlinear parts 

μ1 and μ2 can be reformulated by Eq. (8): 

 

𝜇𝑖(𝑛) = 𝜇𝑖(𝑛 − 1) −
∆𝑖 ∗ 𝜇𝑖

2(𝑛)

1 + ∆𝑖 ∗ 𝜇𝑖(𝑛)
 𝑖 = 1 𝑜𝑟 2 (8) 

 

And, by changing the variable μ'=1⁄μ, to simplify the 

expressions of the step sizes, Eq. (8) becomes: 

 

𝜇𝑖
′(𝑛) = 𝜇𝑖

′(𝑛 − 1) + ∆𝑖  𝑖 = 1 𝑜𝑟 2 (9) 

 

In our case, the linear and nonlinear parts of the filter have 

different adaptation laws, which allows us to have more 

freedom in adjusting filter coefficients. In addition, these 

separate adaptation steps will give the filter more tracking 

capabilities in a non-stationary environment. 

Therefore, with a step size μ that is not the same for the 

linear and nonlinear parts of x(n), Eq. (4) becomes: 

 

ℎ(𝑛) = ℎ(𝑛 − 1) + 𝑒(𝑛) ∗  

[
 
 
 
 

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇1
′ (𝑛)

⁄

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇2
′ (𝑛)

⁄
]
 
 
 
 

 (10) 

The conditions on the step size μ1'=1⁄μ1 of the linear part are 

similar to those of the NLMS algorithm using a fixed step size. 

So, the VSS-NLMS algorithm will converge when μ1 meets 

the condition 0<μ1<2 [4, 6, 24-26]. 

In the following, we will determine the conditions of 

convergence on the adaptation step 𝜇2
′ = 1 𝜇2⁄  of the 

nonlinear part of the filter. 

From Eq. (10), we get: 

 

ℎ(𝑛) − ℎ(𝑛 − 1) =  𝑒(𝑛) ∗  

[
 
 
 
 

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇1
′ (𝑛)

⁄

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇2
′ (𝑛)

⁄
]
 
 
 
 

 (11) 

 

If we pose, 

 

𝒬(𝑛) =

[
 
 
 
 

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇1
′ (𝑛)

⁄

𝑥(𝑛)

𝑥𝑇(𝑛)+𝑥(𝑛)

𝜇2
′ (𝑛)

⁄
]
 
 
 
 

 

 

So, 

 

ℎ(𝑛) − ℎ(𝑛 − 1) = 𝑒(𝑛) ∗ 𝒬(𝑛) (12) 

 

By changing the variables: 

 

𝛼 = 𝒬𝑇(𝑛) ∗ 𝒬(𝑛), 𝛽 = 𝒬𝑇(𝑛 + 1) ∗ 𝒬(𝑛 + 1) 

 

With T is the transpose operator. 

We will have: 

 

ℎ(𝑛) − ℎ(𝑛 − 1) = 𝑒(𝑛) ∗ 𝒬(𝑛) (13) 

 

From where, 

 

𝑒(𝑛) =
𝒬𝑇(𝑛) ∗ (ℎ(𝑛) − ℎ(𝑛 − 1))

𝛼
 (14) 

 

Or, again 

 

𝑒(𝑛 + 1) =
𝒬𝑇(𝑛 + 1) ∗ (ℎ(𝑛 + 1) − ℎ(𝑛))

𝛽
 (15) 

 

The filter input signal (PRBS) is bounded, and applying the 

Milosavljevic convergence condition [32]. 

 

(𝑆(𝑛 + 1) − 𝑆(𝑛)) ∗ 𝑆(𝑛) < 0 (16) 

 

We will have: 

 

(𝑒(𝑛 + 1) − 𝑒(𝑛)) ∗ 𝑒(𝑛) < 0 (17) 

 

And using the two previous Eq. (14) and Eq. (15) leads us 

to the convergence condition of the algorithm on the 

adaptation step 𝜇2
′ = 1 𝜇2⁄  of the nonlinear part of the filter. 

So, the condition of the convergence on the nonlinear part 

step size 𝜇2
′ = 1 𝜇2⁄  of the filter, is that 𝜇2

′ > 𝜇1
′ , or μ2<μ1. 

To ensure convergence of the proposed VSS-NLMS 

algorithm, the initial value of the step size of the nonlinear part 

must be smaller than that of the linear part. 
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5. RESULTS AND DISCUSSION 

 

5.1 Learning curves 

 

To compare the tracking performance of the fixed step size 

NLMS algorithm with the VSS-NLMS algorithm, we opted for 

the scheme in Figure 3. The primary signalx(n) of the filter 

consists of a noisy random signal. 

Since the same type of signals, primary and secondary, and 

the filter order N=6, on a set of 100 realizations, the results 

obtained for both algorithms are shown in Figure 4. 

 

 
(a) μ1=1.5 and μ2=1 

 
(b) 𝜇1 = 1 and 𝜇2 = 0.5 

 

Figure 4. Learning curves of the VSS-NLMS and fixe step 

size NLMS 

 

Figure 4 above, which represents the two learning curves 

for the two versions of the algorithms, demonstrates that the 

VSS-NLMS converges faster than the fixed step size NLMS 

and has a lower steady-state error. Moreover, varying μ1 and 

μ2 results in various convergence rates and steady-state errors. 

Large step size values have a fast convergence rate with a 

higher steady-state error, while smaller step size values have a 

slower convergence rate with a slower steady state. 

The developed VSS-NLMS algorithm resolves the 

controversy between convergence rate and steady-state error 

by providing both a quicker convergence rate and smaller 

steady-state error. 

 

5.2 Tracking of a pseudo random binary sequence (PRBS) 

 

The developed VSS-NLMS algorithm is utilized in the 

following experiment to truck PRBS. The following figures 

show the obtained results. 

Figure 5 shows the output signal of the filter compared to 

the desired signal, for N=6 and M=4, the linear and nonlinear 

orders of the filter and μ1=0.2 and μ2=0.001 the initial steps 

size of the linear and nonlinear parts, respectively. 

A close-up of the filter output signal behavior is given in 

Figure 6. We see that the divergence of the filter's output signal 

is minimal and that the filter's output signal ends up following 

the desired signal perfectly. 

Figure 7 shows the evolution of the MSE. We see that the 

MSE is minimal despite the great convergence of the VSS-

NLMS algorithm, proving its excellent tracking capability. 

 

 
 

Figure 5. Desired signal (PRBS) and VSS-NLMS filter 

output signal 

 

 
(a) First 100 iterations 

 
(b) Last 100 iterations 

 

Figure 6. Zoom on the desired signal and VSS-NLMS output 

signal 
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Figure 7. Evolution of the MSE 

 

 
(a) Desired signal 

 
(b) Noisy signal 

 

Figure 8. Evolution of desired signal and noisy signal 

 

 
 

Figure 9. Desired signal and output signal of the VSS-NLMS 

adaptive filter 

5.3 Noise cancellation 

 

Figure 8 shows the evolution of the filter input signal and 

the noisy signal. We can see that the useful speech signal '' yes'' 

is completely drowned in the disturbing noise. 

Figure 9 demonstrates how the developed VSS-NLMS filter 

successfully recreated the desired signal. Figure 9 illustrates 

the advantages of the VSS-NLMS in tracking the speech signal 

by showing how the evolution of the filter's output signal 

perfectly matches the evolution of the desired signal. 

This indicates that our filter models successfully the 

disturbing noise and, as a result, follow the desired signal and 

reconstruct our speech signal, "yes". 

 

5.4 Comparison with alternative algorithm 

 

To further validate the effectiveness of the VSS-NLMS 

algorithm, we compared its performance with the RLS 

algorithm, which is another state-of-art algorithm in the noise 

cancellation field. The obtained result is showed in Figure 10. 

Figure 10, which represents the two learning curves for the 

VSS-NLMS algorithm and the RLS algorithm, demonstrates 

that the VSS-NLMS converges faster than the RLS and has a 

lower steady-state error. This demonstrates, once again, the 

efficiency of the VSS-NLMS algorithm compared to the RLS 

algorithm. 

 

 
 

Figure 10. Learning curves of the VSS-NLMS with 

μ1=1andμ2=0.5and RLS  

 

5.5 Statistical analysis of performance metrics 

 

To reinforce and better support the assertions made, we 

carried out a statistical analysis of some performance 

measurements, such as the Signal to Noise Ratio (SNR) before 

and after the filtering and the convergence rate between the 

VSS-NLMS algorithm, the fixed step size NLMS algorithm, 

and the RLS algorithm. The SNR is frequently represented in 

decibels and is calculated by the signal-to-noise power ratio. 

For adaptive noise cancellation, each algorithm exhibits a 

different behavior based on the outcomes of the simulation. 

Simulations were carried out to demonstrate the following 

performance characteristics in order to better comprehend the 

comparison between the algorithms mentioned above in terms 

of the noise cancellation application: The algorithm's rate of 

convergence, and SNR ratio before and after signal filtering. 

The filter should have the following qualities: quicker 

algorithm convergence, and a high SNR ratio. Table 1 below 

provides a summary of the results obtained. 

0 100 200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6

8
x 10

-5 Evolution of the Mean Square Error (MSE) 

Iterations number

A
m

p
lit

u
d
e

0 2000 4000 6000 8000 10000 12000 14000 16000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Desired signal

Samples

A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000
-3

-2

-1

0

1

2

3
 Noisy signal

Samples

A
m

pl
itu

de

0 2000 4000 6000 8000 10000 12000 14000 16000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Desired signal and output signal of the VSS-NLMS adaptive filter

Samples

A
m

p
lit

u
d
e

 

 

Output signal of the VSS-NLMS adaptive filter

Disired Signal

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

-3  Learning curves

Iterations number

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(M
S

E
)

 

 

Variable Step Size NLMS

RLS

916



 

Table 1. Statistical comparison results 

 

Algorithm 

SNR [dB] 

Before 

Filtering 

SNR [dB] 

After 

Filtering 

Convergence 

Rate 

Fixed Step-

size NLMS 
-7.5478 12.6824 400 Iterations 

RLS -7.4357 13.8717 180 Iterations 

VSS-NLMS -7.2409 16.7944 70 Iterations 

 

From Table 1, it can be observed that the developed VSS-

NLMS algorithm has the highest SNR after filtering, which 

indicates that it has better performance in terms of noise 

cancellation compared to the fixed step-size NLMS algorithm 

and the RLS algorithm. On the other hand, the convergence 

rate makes it obvious that the VSS-NLMS algorithm 

converges to stability after 70 iterations, contrary to the fixed 

step-size NLMS, and RLS algorithms, which require 400 

iterations and 180 iterations, respectively, to converge to 

stability. This demonstrates, once again, the superiority of the 

developed VSS-NLMS algorithm compared to the state-of-

the-art algorithms in the same field, like the fixed step-size 

NLMS algorithm and the RLS algorithm. 

 

 

6. CONCLUSIONS 

 

The LMS algorithm is among the most prominent and 

commonly utilized adaptive algorithms because of its ease of 

implementation and simplicity of computation. The LMS 

algorithm convergence is still slow and constrained by input 

data dependence. 

The NLMS algorithm provides a better compromise 

between computational simplicity and performance than the 

LMS algorithm. It is also equally easy but more robust. 

A modified nonlinear VSS-NLMS algorithm is developed 

in this paper to improve convergence performance and 

misadjustment. The new variable step size in the developed 

NLMS algorithm is calculated by adding the previous step size 

with the squared inverse of the input signal for both linear and 

nonlinear parts. The step size has been expressed in a unique 

and iterative form and allows a simplified implementation in 

terms of the mathematical complexity of the VSS-NLMS 

algorithm. 

For the choice of the input signal of the system, it is a 

question of taking an excitation signal with a homogeneous 

spectral density covering the whole bandwidth of the process 

to be identified. In this case, we used a Pseudo Random Binary 

Sequence (PRBS) as an input signal, which allows an excellent 

temporal identification. The NLMS algorithm with Variable 

Step Size (VSS-NLMS) offers better tracking performance 

while keeping a level of computational load (mathematical 

simplicity) relatively simple. 

According to computer simulations: learning curves, 

tracking of a Pseudo Random Binary Signal (PRBS), and the 

filtering of a noisy “YES” speech signal, the VSS-NLMS 

algorithm surpasses the standard signal-tracking NLMS 

algorithm. 

Although the VSS-NLMS algorithm has demonstrated its 

convergence rate and steady-state performances, it would be 

interesting to experiment it in real environment conditions. 

Such as in communication systems, above all, in channel 

equalization. In speech processing like echo cancellation or 

speaker separation. Or even, in biomedical applications in 

ECG power-line interference removal or maternal-fetal ECG 

separation, and possibly in other applications. 

Even if the VSS-NLMS algorithm showed acceptable 

performances, it would be interesting to extend in the future 

works the results of this study to the adaptive filtering in sub-

band in which the VSS-NLMS algorithm can be used to know 

the wavelet coefficients or to increase the convergence speed 

of the subband filters, which could further improve the results 

obtained in this study. 
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