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Bone metastasis segmentation is a crucial task in the field of medical image processing, 

aimed at automatically and accurately identifying regions of bone metastatic lesions in 

medical imagery. In recent years, with the rapid development of deep learning technology, 

various deep learning models have been widely applied to the task of bone metastasis 

segmentation. This paper proposes a multi-scale feature fusion and parallel attention 

network based on DeepLabv3+ called MFP-DeepLabv3+, with the following main 

contributions: (1) Introducing adaptive feature fusion and pooling (AFPP) to enhance the 

multi-scale feature extraction capability of the network; (2) Introducing parallel spatial-

channel attention network (PSCAN) enhances the simultaneous attention of the network to 

both channel and spatial information; (3) Introducing a multi-layer skip connection strategy 

to better integrate global semantic information. Experimental results on the BM-Seg dataset 

demonstrate that MFP-DeepLabv3+ achieves mIoU, mPA, mPrecision, and Dice scores of 

83.97%, 93.90%, 87.97%, and 90.50%, respectively, outperforming various mainstream 

semantic segmentation networks. This study effectively improves the accuracy and 

efficiency of bone metastasis segmentation, offering valuable auxiliary tools for clinical 

diagnosis. 
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1. INTRODUCTION

Bone metastasis is a complex biological process, whereby 

malignant tumor cells migrate from the primary tumor site 

through the bloodstream or lymphatic system to the bone 

tissue, forming secondary tumors. This process involves 

multiple steps including invasion, shedding, entry into the 

bloodstream, colonization, and growth of tumor cells [1]. 

According to statistics, approximately 70% of cancer patients 

experience bone metastasis, with breast, prostate, lung, and 

renal cancers being the most common. Bone metastasis not 

only severely damages skeletal structure and function but also 

leads to clinical symptoms such as bone pain, fractures, and 

hypercalcemia, significantly impacting patients' quality of life 

and survival rates [2]. 

Currently, the predominant diagnostic methods for bone 

metastasis in clinical practice primarily rely on medical 

imaging examinations, such as X-ray radiography, CT 

scanning, magnetic resonance imaging (MRI), as well as 

serum biomarker detection [3]. However, traditional medical 

imaging analysis methods are constrained by physicians' 

subjective experience and workload, leading to issues of 

diagnostic accuracy and consistency. Consequently, 

automated bone metastasis pathology segmentation 

technology has become a focal point of research, aiming to 

utilize computer vision and deep learning technologies to 

achieve automatic identification and segmentation of regions 

of bone metastatic lesions in medical imagery. 

Deep learning models have been widely used in medical 

segmentation tasks [4], which can be trained on vast amounts 

of medical imaging data to automatically extract features from 

images and achieve accurate identification and segmentation 

of regions of bone metastatic lesions. Compared to traditional 

manual segmentation methods, automated segmentation 

techniques based on deep learning offer advantages such as 

rapid recognition speed, high accuracy, and strong 

reproducibility [5]. These techniques can alleviate the 

workload of physicians, improve medical efficiency and 

diagnostic accuracy, and provide an important auxiliary 

diagnostic tool for clinical medicine [6]. 

In recent years, significant progress has been made in the 

field of bone metastasis through deep learning-based medical 

image analysis techniques. Song et al. [7] optimized the 

holistically-nested edge detection (HED) network to enhance 

the recognition capability of tiny bone metastatic regions in 

CT images. By removing the terminal pooling layers and 

introducing additional lateral connection layers, more precise 

edge detection was achieved, thereby improving the 

perception and capture of small targets. Ntakolia et al. [8] 

proposed a lightweight network called LB-FCN light, focusing 

on the classification of bone metastases in prostate cancer 

patients. This network, through multi-scale feature extraction 
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and residual connection techniques, effectively classified bone 

metastases, emphasizing its lightweight nature in terms of 

parameters and computational resources, making it suitable for 

resource-constrained scenarios. Lin et al. [9] proposed a semi-

supervised segmentation method based on deep learning, 

capable of automatically detecting and delineating metastatic 

lesions in bone scan images. This method utilizes a small 

amount of manually labeled samples for training, significantly 

reducing the human resources required for annotation, and 

providing an effective solution for medical image analysis 

tasks with high demands for annotated data. Noguchi et al. 

[10] proposed a bone segmentation network, candidate region 

segmentation network, and false-positive reduction network 

using deep convolutional neural networks such as U-Net and 

ResNet, aiming to achieve automatic segmentation of bone 

metastatic tumors in CT images. Liu et al. [11] developed an 

improved UNet3+ network model for the automatic 

segmentation of bone metastasis lesions on SPECT bone scan 

images. The model enhanced the feature fusion by modifying 

the full-scale deep supervision module and introduced an 

attention mechanism to focus on focal regions. 

Although the aforementioned methods have made 

significant strides in detecting and segmenting bone 

metastases, they still exhibit several limitations:  

1. The network architecture exhibits a notably intricate 

structure, leading to substantial time consumption during both 

training and inference phases, alongside heightened 

computational demands. Such complexities impose limitations 

on the applicability of these networks, particularly in resource-

constrained medical and clinical environments. 

2. During feature extraction, there is a potential oversight 

regarding the interaction between feature channels, resulting 

in inadequate extraction of channel information. 

3. Insufficient extraction and integration of deep features 

across various hierarchical levels culminate in the loss of 

crucial semantic information. 

The Deeplabv3+ network [12] architecture is notably 

lightweight, leveraging an encoder-decoder framework, 

wherein the encoder network extracts deep features from input 

images. The atrous spatial pyramid pooling (ASPP) module 

utilizes dilated convolutions with varying rates to capture 

multi-scale contextual information, thereby enhancing the 

semantic representation capability of features. Subsequently, 

the decoder network is employed to restore the resolution of 

feature maps, enabling precise pixel-level segmentation. To 

overcome the aforementioned limitations and take advantage 

of DeepLabv3+, this paper proposes a multi-scale feature 

fusion and parallel attention network based on DeepLabv3+ 

(MFP-DeepLabv3+). The main contributions are as follows: 

1. To address issues in the atrous spatial pyramid pooling 

(ASPP) module of DeepLabv3+, such as overlapping 

information extraction and detail loss, the adaptive feature 

fusion and pooling (AFFP) module is proposed to achieve 

multi-scale feature extraction more efficiently, thereby 

enhancing model performance. 

2. To comprehensively extract channel information, the 

parallel spatial-channel attention network (PSCAN) is 

proposed to empower the network in intensifying its focus on 

both channel and spatial information simultaneously during 

image feature extraction. 

3. To meet practical demands, this paper selected the 

lightweight MobileNetv2 [13] as the backbone network. 

Considering that different network layers convey distinct 

depths of information, a multi-layer skip connection strategy 

is proposed, the incorporation of multi-layer skip connections 

effectively integrates global semantic information, thereby 

enhancing the network's capability to tackle diverse image 

segmentation tasks. 

 

 

2. METHOD 
 

In this paper, we propose a multi-scale feature fusion and 

parallel attention network (MFP-DeepLabv3+) for enhanced 

bone metastasis segmentation. As shown in Figure 1. 

MFP-DeepLabv3+ utilizes the lightweight MobileNetv2 as 

its backbone network, incorporates AFFP for multiscale 

feature extraction, and introduces PSCAN for weighting the 

features obtained from AFFP. These weighted features are 

subsequently fused with the features from deep, intermediate, 

and shallow layers of the MobileNetv2 backbone network to 

enhance the performance of image segmentation. 

 

 
 

Figure 1. The overall framework of MFP-Deeplabv3+ 
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2.1 AFFP 

 

The ASPP module primarily relies on a series of dilated 

convolutional layers [14] with varying sampling rates for 

multiscale feature extraction. However, this approach can 

result in the extraction of overlapping information, leading to 

the generation of redundant features. These redundancies not 

only augment the computational burden of the model but also 

escalate the time and resource costs associated with both 

training and inference, thereby compromising the model's 

generalization capability. Moreover, ASPP employs global 

average pooling to aggregate information across the entire 

feature map, which is susceptible to losing detailed 

information pertaining to edges and local regions, 

consequently impeding the effectiveness of global feature 

integration. 

To address the aforementioned problems, this paper 

proposes the AFFP. AFFP comprises three components: the 

feature selection module (FSM), the feature reconstruction 

module (FRM), and the spatial pyramid pooling with max-

pooling (SPPM). Initially, FSM adopts a cross-reconstruction 

approach to manage features of varying information densities, 

obtaining spatially reconstructed features. This technique aims 

to preserve crucial feature information while mitigating 

redundancy. Subsequently, the spatially reconstructed features 

are fed into FRM, facilitating efficient multiscale feature 

extraction. Additionally, SPPM is utilized to effectively retain 

intricate image details, thereby enhancing model performance. 

 

2.1.1 FSM 

FSM employs a cross-reconstruction approach for feature 

reconstruction, thereby obtaining spatially reconstructed 

features, as shown in Figure 2. Initially, it utilizes group 

normalization to assess the information content of different 

feature maps using scaling factors, thereby quantifying and 

evaluating the importance of each feature map. Subsequently, 

the obtained information content weights undergo 

normalization to obtain 𝑊𝐶 , reflecting the significance of 

various feature mappings. Following this, the feature maps are 

reweighted using 𝑊𝐶 , and the weights are mapped to the (0,1) 

range using the sigmoid function, with a threshold gating 

process (threshold set to 0.5). We assign weights above the 

threshold to 1, obtaining information weights  𝑊𝑢𝑝 , and 

weights below the threshold to 0, obtaining non-information 

weights 𝑊𝑙𝑜𝑤. Then, we multiply the input features 𝑋 by 𝑊𝑢𝑝 

and  𝑊𝑙𝑜𝑤  separately, obtaining two weighted features: 

feature-rich information 𝑋𝑢𝑝 and feature-scarce 

information 𝑋𝑙𝑜𝑤 . We partition 𝑋𝑢𝑝  and 𝑋𝑙𝑜𝑤  equally based 

on the number of channels and enhance the information flow 

between them by employing cross-reconstruction operations. 

Finally, the two cross-reconstructed features are concatenated 

to obtain spatially reconstructed features.

 

 
 

Figure 2. The overall framework of FSM 

 

 
 

Figure 3. The overall framework of FRM 

 

2.1.2 FRM 

FRM employs multi-scale rich feature extraction on the 

spatially reconstructed features. As shown in Figure 3, initially, 

the spatially reconstructed features are evenly divided into two 

parts according to the number of channels, A 1 × 1 

convolution kernel is then applied for channel compression to 

obtain features 𝑌𝑢 and 𝑌𝑙  respectively. For feature 𝑌𝑢, a dual-

branch feature extraction process is utilized. One branch 

employs dilated convolution to expand the receptive field for 

capturing broader spatial information, while the other branch 

employs a 1 × 1 pointwise convolutional layer. The outputs of 

these branches are concatenated to obtain feature 𝑌𝑢𝑝. As for 

feature 𝑌𝑙 , a single branch with a 1 × 1 convolutional layer is 

employed. This branch is then concatenated with the original 
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feature residual branch to obtain feature 𝑌𝑙𝑜𝑤 . Subsequently, 

both 𝑌𝑢𝑝  and  𝑌𝑙𝑜𝑤  undergo global average pooling to 

aggregate global spatial information and channel-wise 

statistics. Softmax is then applied to the pooled results to 

derive feature weight vectors 𝛽𝑢𝑝  and 𝛽𝑙𝑜𝑤 . Finally, the 

output is obtained by weighting the original features with the 

feature weight vectors, resulting in 𝑌𝑢𝑝 ⊗ 𝑌𝑢𝑝  and 𝑌𝑙𝑜𝑤 ⊗
𝑌𝑙𝑜𝑤 . These refined features are then combined, effectively 

reducing common spatial and channel redundancies found in 

standard convolutions, thereby enhancing model efficiency 

and performance.  

2.1.3 SPPM 

ASPP employs global average pooling layers to conduct 

averaging operations across the entire feature map, aiming to 

extract comprehensive contextual information from the image 

and integrate it into the feature representation. However, this 

conventional pooling approach, which directly averages 

feature values, leads to blurring or overlooking of fine-grained 

details within edges and local regions. Consequently, there is 

a loss of emphasis on the intricate details of image features. To 

address this challenge, this paper proposes SPPM, which aims 

to enhance the capture of detailed global feature information. 

 

 
 

Figure 4. The overall framework of SPPM 

 

As shown in Figure 4, the input features undergo 

dimensionality reduction through a 1 × 1 convolutional layer 

initially. Subsequently, these features are fed into three max-

pooling modules with different kernel sizes for further 

processing. To maintain the output size matching the input size 

and avoid cropping of the input feature boundaries, padding is 

applied during the pooling operation. Each max-pooling 

module is dedicated to extracting the most prominent features 

from individual regions. The processed features are organized 

into a list and merged with the residual branch, which 

preserves the original features through a 1 × 1 convolutional 

layer. Compared to traditional global average pooling, SPPM 

demonstrates enhanced preservation of image details, 

resulting in improved model performance. 

 

2.2 PSCAN 

 

At the forefront of computer vision research, attention 

mechanisms, crafted to emulate the selective focus of the 

human visual system on particular elements of a visual scene, 

have markedly augmented the efficacy of various visual tasks. 

Channel attention mechanisms and spatial attention 

mechanisms, as two prevalent attention mechanisms, delve 

into the channel dimension and spatial dimension of image 

features, respectively, thereby effectively enriching the 

complexity and discriminative capability of feature 

representations. 

Channel attention mechanisms evaluate the importance of 

various channels and employ a weighted approach to augment 

channels harboring pivotal information while dampening 

irrelevant ones. This empowers the model to adeptly 

apprehend abstract and nuanced features. Spatial attention 

mechanisms concentrate on directing focus towards diverse 

regions within an image, enabling them to discern and 

intensify attention upon pivotal objects or areas of interest, 

thereby optimizing computational resource allocation and 

augmenting the model's acuity to local features. 

To empower the model to concurrently extract spatial and 

channel feature information from images, thereby facilitating 

comprehensive analysis and showcasing heightened resilience 

in tackling complex tasks, this paper proposes PSCAN. 

PSCAN consists of two parallel branches: spatial self-

attention and channel self-attention. The spatial self-attention 

branch is tasked with capturing interactions among features 

within the spatial dimensions H and W, while the channel self-

attention branch is dedicated to capturing interactions among 

feature channels. 

As shown in Figure 5, in the spatial self-attention branch, 

the input feature X is initially divided into Q (C/2 × H × W) 

and V (C/2 ×H × W) utilizing separate 1 × 1 convolutions to 

average the channels. For Q, both global average pooling and 

global standard deviation pooling operations are employed to 

aggregate features across the spatial dimensions H × W, 

obtaining a C/2 × 1 × 1 matrix. Subsequently, this matrix is 

then reshaped into a 1 × C/2 format for further processing. 

Due to the potential information loss from this compression 

operation, it is essential to enhance the compressed Q by 

applying the softmax function to retain crucial features. For V, 

its channel count remains C/2, and it is reshaped into a C/2 × 

HW format. Matrix multiplication is then performed between 

the enhanced Q (1 ×C/2) and the reshaped V (C/2× HW), 

resulting in a reshaped matrix of 1 × 1 × HW. The sigmoid 

activation function is employed to ensure that the weight 

parameter values are constrained within the range of 0 to 1. 

This obtains a vector containing weighted information from 

various spatial channels, which is subsequently utilized to 

weight the original feature X, resulting in spatially enhanced 

information. 

The calculation equations for spatial self-attention are as 

follows: 

 

𝐴𝐶𝐻(𝑋) = 𝐹𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝛿3 

[𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝛿1 (𝐹𝑎𝑣𝑔𝐹𝑠𝑡𝑑 (𝑊𝑞𝑤(𝑋)) ⊗ 𝛿2 (𝑊𝑞𝑣(𝑋)))] 
(1) 

 

𝐹𝑎𝑣𝑔 =
1

𝐻 × 𝑊
∑ ∑ 𝐹(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑖=1

 (2) 
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𝐹𝑠𝑡𝑑 = √
1

𝐻 × 𝑊
∑ ∑(𝐹(𝑖, 𝑗) − 𝐹𝑎𝑣𝑔)

2
𝑊

𝑗=1

𝐻

𝑖=1

 (3) 

 

𝐹𝐻𝑊 = 𝐴𝐻𝑊(𝑋) ⊙𝐻𝑊 𝑋 (4) 

 

where, 𝐹𝑎𝑣𝑔 , 𝐹𝑠𝑡𝑑  denote global average pooling and global 

standard deviation pooling, 𝛿1 , 𝛿2  denote dimensionality 

reduction operation, 𝛿3 denotes dimensionality expansion 

operation, 𝐹𝑠𝑖𝑔𝑚𝑜𝑖𝑑 , 𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥  denote sigmoid and softmax 

functions, 𝑊𝑞𝑤 , 𝑊𝑞𝑣 denote 1 × 1  convolution operation, 

⊙𝐻𝑊denotes spatial multiplication operator. 

 

 
 

Figure 5. The overall framework of PSCAN 

 

In the channel self-attention branch, the initial step involves 

reshaping the input feature X into the shape of C  × HW. 

Subsequently, global average pooling and global standard 

deviation pooling operations are separately executed on each 

channel, resulting in two tensors with a length equivalent to 

the number of channels C, which are then merged. This 

merged tensor is fed into a fully connected layer at the channel 

level, obtaining an output of size C × 1 × 1 . To facilitate 

subsequent convolutional operations, this output is reshaped 

into the shape of 1 × 1 × C. Following this, convolutional 

operations are conducted along the channel dimension, 

generating a new feature map containing inter-channel 

interaction information. The output of the convolutional 

operation is normalized and processed using the sigmoid 

activation function, resulting in a weight vector containing 

weights for each channel. These weights are applied to the 

original feature X, resulting in channel-enhanced information. 

The calculation equations for channel self-attention are as 

follows: 

 

𝐴𝐶𝐻(𝑋) = 𝐹𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝐹𝐵𝑁𝛽3[𝐹1×𝐾𝛽2(𝐹𝐶𝐿𝐶[(𝐹𝑎𝑣𝑔

+𝐹𝑠𝑡𝑑)(𝛿1(𝑋))])] 
(5) 

 

𝐹𝐶𝐻 = 𝐴𝐶𝐻(𝑋) ⊙𝐶𝐻 𝑋 (6) 

 

where, ⊙𝐶𝐻 denotes channel-wise multiplication operator. 

In the final integration stage, the outputs from the channel 

self-attention and spatial self-attention branches are averaged 

to obtain the refined feature map. The specific equation is as 

follows: 

 

𝐹 =
1

2
⊗ (𝐹𝐶𝐻 ⊕ 𝐹𝐻𝑊) (7) 

 

2.3 Multi-layer skip connection 

 

MobileNetv2, recognized as an efficient backbone network, 

typically consists of multiple hierarchical layers, each tasked 

with extracting features from input images at different levels 

of abstraction. The shallower layers of the network focus on 

capturing low-level features such as textures and edges, while 

the deeper layers are dedicated to extracting more abstract and 

semantically meaningful high-level features. In the original 

DeepLabv3+ network, only features from the shallow and 

deepest layers are typically utilized, under the premise that 

these layers inherently contain richer spatial information and 

local details. 

To optimally leverage the feature information across all 

layers of the backbone network, this paper proposes a novel 

multi-layer skip connection strategy. This strategy promotes 

effective fusion among features from deep, intermediate, and 

shallow layers. Not only does this approach retains fine-

grained details of the image, but it also integrates global 

contextual information, thereby significantly improving the 
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model's ability to comprehend global information within 

images. 

During multi-layer feature fusion, the original DeepLabv3+ 

network utilizes the nearest-neighbor interpolation method to 

upsample low-level feature maps to the dimensions congruent 

with high-level feature maps, facilitating element-wise 

addition or concatenation operations. However, the nearest-

neighbor interpolation method, due to its simplistic replication 

of nearest-neighbor pixel values, often leads to the loss of 

detailed information. 

To address this limitation, this paper proposes the utilization 

of the lightweight dynamic upsampling method, DySample 

[15]. DySample exhibits minimal parameters and reduces 

computational complexities, thereby ensuring more 

efficacious retention of fine-grained details within feature 

maps. 

 

 

3. EXPERIMENTS 

 

3.1 Dataset 

 

The dataset utilized in this paper is BM-Seg [16], 

comprising 1517 CT images from 23 patients with bone 

metastasis, including 9 females and 14 males, ranging in age 

from 18 to 83 years. These scanning data were collected from 

November 2020 to June 2022 at the Hedi Chaker University 

Hospital Center in Tunisia. The dataset categorizes images 

into infected and non-infected classes, with each CT instance 

accompanied by corresponding bone and bone marrow (BM) 

masks.  

We performed data preprocessing operations such as 

CLAHE algorithm, adding salt and pepper noise, and 

horizontal mirror inversion on the dataset, which can help 

reduce overfitting and improve the performance of the 

network in asymmetric scenarios. This ultimately enhances the 

network's generalization ability by maintaining a consistent 

data distribution. 

The experiments were carried out using 5-fold cross-

validation. The dataset was randomly divided into training and 

validation sets at a ratio of 9:1. 

 

3.2 Experimental configurations 

 

The operating system is Ubuntu 20.04, using the PyTorch 

1.10.1 deep learning framework with CUDA version 11.1. The 

programming language employed is Python 3.8.18. The 

central processing unit (CPU) is an 8-core PC with an Intel(R) 

Core (TM) i7-9700 CPU @ 3.00GHz, while the graphics 

processing unit (GPU) is an Nvidia GeForce RTX 2080Ti with 

11.36 GB of memory. 

For our experiments, we selected the SGD optimizer with 

an initial learning rate of 0.01, a weight decay of 0.0005, and 

a momentum of 0.937 during model training. We resized the 

input image size to 512 × 512 for training purposes. 

Additionally, we utilized 3 worker threads to load data on the 

GPU GeForce RTX 2080Ti 11.36 GB during model training. 

The batch size was set to 8, and all models were trained for 

200 epochs. 

 

3.3 Evaluation metrics 

 

To validate the performance of the model and compare it 

with other mainstream segmentation models, we employ 

multiple evaluation metrics, including mean intersection over 

union (mIoU), dice coefficient (Dice), mean pixel accuracy 

(MPA), mean precision (mPrecision). The calculation 

equations of these evaluation metrics are as follows: 

 

𝑚𝑃𝐴 =
1

𝑁 +1
∑

1

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑁

𝑖=0

 (8) 

 

𝑚𝐼𝑜𝑈 =
1

𝑁 +1
∑

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑁

𝑖=0

 (9) 

 

𝑚𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁 +1
∑

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑁

𝑖=0

 (10) 

 

𝐷𝑖𝑐𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (11) 

 

where, 𝑇𝑃  denotes the number of true positive samples 

predicted as positive class, 𝑇𝑁 denotes the number of true 

negatives predicted as negative class, 𝐹𝑃 denotes the number 

of false positives predicted as positive class, 𝐹𝑁 denotes the 

number of false negatives predicted as negative class. 𝑁 is the 

total number of samples. 

 

 

4. RESULTS 

 

4.1 Ablation study of AFFP 

 

To validate the effectiveness of AFFP, we conducted 

ablation experiments, and the experimental results are shown 

in Table 1. Through the incremental integration of the AFFP 

module, all performance metrics exhibited a consistent 

improvement trend. Compared to the original ASPP module, 

our proposed AFFP module achieved improvements of 1.34% 

in mIoU, 1.90% in mPA, 0.28% in mPrecision, and 0.97% in 

Dice. Moreover, the parameter count of the AFFP module is 

4,882,258, which is reduced compared to the original ASPP 

module with 5,813,266 parameters. These experimental 

results demonstrate the effectiveness of the AFFP module. 

 

Table 1. Ablation experiments of AFFP 

 

Module 
mIoU 

(%) 

mPA 

(%) 

mPrecision 

(%) 

Dice 

(%) 
Parameters 

ASSP 81.86 91.54 86.73 88.98 5,813,266 

FSM 82.01 91.65 86.84 89.10 4,553,554 

FSC+FSM 82.70 92.55 87.04 89.60 4,553,554 

AFFP 82.89 92.91 87.01 89.73 4,882,258 

 

4.2 Comparison of different attention mechanisms 

 

To validate the effectiveness of PSCAN, we conducted 

comparative experiments. The PSCAN was compared with 

seven other mainstream attention mechanisms, including 

CBAM [17], ECA [18], GAM [19], LSK [20], SGE [21], 

SimAM [22], and ParNet [23]. The experimental results, as 

shown in Table 2, indicate that the PSCAN demonstrates 

superior or comparable performance across all evaluation 
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metrics. Specifically, it achieved mIoU of 83.69%, 

outperforming the runner-up SGE by 0.33%. This series of 

improvements demonstrates the effectiveness of the PSCAN 

in enhancing the extraction and fusion of channel and spatial 

information. The specific segmentation results are depicted in 

Figure 6. 

 

 
 

Figure 6. Segmentation results analysis with various 

attention mechanisms. (a) The ground truth, (b) CBAM, (c) 

ECA, (d) GAM, (e) LSK, (f) SGE, (g) SimAM, (h) ParNet, 

(i) PSCAN 

 

Table 2. Comparison results of different attention 

mechanisms 

 

Attention 

Mechanism 
mIoU (%) mPA (%) 

mPrecision 

(%) 
Dice (%) 

CBAM 83.32 93.50 86.99 89.93 

ECA 82.98 92.46 87.47 89.80 

GAM 83.06 93.40 86.87 89.86 

LSK 82.95 93.08 87.12 89.97 

SGE 83.36 93.16 87.41 90.07 

SimAM 83.00 93.16 86.96 89.82 

ParNet 83.38 93.07 87.52 90.09 

PSCAN 83.69 93.19 87.80 90.31 

 

4.3 Comparison of upsampling methods 

 

To validate the effectiveness of Dysample, we conducted 

comparative experiments, comparing Dysample with three 

other upsampling methods: Nearest-neighbor interpolation, 

DeConvolution (DeConv), and Caraffe [24]. The experimental 

results, as shown in Table 3, demonstrate that Dysample 

outperforms the other methods across all metrics while 

concurrently possessing the fewest parameters.  

Table 3. Comparison results of upsampling improvement 

experiments 

 

Upsampling 
mIoU 

(%) 

mPA 

(%) 

mPrecision 

(%) 

Dice 

(%) 
Parameters 

Nearest-

neighbor 
83.69 93.19 87.80 90.31 5,817,224 

DeConv 83.88 93.56 87.74 90.44 6,886,984 

Caraffe 83.75 93.29 87.04 90.35 6,012,580 

Dysample 83.97 93.90 87.97 90.50 5,633,832 

 

4.4 Comparison of different semantic segmentation 

networks 

 

We compared MFP-DeepLabv3+ network with various 

mainstream semantic segmentation networks, including 

HRNet [25], Non-local [26], EncNet [27], SegFormer [28], 

Mask-RCNN [29], U-Net [30], and TransU-Net [31]. The 

experimental results shown in Table 4 are the mean number 

after 5-fold cross-validation of each network. It is evident from 

the results that our proposed network outperforms other 

networks across all metrics. Specifically, compared to the 

runner-up TransU-Net network, our network achieved 

improvements of 0.29% in mIoU, 2.5% in mPA, 0.21% in 

Dice.  

 

 
 

Figure 7. Segmentation results analysis with various 

networks. (a) The original image, (b) The ground truth, (c) 

HRNet, (d) Nonlocal, (e) EncNet, (f) Segformer, (g) Mask-

RCNN, (h) U-Net, (i) Trans U-Net, (j) MFP-DeepLabv3+ 

 

This comprehensive comparison demonstrates the 

significant superiority of our proposed network in semantic 

segmentation tasks, providing valuable insights for further 
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optimization of semantic segmentation networks. The specific 

segmentation results are depicted in Figure 7. 

 

Table 4. Comparison results with other semantic 

segmentation networks 

 

Models mIoU (%) mPA (%) mPrecision (%) Dice (%) 

HRNet 81.85 88.80 87.15 88.97 

Non-local 82.37 88.75 87.99 89.36 

EncNet 82.02 88.62 87.27 89.36 

SegFormer 82.81 90.25 87.12 89.67 

Mask-RCNN 82.04 87.92 87.39 89.11 

U-Net 82.78 90.66 87.19 89.80 

TransU-Net 83.67 91.45 87.97 90.29 

MFP-

DeepLabv3+ 
83.97 93.90 87.97 90.50 

 

4.5 Ablation experiment 

 

 
 

Figure 8. Segmentation results analysis of the improved 

network. (a) The original image, (b) The ground truth, (c) 

DeepLabv3+, (d)AFFP, (e)PSCAN, (f) MFP-DeepLabv3+ 

 

Table 5. Ablation experiments for improved MFP- 

DeepLabv3+ 

 

Improvement 
mIoU 

(%) 

mPA 

(%) 

mPrecision 

(%) 

Dice 

(%) 
Parameters 

DeepLabv3+ 81.86 91.54 86.73 88.98 5,813,266 

AFFP 82.89 92.91 87.01 89.73 4,882,258 

PSCAN 83.69 93.19 87.80 90.31 5,325,000 

MFP-

DeepLabv3+ 
83.97 93.90 87.97 90.50 5,633,832 

 

All improvement results in the final analysis are 

summarized, which is as shown in Table 5. Compared to the 

original DeepLabv3+, our proposed MFP-DeepLabv3+ 

achieved a reduction of 5% in parameters, and improvements 

of 2.11% in mIoU, 2.36% in mPA, 1.24% in mPrecision, and 

1.52% in Dice. These experimental results demonstrate the 

effectiveness of our improvement approach and provide strong 

support for further research and application. Segmentation 

results are depicted in Figure 8. 

 

 

5. CONCLUSION 

 

This paper proposes an MFP-DeepLabv3+ network tailored 

for bone metastasis segmentation tasks. Initially, we enhance 

the multi-scale feature extraction capability of the network by 

introducing the AFFP module. By effectively capturing and 

integrating features across multiple scales, we enabled more 

accurate identification and segmentation of both subtle and 

significant pathological features. Furthermore, we introduce 

the PSCAN to refine the focus of the network on both channel 

and spatial information, enabling the network to more 

sensitively attend to prominent features in the image data. This 

refinement allows for a more precise differentiation between 

healthy bone tissue and metastatic lesions. Additionally, we 

employed a multi-layer skip connection strategy to integrate 

global semantic information. Experimental results 

demonstrate that the MFP-DeepLabv3+ network achieves 

significant improvements of 2.11% in mIoU, 2.36% in mPA, 

1.24% in mPrecision, and 1.52% in Dice. Additionally, the 

GPU memory usage during training is 5.91G, with an 

inference speed of 0.0521 seconds per image. These results 

conclusively demonstrate the proposed MFP-DeepLabv3+ 

network possesses detailed and accurate segmentation 

capabilities for bone metastatic regions, providing substantial 

assistance to clinicians in treatment strategy determination. 

For cancer patients, early and precise detection of bone 

metastasis is crucial, aiding in timely treatment selection. 

Despite the significant improvements achieved by our 

proposed network, there are still limitations to be addressed. 

Although the improved network may perform well on specific 

datasets or tasks, its generalization ability might be limited, 

making it challenging to maintain efficiency across diverse 

clinical scenarios or different types of bone metastasis images. 

This limitation restricts its applicability in clinical practice. 

Future work will focus on exploring methods to transfer the 

trained model to other medical imaging tasks or diverse 

datasets, ensuring the model's performance and generalization 

across various scenarios. 
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