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Accurate tracking of ball trajectories on a platform using a 2-DOF balancer system poses 

significant challenges in the existing literature due to its inherent nonlinearity and 

instability. This research addresses these challenges through a two-fold approach. Firstly, 

we focus on designing a robust 2-DOF ball balancer system model. Secondly, we perform 

a comparative study of three control techniques: Linear Quadratic Regulator-based 

Proportional (LQR_P), Full State Feedback-based Proportional (FSF_P), and Classical 

Proportional Derivative-based Proportional (PD_P) control. To evaluate the effectiveness 

of the designed controllers, we conduct both simulation and experimental tests using 

MATLAB Simulink integrated with Quarc software and the 2DOF ball balancer system 

Quanser hardware. The results demonstrate that the Linear Quadratic Regulator-based 

proportional control exhibits superior performance in terms of transient response, 

including percentage overshoot, settling time, and peak time. Moreover, it showcases 

excellent steady-state response, achieving a minimum steady-state error of 0.641mm, 

outperforming the other techniques investigated in this study. 
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1. INTRODUCTION

The 2-DOF ball balancer system is a didactic platform 

commonly employed in research laboratories and academic 

settings to assess the performance and effectiveness of control 

techniques. Utilizing visual system-based imaging, it finds 

applications in diverse fields, including robotics, such as 

assembly robots, military applications, surgical procedures, 

and aerospace industries. The system is characterized as 

underactuated, electromechanical, decoupled, highly 

nonlinear, and inherently unstable, presenting substantial 

challenges for trajectory control and stabilization. 

The ball balancer consists of a free-moving ball atop a plate-

beam system, lacking the ability to perceive its environment 

[1]. These factors collectively contribute to the inherent 

challenge of accurately controlling the ball's position. 

Moreover, constructing a precise mathematical model that 

describes the system has been a formidable task. Numerous 

researchers have explored the design of the ball and plate 

system and have experimented with various approaches to 

control the system within specific time domains, including 

settling time, peak time, percentage overshoot, and minimum 

steady-state error. 

Such as study [1], trajectory tracking of ball-based 

switching control technique and nonlinear analysis was carried. 

Ker et al. [2] generated the control law and back-stepping 

controller to achieve the performance of the system. Steady 

state error response was compared with two approaches, 

standard PID controller and generalized Kalman-

Yanukovych-Popov lemma approach [3]. Later on, point to 

point control of the system based on a non-linear PID 

controller has been studied [4]. Wang et al. [5] used a double 

loop structured respectively fuzzy logic controller in the outer 

loop and a switching technique in the inner one. The issue of 

the fuzzy logic system its required knowledge about the 

system and a good choice of membership function. Shiratori 

et al. [6] presented a quantized feedback control system with a 

discrete variable quantizer with the help of model predictive 

control (MPC). Subramanian et al. [7] uniform bounded 

ultimate controller-based model reference adaptive PID to 

avoid plant disturbances and modeling error. Sliding mode 

controller was compared with a conventional proportional 

integral controller of one degree of freedom ball balancer 

system [8]. An observer integrated Backstepping controller in 

the form of a cascade was developed by Ma et al. [9]. Linear 

extended state observer and tracking differentiator were used 

to estimate the uncertainties of the model and derivative of the 

virtual control law. Singh and Bhushan [10] investigated 

performance comparison in the time domain between Neural 

integrated fuzzy logic, its hybridization with PID and a 

conventional PID controller. Experiment results show that 

neural integrated fuzzy logic has less overshoot compared to 

other controllers. However, all the designed controllers 

presented an oscillation response with a steady state error 
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greater than 1 cm. 

The issue of ball trajectory tracking remains a challenge in 

literature due to the complexity, saturation of the actuator and 

flexibility of the system to disturbance but also results in the 

design model. Discrete Laguerre based linear MPC 

optimization by moving time window control to reduce the 

settling time [11]. Singh and Bhushan [12] presented an 

improved ant colony optimization (ACO) by revising its 

transition probability to improve the response and 

convergence speed of the algorithm resulting to optimize the 

proportional integral derivative controller (PID) controller. 

And the study [13] presented a simultaneous perturbation 

stochastic approximation (SPSA) approach for unknown but 

bounded disturbances in a typical closed loop system. The 

proposed SPSA method minimizes the optimization problem 

achieving adaptive control, by computing the optimal gain 

values to the PID controller and stability analysis is carried out 

considering the linear matrix inequalities and Lyapunov 

stability. Fast state space model predictive control compared 

with LQR and conventional PID controller performance based 

on 2DOF ball balancer system in the study [14]. MPC 

manipulated variables are found online using explicit formulas 

with parameters calculated offline. Ali et al. [15] used a 

nonlinear model reference controller on 2DOF ball balancer to 

track the position and stability was performed based on 

Lyapunov. Dong et al. [16] combined fuzzy logic, neural 

networks, and genetic algorithms (GA) to stabilize the ball on 

top of the plate at a desired position. Five layers, error and 

change in error were used as input and the backpropagation 

training is used in the neural network. Conventional PID gain 

was also tun by fuzzy logic [17], and artificial neural networks 

[18].  

These methods, however, prioritize preserving the more 

advantageous generations, leading to local rather than global 

optimum conditions. Additionally, there are issues brought on 

by intelligent controllers' weight adjustments, a lack of 

memory, early convergence, and poor local search. 

In the study [19], nonlinear control technique backstepping 

and switching techniques respectively to the outer and inner 

loop of the ball and plate platform BPVS-JLU-II system. 

Fuzzy logic was added in the inner loop to decrease the steady 

state error, with PD controllers and bang-bang control is used 

to quicken up the system response. The study [20] presented a 

linear control law based on a reduced-order observer for 

friction compensation of the ball and plate system. The study 

[21] used genetic algorithms to design a fault-tolerant 

controller that has the ability to adapt to the fault condition. 

The three dimensions lookup table related to the current ball 

position, ball velocity, and plate angle to the plate angular 

velocity were used to control the ball motion. Fan and Han [22] 

presented nonlinear model predictive control based on 

gaussian particle swarm optimization. The gaussian particle 

swarm optimization was used dynamically to perform the 

nonlinear constraint optimization. Okafor et al. [23] proposed 

an artificial intelligence-based deep reinforcement learning 

(RL) to tun the proportional, integral, derivative gain of PID 

controller were compared with genetic algorithm-based PID 

(GA-PID) and classical PID. 

As seen in the trajectory tracking with a small steady state 

error remained a challenge with the ball and plate system. 

Pattanapong and Deelertpaiboon [24] used fuzzy logic with 

adaptive integral action. Sliding mode controller that includes 

error integration, which makes the system robust against 

external disturbances design to achieve the performance of the 

ball balancer system [25]. Hierarchical fuzzy CMAC neural 

networks are used to propose an indirect adaptive control 

method [26]. Recently, the studies [27, 28] in comparison to 

simple sliding mode controller and linearized sliding mode 

controller, which determine the beam angle from ball position, 

fractional order sliding mode controllers offer higher tracking 

precision, shorter response times, less chattering, and excellent 

efficiency. Pasha and Mija [29] used a linear quadratic 

regulator for asymptotic stability on 4 DOF ball balancer 

system. Kalman filter and linear quadratic regulator were used 

to achieve the performance of the ball balancing system [30].  

Because of its intrinsic complexity, the ball balancer system 

includes problems such as balancing the ball on a plate and 

point stabilization control, which take the ball to a precise 

place and retain it there while minimizing tracking error and 

time response. 

This paper investigated on performance comparison of the 

designed controllers on ball balancer system. This Work 

concentrated firstly on modelling of ball balancer setup in time 

domain and secondly plan on designing and implementation 

of controllers for system setup using Simulink integrated 

Quarc and in real-time as well. 

The Adaptation of these controllers to ball balancer Model 

tend to be a Nobel.  

Further sections of the paper are organized as follows: 

Section 2 discusses the modeling of the ball plate system 

and its working principle. Section 3 designs Linear Quadratic 

Regulator-based Proportional (LQR_P), Proportional 

Derivative-based Proportional (PD_P) and Full State 

Feedback-based Proportional (FSF_P) for analyzing the slope 

of the ball position, slope of angular position and Energy 

consumption one. Come up with simulation results and the 

stability analysis in Section 4 and Section 5. The conclusion, 

future works and references in Section 6. 

 

 

2. BALL BALANCER SYSTEM 

 

A common benchmark problem for balancing control, ball 

position monitoring, and visual servo control is a ball on a 

plate system. The representation of the ball and plate system is 

typically given in Figure 1. 

 

 
 

Figure 1. Ball-Plate system representation 

 

The ball and plate are a nonlinear, electromechanical, 

multivariable, open-loop unstable system that is being studied 

in order to control the position of the ball by tuning the plate 

angle which is related to serv02 motor angle. A digital USB 

camera is used to capture the two-dimension x and y axis and 

a vision algorithm computes the reads the ball coordinates 
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from the image and provides information to the controller. 

 

2.1 Mathematical modeling of plant model 

 

Time continuous state space model is developed to model 

the ball plate system but under certain assumptions were 

considered: 

1. The output of the servo motor is the input of the beam 

plate system. 

2. No Slipping Assumption: This implies that the ball 

maintains a rolling motion without sliding over the plate 

surface. It suggests a perfect transfer of rotational motion from 

the ball to linear motion across the plate, which is critical for 

maintaining control predictability and system stability in our 

model. 

3. No Friction Assumption: We consider the interface 

between the ball and the plate as ideally smooth, effectively 

ignoring the frictional forces that might oppose the ball's 

motion. This simplification allows us to focus on the primary 

dynamics of the system without the complexities introduced 

by frictional calculations. 

These assumptions play a pivotal role in decoupling the 

system's axes, simplifying the mathematical model by 

reducing the number of parameters needed to describe the 

behavior of the ball balancer system effectively. Our analysis 

focuses primarily on one axis (x-axis) because the x and y axes 

are inherently decoupled in this system, and studying one axis 

provides sufficient insight into the system's dynamics. 

These assumptions underline on decoupling the system axis 

but also reduce the parameters in the model of ball balancer 

system. The observation and analysis were made on one axis 

x, since x and y axis are in nature decouple and one axis is 

sufficient to represent the behavior of the ball balancer system. 

Figure 2 shows the typical system. 

 

 
 

Figure 2. Ball balancer free body diagram 

 

2.2 Equation of motion using first principal  

 

The equation of motion of the ball is determined using 

Newton’s second law: 

 

mbä = ∑ 𝐹𝑒𝑥𝑡 = Px − Fx (1) 

 

𝑚𝑏 denoted the mass of the ball, �̈� its acceleration, 𝑃𝑥 is the 

force due to the gravity and 𝐹𝑥 inertia force of the ball. Figure 

3 shows the free body diagram of ball relates to its forces and 

the plate inclined with a certain angle 𝛼. 

 
 

Figure 3. Typical free body of ball plate 

 

The force due to the gravity along the x-axis is: 

 

Px = mb G sin (α(t)) (2) 

 

The   inertia force due to the torque is given as: 

 

Fx =
Jb
Rb

d2

dt2
γb(t) (3) 

 

The expression of the torque from Eq. (3) 

 

γb(t) =
1

Rb

x(t) (4) 

 

The motion equation of the ball on the top of the plate is 

formulated as: 

 

Ẍ(t) =
mb G 

(
Jb

Rb
2 +mb)

sinα(t) 
(5) 

 

2.3 Determination of the servo angle 

 

Let’s develop the equation of motion that relates the serv02 

motor angle (servo load angle) to the plate angle (beam angle). 

Since it’s a nonlinear system with trigonometric sinus terms. 

Then consider the serv02 angle needed to change the height 

Harm of the beam to move the ball at a certain distance x on 

the plate. 

From the free body beam plate system: 

 

Harm =
Ltable

2
sin (α(t)) (6) 

 

The expression of the serv02 angle with respect to height: 

 

Harm = rarmsin Ө𝑙(t) (7) 

 

Equating expressions (6) and (7) by taking away sinα(t) 

 

sin α(t) =
2 rarm 

Ltable

sin Өl(t) (8) 

 

where, rarm is the distance between the coupled joint and the 

shaft of the SRV02 output gear, and Ltable is the length of the 

plate. 

Replacing Eq. (8) in Eq. (5) and simplifying the expression: 
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𝐾𝑏𝑏 =
2 rarm mb G

Ltable (
Jb

Rb
2 +mb)

 

 

Ẍ(t) = 𝐾𝑏𝑏  sin Өl(t) (9) 

 

Eq. (9) describes the ball position with respect to the servo 

load angle, which is assumed to be the input of the ball to move 

on top of the plate, and as the system is decoupled and 

asymmetric, it is linearized around the equilibrium point using 

is a linear function approximate by the first two terms of 

Taylor’s polynomial and the approximation will be accurate 

only for a narrow range of Өl. 

 

ẍ(t) = K−bbӨ𝑙(𝑡) (10) 

 

The Linear time invariant state space form is obtained by 

this transformation: 

 

{
x1(t) = x(t)

x2(t) = ẋ(t)
    →  {

ẋ1(t) = x2(t)

ẋ2(t) = ẍ(t)
 (11) 

 

[
ẋ1(t)

ẋ2(t)
] = [

0 1
0 0

] [
x1(t)

x2(t)
] + [

0
𝐾−𝑏𝑏

] 𝜃𝑙(𝑡) (12) 

 

𝑦(𝑡) = [1 0] [
x1(t)

x2(t)
] (13) 

 

 

3. BALANCING CONTROLLER DESIGN 

 

As mentioned in the previous section that the system is 

asymmetric and decoupled, then one axis is sufficient to study 

its behavior. The x-axis which is servo2 based unit is chosen 

to design the controller. Figure 4 depicts the control structure 

in two loops outer and inner respectively the ball position loop 

and servo2-based unit loop, which calculates the required 

voltage to track the load at the appropriate angle. 

 

 
 

Figure 4. Control loop structure 

 

Three techniques were chosen in this assessment in term of 

dynamic range and ability to yield the system to satisfy the 

design specifications which are found challenge in literature 

survey, Linear quadratic regulator (LQR) is a popular method 

for optimal, resilient and robust control of dynamic systems in 

mechatronics. It minimizes a cost function that weighs control 

effort against deviation from the target state. The use of a full 

state feedback and proportional derivative controller to 2-DOF 

ball balancer model can incorporate the design specification 

directly to synthetize the feedback gain in the close loop. 

 

3.1 Design specifications 

 

The required parameters of the design controllers are: 

1. Settling time ≤ 3 sec. 

2. Percentage Overshoot Po ≤ 10%. 

3. Steady state error err ≤ 5 mm. 

 

3.1.1 Infinite horizon linear quadratic regulation 

Linear quadratic regulator (LQR) uses the linear dynamic 

continuous or discrete time of a system call linear state space 

form and the cost function is a quadratic form. LQR is an ideal 

multivariable feedback control strategy that minimizes the 

excursion in a system's state trajectories while requiring the 

least amount of controller effort. An LQR controller's behavior 

is determined by two parameters: the state and control 

weighting matrices. These two matrices are the primary design 

factors that must be chosen by the designer and have a 

significant impact on the success of the LQR controller 

synthesis [31]. It is well known that the optimal LQR 

controller is resilient by nature, robust [32]. LQR is efficient 

and applied in many robotics system, aerospace system, 

mechanical and electrical system. 

The design of the LQR controller required two criteria on 

the system states: 

1. The controllability  

 

C = rank[B AB A2B … . . An−1B] = n (14) 

 

C = det ([
0 1.0873

1.0873 0
]) = −1.1822 ≠ 0 

 

If the two rows or columns are not independent and the 

determinant is different than zero, then the system is 

controllable. 

2. The observability 

 

O = Rank

[
 
 
 

CA
CA2

CA3

:
CAn−1]

 
 
 

= n (15) 

 

O = det ([
0 1
1 0

]) = −1 ≠ 0 

 

If the determinant of the observability matrix is different 

than zero then: The system is said Observable. 

Let x be the solution of the system (12) and the cost function 

be: 

 

J(x, u) = ∫ (xT(t)Qx(t) + uT(k)Ru(k))dt
∞

0

 (16) 

 

Q is a symmetric, positive semidefinite (N Ⅹ N) matrix, and 

R is symmetric, positive definite (M Ⅹ M) matrix. The 

matrices Q, and R are tuning parameters for meeting design 

requirements. Whereas Q penalizes delayed responses and 

overshoots, R penalizes the input of the system. 

 

Proposition 1: Assume that Q is 0 and R is 0 and that (A, 

B) is stabilizable (Q, A) is detectable. The ideal LQR policy is 

given by the equation u(t)= k x(t), where 𝐾 = −𝑅−1𝐵𝑇𝑃 and 

𝑋 ≥ 0 is the sole stabilizing solution to the algebraic Riccati 

equation [32]. 

In the case of the system (12), the control law is express 

𝑢(𝑡) = −𝑅−1𝐵𝑇𝑃𝑥(𝑡), with P satisfied the Algebraic Riccati 

Eq. (ARE) below: 

 

PA + ATP − PBR−1BTP + Q = 0 (17) 
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Weighting matrix Q is obtained by trial-and-error within the 

value of: 𝑄 = [
50 1
0 0.1

]  and R=1 with feedback gains 

K=[7.07 3.62]𝑇. 

 

3.1.2 PD controller design 

The conventional controller PD has a significant range of 

use in industries [33] because of its simplicity to design but 

also its easier real implementation. The Figure 5 below shows 

the structure of the control in a double loop outer and inner 

loop respectively, the outer loop is the ball position under PD 

controller and the inner is the servo2 x angular displacement 

under proportional controller. 

 

 
 

Figure 5. Structure loop of PD controller 

 

The model, transfer function of the servo2 based unit and 

the ball position used in this part of the work is given by the 

study [34]. 

 
θl(s)

Vm(s)
=

K

s(τs + 1)
 (18) 

 

The transfer function that described the ball position is: 

 
Xb(s)

θl(s)
=

Kbb

s2
 (19) 

 

By deriving the expression of the desired angular 

displacement with respect to the reference signal in the ball 

position control loop, the expression below is gotten: 

 

θd(s) = Kpb(Xr(s) − Xb(s)) − KdbSXb(s) (20) 

 

Assuming that the inner loop is ideal, which means that the 

desired angular displacement is equal to the angular computed 

by the servo2 load. 

 

θd(s) = 𝜃𝑙(𝑠) (21) 

 

Replacing Eq. (20) in (19), and then rearranging it, the 

second order transfer function of the ball position is obtained. 

 
Xb(s)

Xr(s)
=

KbbKpb

S2 + KbbKdbs + KbbKpb

 (22) 

 

The gain of the proportional derivative controller was 

synthesized by comparing the transfer function (22) to (23) 

shown below, damping ratio and natural frequency were 

determined from Eqs. (25) and (24). 
 

𝐹(𝑠) =
𝑤𝑛

2

S2 + 2εwns + wn
2
 (23) 

 

𝑡𝑠 =
ln √(1 − 𝜀2)

𝜀𝑤𝑛

 (24) 

𝑃𝑜 = 100e
−

πε

√(1−ε2) (25) 

 

3.1.3 Full state feedback design 

As state in the subsection 3.1.1 the system is full rank, 

controllable and observable. The design problem known as 

control input is: 

 

θl(t) = −KX(t) (26) 

 

By substituting the control law in the system (12), end up 

the close loop of the system in the form of ∆=(A-BK): 

 

[
ẋ1(t)

ẋ2(t)
] = [

0 1
−𝐾𝐾−𝑏𝑏 −𝐾𝐾−𝑏𝑏

] [
x1(t)

x2(t)
] (27) 

 

The design of feedback gains is obtained by Cayley 

Hamilton Theorem: 

 

∆2 + β1∆ + β2I = 0 (28) 

 

Determined the close loop characteristics polynomial 𝜌(∆) 

from the expression above: 

 

𝜌(∆) = 𝐴𝐵𝐾 + 𝐵𝐾∆ + 𝛽1𝐵𝐾 (29) 

 

ρ(∆) = [B AB] [
β1K + K∆

K
] (30) 

 

where, C = [B AB] is the controllabillity matrix non singular. 

Multiplying both side the expression (30) by [0 1]C−1 we 

end up getting the feedbak gains: 

 

𝐾 = [0 1]O−1𝜌(∆) (31) 

 

The feedback  gain found for full sate feedback controller is: 

 

𝐾 = [9.54 4.05]𝑇 

 

3.2 Inner loop controller 

 

The inner loop is the servo2 based unit angular position 

control under the proportional controller. The error from 

desired angular position computed from the ball position and 

inner loop is corrected by adjusting empirically the gain 𝐾𝑝 

which was satisfied with a value of 14. Figure 6 shows the 

servo2 based unit controller in a closed loop. 

 

 
 

Figure 6. Close loop of the servo2 

 

 

4. SIMULATION AND EXPERIMENT MATERIALS 

 

Simulation and real implementation of the three controllers 

with the help of hardware, 2-DOF ball balancer with two 

servo2 based unit along x and y axis, a camera attached it, 2X 
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amplifiers, Data acquisition card all Quanser materials and HP 

laptop. MATLAB/Simulink integrates QUARC software. The 

Figure 7 shows the materials used during experiment 

conduction. 

 

 
 

Figure 7. Wiring and experiment materials 

 

4.1 Simulation and experiment results 

 

The comparison that has been conducted in this work was 

mainly focused on the best choice of the model that captured 

closely the system dynamic on one hand but also the 

performance of the control technique to achieve the best 

position tracking of the ball with minimum steady state error, 

less percentage overshoot, less peak time and settling time in 

another hand.  

The transient and steady-state responses are crucial in 

characterizing the system's behavior. They also facilitate 

informed decisions regarding the selection of effective and 

performant controller. This last yield the system to track the 

reference but also to have a minimum angular displacement of 

servo2 x, with minimum energy consumption (Voltage). 

The stability of 2-DOF ball balancer system is analysed with 

Lyapunov criteria, since the 𝑅 > 0 and 𝑄 ≥ 0 , 𝑄 = 𝐶𝑇 ∗ 𝐶 

and the couple (A, B) is controllable and (A, C) is observable, 

there exists a unique solution to the algebraic Riccati equation 

and the optimal closed loop system �̇� = (𝐴 − 𝐵𝐾)𝑥, where 

𝐾 = −𝑅−1𝐵𝑇𝑃, with the negative real part of the eigenvalues. 

The Lyapunov s’ stability criterion. 

 

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 (32) 

 

where, 𝑃 > 0 is the solution of the Riccati Eq. (17). 

Taken the derivative of the Lyapunov of Eq. (32) 

 

�̇�(𝑥) = 2𝑥𝑇𝑃�̇� (33) 

 

�̇�(𝑥) = 𝑥𝑇𝑃(𝐴 − 𝐵𝐾)𝑥 + 𝑥𝑇(𝐴 − 𝐵𝐾)𝑇𝑃𝑥 < 0 (34) 

 

Eq. (34) has to be demonstrated. 

Taking the algebraic Riccati Eq. (17) and manipulating it, 

the following equation is derived: 

 

𝑃(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇𝑃 = −𝐾𝑇𝐵𝑇𝑃 − 𝑄 (35) 

 

Eqs. (33) to (34), can be written as: 

 

𝑥𝑇𝑃(𝐴 − 𝐵𝐾)𝑥 + 𝑥𝑇(𝐴 − 𝐵𝐾)𝑇𝑃𝑥 = −(𝐾𝑇𝐵𝑇𝑃 +
𝑄) 

(36) 

 

With 𝐾 > 0; 𝑄 ≥ 0; 𝐵 > 0; 𝑃 > 0. 

 

(𝐾𝑇𝐵𝑇𝑃 + 𝑄) >0 

�̇�(𝑥) = −𝑥𝑇(𝐾𝑇𝐵𝑇𝑃 + 𝑄)𝑥 < 0 

Hence the close loop of LQR in the form of (A-BK) is 

globally asymptotically stable. The three figures below 

depicted the simulation results: Figure 8 shows the ball 

position, Figure 9 shows the angle of the central beam-plate 

system and Figure 10 shows the voltage consumed by the 

servo2 based unit along the x-axis. Figure 11 depicted the 

experiment results of the ball position, Figures 12-14 show the 

angular position and Figures 15-17 depict the voltages of three 

controllers respectively PD_P, LQR_P and FSF_P. 

 

 
 

Figure 8. Simulation results of LQR, PD and FSF 

 

 
 

Figure 9. Angular position of servo motor X 

 

 
 

Figure 10. Voltage of servo X 
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Figure 11. Experiment of ball position with LQR_P, FSF_P 

and PD_P 

 

 
 

Figure 12. Angular position along x axis PDp 

 

 
 

Figure 13. Angular position along x axis FSFp 

 

 
 

Figure 14. Angular position along x axis LQRp 

 

 
 

Figure 15. Voltage of servo X PDp 

 

 
 

Figure 16. Voltage of servo X LQRp 
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Figure 17. Voltage of servo X FSFp 

 

4.2 Simulation and experiment results discussion 

 

The comparison made during Simulation and real 

Implementation of the three controllers is based on the time 

domain and steady state error. The reference signal is chosen 

to be between -3 cm and +3 cm as is pose as challenge in 

literature survey by many researchers. During this study and 

analysis, it is found from Tables 1 and 2 that LQR_P has the 

lowest steady state error and lowest percentage overshoot both 

from the simulation and experiment respectively 1.15e-10, 

0.064 cm and 0, 3.96% compared to PD_P and FSF_P. Full 

state feedback based proportional has the greater settling time 

from the experiment of 5.75sec and lowest from the simulation 

0.82 sec compared to other controllers. Full state feedback 

based proportional and proportional derivative based 

proportional have smallest peak time for simulation and 

experiment both as show in Tables 1 and 2.  

 

Table 1. Simulation comparative assessment of controllers 

 

Controllers 

Settling 

Time ts 

(sec) 

Peak 

Time 

tp 

(sec) 

Overshoot % 

Steady 

State 

Error 

(cm) 

PD_P 1.71 1.19 8.25 1.00e-06 

FSF_P 0.82 1.02 0.38 2.55e-10 

LQR_P 1.12 2.88 0 1.15e-10 

 

Table 2. Experiment comparative assessment of controllers 

 

Controllers 

Settling 

Time ts 

(sec) 

Peak 

Time tp 

(sec) 

Overshoot 

% 

Steady State 

Error (cm) 

PD_P 0.70 0.55 4.76 0.88 

FSF_P 5.75 0.85 8.02 0.39 

LQR_P 3.83 1.97 3.96 0.064 

 

The angular displacement of servo x with respect to PD_P 

and FSF_P controllers exceeded the bound of 30 degrees, but 

also the high voltage, between -8 to 8 and -10 to 10 compared 

to LQR_P with a minimum and maximum angular position of 

-25 to 25 degrees and a voltage of -6 to 6v. then compare all 

approaches to our given specifications, only the linear 

quadratic regulator based proportional satisfied 66.66% with 

good trajectory tracking and minimum steady state error. Even 

if the settling time was not satisfied but it ranges. Linear 

quadratic regulator based proportional have good tracking 

trajectory compared to the rest of control techniques 

investigated in this study. 

 

 

6. CONCLUSION 

 

In conclusion, we delved into the model design of a 2-DOF 

ball balancer system, characterized by its electromechanical 

nature, under actuation, instability, and pronounced 

nonlinearity. We rigorously tested three control techniques: 

LQR_P, FSF_P, and PD_P. These were employed to establish 

a correlation between the real system and the mathematical 

model developed herein. Additionally, their performance and 

efficacy were evaluated through time-domain analysis. Both 

simulations and experiments were conducted, revealing that 

the Linear Quadratic Regulator based proportional control 

(LQR_P) satisfied the steady state error and percentage 

overshoot even if it is failed on settling time. Although Full 

State Feedback based proportional (FSF_P) control exhibited 

commendable performance, it was surpassed by Proportional 

Derivative based proportional (PD_P) control. FSF_P and 

PD_P are not optimal control and non-robust controller to 

uncertainties such as variation of the light and wind. Notably, 

LQR_P is an optimal, robust controller, integrated with image-

based servoing in the feedback system, demonstrated superior 

effectiveness in trajectory tracking. Tuning the weighting 

matrices Q and R by optimal control such as PSO, GA etc. to 

avoid trial and error can be consided as future work.  

 

 

REFERENCES 
 

[1] Tian, Y., Bai, M., Su, J. (2006). A non-linear switching 

controller for ball and plate system. International Journal 

of Modelling, Identification and Control, 1(3): 177-182. 

https://doi.org/10.1504/IJMIC.2006.011940 

[2] Ker, C.C., Lin, C.E., Wang, R.T. (2007). Tracking and 

balance control of ball and plate system. Journal of the 

Chinese institute of engineers, 30(3): 459-470. 

https://doi.org/10.1080/02533839.2007.9671274 

[3] Mochizuki, S., Ichihara, H. (2013). I-PD controller 

design based on generalized KYP lemma for ball and 

plate system. In 2013 European control conference 

(ECC), Zurich, Switzerland, pp. 2855-2860. 

https://doi.org/10.23919/ecc.2013.6669269 

[4] Sun, S.Q., Li, L. (2012). The study of ball and plate 

system based on non-linear PID. Applied Mechanics and 

Materials, 187: 134-137. 

https://doi.org/10.4028/www.scientific.net/AMM.187.1

34 

[5] Wang, H., Tian, Y., Sui, Z., Zhang, X., Ding, C. (2007). 

Tracking control of ball and plate system with a double 

feedback loop structure. In 2007 International 

Conference on Mechatronics and Automation, Harbin, 

China, pp. 1114-1119. 

https://doi.org/10.1109/ICMA.2007.4303704 

[6] Shiratori, T., Zanma, T., Liu, K. (2014). Optimal 

quantization feedback control with variable discrete 

quantizer. In 2014 IEEE 13th International Workshop on 

Advanced Motion Control (AMC), Yokohama, Japan, pp. 

414



 

116-121. https://doi.org/10.1109/AMC.2014.6823267 

[7] Subramanian, R.G., Elumalai, V.K., Karuppusamy, S., 

Canchi, V.K. (2017). Uniform ultimate bounded robust 

model reference adaptive PID control scheme for visual 

servoing. Journal of the Franklin Institute, 354(4): 1741-

1758. https://doi.org/10.1016/j.jfranklin.2016.12.001 

[8] Kaan, C., Başçi, A. (2017). Position control of a ball & 

beam experimental setup based on sliding mode 

controller. International Journal of Applied Mathematics 

Electronics and Computers, 1: 29-35. 

https://doi.org/10.18100/ijamec.2017SpecialIssue30467 

[9] Ma, J., Tao, H., Huang, J. (2021). Observer integrated 

backstepping control for a ball and plate system. 

International Journal of Dynamics and Control, 9: 141-

148. https://doi.org/10.1007/s40435-020-00629-8 

[10] Singh, R., Bhushan, B. (2020). Real-time control of ball 

balancer using neural integrated fuzzy controller. 

Artificial Intelligence Review, 53(1): 351-368. 

https://doi.org/10.1007/s10462-018-9658-7 

[11] Pasha, J.F., Mija, S.J. (2019). Discrete Laguerre based 

MPC for constrained asymptotic stabilization of 4 DOF 

ball balancer systems. In 2019 IEEE 5th International 

Conference on Mechatronics System and Robots 

(ICMSR), Singapore, pp. 76-80. 

https://doi.org/10.1109/ICMSR.2019.8835465 

[12] Singh, R., Bhushan, B. (2021). Improved ant colony 

optimization for achieving self-balancing and position 

control for balancer systems. Journal of Ambient 

Intelligence and Humanized Computing, 12: 8339-8356. 

https://doi.org/10.1007/s12652-020-02566-y 

[13] Singh, R., Bhushan, B. (2022). Adaptive control using 

stochastic approach for unknown but bounded 

disturbances and its application in balancing control. 

Asian Journal of Control, 24(3): 1304-1320. 

https://doi.org/10.1002/asjc.2586 

[14] Zarzycki, K., Ławryńczuk, M. (2021). Fast real-time 

model predictive control for a ball-on-plate process. 

Sensors, 21(12): 3959. 

https://doi.org/10.3390/s21123959 

[15] Ali, H.I., Jassim, H.M., Hasan, A.F. (2019). Optimal 

nonlinear model reference controller design for ball and 

plate system. Arabian Journal for Science and 

Engineering, 44(8): 6757-6768. 

https://doi.org/10.1007/s13369-018-3616-1 

[16] Dong, X., Zhang, Z., Tao, J. (2009). Design of fuzzy 

neural network controller optimized by GA for ball and 

plate system. In 2009 Sixth International Conference on 

Fuzzy Systems and Knowledge Discovery, Tianjin, 

China, pp. 81-85. 

https://doi.org/10.1109/FSKD.2009.710 

[17] Wang, Y., Jin, Q., Zhang, R. (2017). Improved fuzzy PID 

controller design using predictive functional control 

structure. ISA Transactions, 71: 354-363. 

https://doi.org/10.1016/j.isatra.2017.09.005 

[18] Mohammadi, A., Ryu, J.C. (2020). Neural network-

based PID compensation for nonlinear systems: Ball-on-

plate example. International Journal of Dynamics and 

Control, 8(1): 178-188. https://doi.org/10.1007/s40435-

018-0480-5 

[19] Wang, H., Tian, Y., Fu, S., Sui, Z. (2008). Nonlinear 

control for output regulation of ball and plate system. In 

2008 27th Chinese Control Conference, Kunming, China, 

pp. 382-387. 

https://doi.org/10.1109/CHICC.2008.4605473 

[20] Wang, Y., Sun, M., Wang, Z., Liu, Z., Chen, Z. (2014). 

A novel disturbance-observer based friction 

compensation scheme for ball and plate system. ISA 

Transactions, 53(2): 671-678. 

https://doi.org/10.1016/j.isatra.2013.11.011 

[21] Beckerleg, M., Hogg, R. (2016). Evolving a lookup table 

based motion controller for a ball-plate system with fault 

tolerant capabilites. In 2016 IEEE 14th International 

Workshop on Advanced Motion Control (AMC), pp. 

257-262. https://doi.org/10.1109/AMC.2016.7496360 

[22] Fan, J., Han, M. (2012). Nonliear model predictive 

control of ball-plate system based on gaussian particle 

swarm optimization. In 2012 IEEE Congress on 

Evolutionary Computation, pp. 1-6. 

https://doi.org/10.1109/CEC.2012.6252950 

[23] Okafor, E., Udekwe, D., Ibrahim, Y., Bashir Mu'azu, M., 

Okafor, E.G. (2021). Heuristic and deep reinforcement 

learning-based PID control of trajectory tracking in a 

ball-and-plate system. Journal of Information and 

Telecommunication, 5(2): 179-196. 

https://doi.org/10.1080/24751839.2020.1833137 

[24] Pattanapong, Y., Deelertpaiboon, C. (2013). Ball and 

plate position control based on fuzzy logic with adaptive 

integral control action. In 2013 IEEE International 

Conference on Mechatronics and Automation, pp. 1513-

1517. https://doi.org/10.1109/ICMA.2013.6618138 

[25] Bang, H., Lee, Y.S. (2018). Implementation of a ball and 

plate control system using sliding mode control. IEEE 

Access, 6: 32401-32408. 

https://doi.org/10.1109/ACCESS.2018.2838544 

[26] Moreno-Armendáriz, M.A., Pérez-Olvera, C.A., 

Rodríguez, F.O., Rubio, E. (2010). Indirect hierarchical 

FCMAC control for the ball and plate system. 

Neurocomputing, 73(13-15): 2454-2463. 

https://doi.org/10.1016/j.neucom.2010.03.023 

[27] Hesar, M.E., Masouleh, M.T., Kalhor, A., Menhaj, M.B., 

Kashi, N. (2014). Ball tracking with a 2-DOF spherical 

parallel robot based on visual servoing controllers. In 

2014 Second RSI/ISM International Conference on 

Robotics and Mechatronics (ICRoM), Tehran, Iran, pp. 

292-297. https://doi.org/10.1109/ICRoM.2014.6990916 

[28] Roy, P., Das, A., Roy, B.K. (2018). Cascaded fractional 

order sliding mode control for trajectory control of a ball 

and plate system. Transactions of the Institute of 

Measurement and Control, 40(3): 701-711. 

https://doi.org/10.1177/0142331216663826 

[29] Pasha, J.F., Mija, S.J. (2019). Asymptotic stabilization 

and trajectory tracking of 4 DoF ball balancer using LQR. 

In TENCON 2019-2019 IEEE Region 10 Conference 

(TENCON), pp. 1411-1415. 

https://doi.org/10.1109/TENCON.2019.8929327 

[30] Kostamo, J., Hyotyniemi, H., Kuosmanen, P. (2005). 

Ball balancing system: An educational device for 

demonstrating optimal control. In 2005 International 

Symposium on Computational Intelligence in Robotics 

and Automation, Espoo, Finland, pp. 379-384. 

https://doi.org/10.1109/cira.2005.1554306 

[31] Hassani, K., Lee, W.S. (2014). Optimal tuning of linear 

quadratic regulators using quantum particle swarm 

optimization. In Proceedings of the International 

Conference on Control, Dynamic Systems, and Robotics 

(CDSR’14), Ottawa, Ontario, Canada, pp. 1-8. 

[32] Kashyap, M., Lessard, L. (2023). Guaranteed stability 

margins for decentralized linear quadratic regulators. 

415



 

IEEE Control Systems Letters, 7: 1778-1782. 

https://doi.org/10.1109/LCSYS.2023.3280868 

[33] Adel, T., Abdelkader, C. (2013). A particle swarm 

Optimization approach for optimum design of PID 

controller for nonlinear systems. In 2013 International 

Conference on Electrical Engineering and Software 

Applications, pp. 1-4. 

https://doi.org/10.1109/ICEESA.2013.6578478 

[34] Motion, R., Plant, S. (2015). Rotary Experiment #17: 2D 

Ball Balancer. 

https://nps.edu/documents/105873337/0/56%20-%202D

%20Ball%20Balancer%20Control%20-%20Instructor%

20Manual.pdf/709c97d2-0fae-426c-9e2a-4b36e8411edf. 

 

416




