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In image denoising, particularly under the influence of Gaussian and mixed noise, the 

challenge of preserving edge integrity while eliminating noise is paramount. This is largely 

due to the tendency of Gaussian noise removal techniques to induce edge blurring. Within 

this context, diffusion smoothing algorithms emerge as a potent solution, offering the dual 

benefits of image smoothing and edge preservation. The present study conducts a 

comprehensive review of four foundational diffusion smoothing algorithms and introduces 

a novel, unified model for the diffusion algorithm class. This model posits that any diffusion 

function fundamentally relies on a statistical estimation operation, such as mean, weighted 

mean, median, mode, and adaptive weighted mean, among others. Consequently, existing 

diffusion models can be reinterpreted through this unified framework, facilitating the 

development of new models aimed at enhancing filter performance and reducing 

computational complexity. Adhering to the unified model, four innovative diffusion 

smoothing models were formulated. The performance of these models was subjected to both 

qualitative analysis and evaluation based on standard performance metrics. Results 

demonstrate that the proposed models maintain satisfactory performance levels, even in 

scenarios characterized by high noise intensities, outperforming traditional diffusion 

models. This study underscores the versatility and efficacy of the unified model in refining 

image denoising techniques, thereby contributing significantly to the field of image 

processing. 
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1. INTRODUCTION

Noise is an inevitable part of an image. Noise may be 

naturally introduced into an image at any phase of image 

acquisition, processing, transmission, or retrieval. Noise 

actually degrades the visual quality of the image as well as 

destroys important information present in it. There are different 

types of noise available: Gaussian noise, impulse noise, speckle 

noise, and so on. Gaussian noise is an additive noise model. In 

the additive noise model, a noise signal is added to the original 

pixel values of the image to produce the corrupted image pixels. 

In contrast, impulse noise and speckle noise are multiplicative 

noise models. In the multiplicative noise model, the noise 

signal gets multiplied by the original pixel values of the image 

and produces the corrupted image pixels. Image denoising is an 

essential preprocessing stage in all image processing 

techniques. The removal of Gaussian noise is well developed 

using mean and adaptive mean filtering techniques. Even 

though the well-established methods effectively remove high-

density Gaussian noise, they smooth the image without 

sufficient edge and fine detail preservation. Well-known 

methods are available for the reduction of high-density impulse 

noise using median and adaptive median techniques [1-3]. All 

the denoising methods based on median filtering remove 

impulse noise by preserving edge information without 

providing any smoothing effect. Smoothing of images with 

edge preservation is required in some applications. Image 

diffusion, analogous to heat diffusion based on a partial 

differential equation, is capable of providing image smoothing. 

Witkin explored the potential of partial differential equations in 

image processing and proposed scale-space filtering, which 

produces a family of scaled images ranging from fine scale to 

coarse scale [4]. Scale-space images are achieved by 

convolving a Gaussian function with an image by varying a 

scale parameter. The scale-space filtering method produces 

isotropic image smoothing; hence, edge details are not 

preserved. The scale space filtering is mathematically 

expressed in Eq. (1). 

𝑈(𝑥, 𝑦; 𝑡)=𝑈(𝑥, 𝑦) * 𝐺(𝑥, 𝑦; 𝑡) 

𝐺(𝑥, 𝑦; 𝑡)=
1

2𝜋𝑡
𝑒−(𝑥2+𝑦2) 2𝑡⁄ (1) 

where, U(x, y) is the initial image, G(x, y; t) is Gaussian kernel, 

U(x, y; t) is the scale-space of the initial image, (x, y) is the 

spatial co-ordinates and t is the time parameter. 

The isotropic diffusion equation can be expressed as: 
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𝜕𝑈

𝜕𝑡
=𝐷 [

𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑦2] 

𝑈𝑡=𝐷[𝑈𝑥𝑥 + 𝑈𝑦𝑦] 
(2) 

 

where, U=U(x, y) is the initial image and D is the diffusion 

coefficient.  

The numerical solution for the isotropic diffusion equation 

is: 

 

𝑈𝑖,𝑗(𝑡 + ∆𝑡)=𝑈𝑖,𝑗(𝑡) 

+𝐷
∆𝑡

(∆𝑥)2 [
(𝑈𝑖,𝑗−1 − 𝑈𝑖,𝑗) + (𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗) +

(𝑈𝑖−1,𝑗 − 𝑈𝑖,𝑗) + (𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗)
] 

𝑈𝑖,𝑗(𝑡 + ∆𝑡)=𝑈𝑖,𝑗(𝑡) 

+𝐷𝜆[∇𝑁𝑈 + ∇𝑆𝑈 + ∇𝐸𝑈 + ∇𝑊𝑈] 

(3) 

 

where, 𝜆=
∆𝑡

(∆𝑥)2 is the step size parameter and ∇NU, ∇SU, ∇EU, 

∇WU are the gradients along the north, south, east and west 

directions respectively, known as the directional derivatives. 

Mathematical modelling of the scale space based isotropic 

diffusion filtering is expressed as: 

 

𝑈𝑖,𝑗
𝑛+1=𝑈𝑖,𝑗

𝑛 +𝛼[∇𝑁𝑈 + ∇𝑆𝑈 + ∇𝐸𝑈 + ∇𝑊𝑈]𝑖,𝑗
𝑛  (4) 

 

where, α=Dλ and n is an index.  

Since the isotropic diffusion model fails to preserve edge 

information, Perona-Malik (PM) introduced the anisotropic 

diffusion model, which provides good image smoothing with 

edge preservation. PM modified scale-space-based isotropic 

diffusion to an anisotropic diffusion filter by changing the 

constant diffusion coefficient to a gradient-dependent diffusion 

coefficient [5]. Therefore, the diffusion is prominent in intra 

regions and less or no diffusion along the edges. Thus, the 

image is smoothed while the edges are preserved in anisotropic 

diffusion. Since Gaussian noise is additive noise, PM 

anisotropic diffusion reduces Gaussian noise effectively. On 

the other hand, the impulse noise is a multiplicative noise, and, 

hence, the performance of the PM anisotropic diffusion is very 

poor under impulse noise perturbation. The PM anisotropic 

diffusion algorithm serves as a foundational algorithm for 

many developments in the diffusion class of image denoising. 

According to PM anisotropic diffusion, there is: 

 

𝑈𝑡=∇.(𝑔(𝑥, 𝑦; 𝑡)∇𝑈) (5) 

 

where, g(x, y; t) is the direction dependent diffusion coefficient. 

Mathematical modelling of the PM anisotropic diffusion is 

expressed as: 

 

𝑈𝑖,𝑗
𝑛+1=𝑈𝑖,𝑗

𝑛 +𝛼[𝑔(∇𝑁𝑈) ∇𝑁𝑈 + 𝑔(∇𝑆𝑈) ∇𝑆𝑈 +

𝑔(∇𝐸𝑈) ∇𝐸𝑈 + 𝑔(∇𝑊𝑈)∇𝑊𝑈]𝑖,𝑗
𝑛  

(6) 

 

where, the diffusion coefficients are functions of image 

gradient ∇U and are expressed as: 

 

𝑔(∇𝑈)=𝑒(−(∇𝑈 𝐾⁄ )2) (7a) 

 

𝑔(∇𝑈)=
1

1+(
∇𝑈

𝐾
)

2 (7b) 

 

where, K is a constant. 

From the perspective of robust statistics, Michael J. Black 

formulated a statistical interpretation of anisotropic diffusion 

and derived a diffusion coefficient based on Tukey’s bi-weight 

robust error norm [6]. 

 

𝑔(∇𝑈)={
1

2

[1 − (
∇𝑈

𝐾𝑒
)

2

]

0    otherwise               

2

  |∇𝑈| ≤ 𝐾𝑒 

𝐾𝑒=
𝐾

√5
 

(8) 

 

Ling and Bovik [7] modified the PM anisotropic diffusion 

algorithm suitable for impulse and mixed noise (Gaussian 

noise and impulse noise) removal. The algorithm has two 

stages: the first stage is a diffusion stage where anisotropic 

diffusion with a Tukey bi-weight diffusion coefficient is used, 

and the second stage is a median filtering of the diffused image. 

Stage 1: 

 

𝑈𝑖,𝑗
𝑛+1=𝑈𝑖,𝑗

𝑛 +𝛼[𝑔(∇𝑁𝑈) ∇𝑁𝑈 + 𝑔(∇𝑠𝑈) ∇𝑆𝑈 +

𝑔(∇𝐸𝑈) ∇𝐸𝑈 + 𝑔(∇𝑊𝑈)∇𝑊𝑈]𝑖,𝑗
𝑛  

𝑔(∇𝑈)={
25

16𝐾

[1 − (
∇𝑈

√5𝐾
)

2

]

0    otherwise               

2

 |∇𝑈| ≤ √5𝐾 

(9) 

 

Stage 2: 

 

𝑈𝑖,𝑗
𝑛+1=Median (𝑈𝑖,𝑗

𝑛+1, W) 

 

where, K is a constant and W is the local window size for 

median filtering, normally 3×3. 

An adaptive anisotropic diffusion filter was developed by 

Ham et al. [8] in which the diffusion coefficient value 

adaptively changes based on the neighboring pixel values. 

Therefore, the filter performs well in impulse noise and mixed-

noise situations. 

 

𝑈𝑖,𝑗
𝑛+1=𝑈𝑖,𝑗

𝑛  

+𝛼
[𝑔(∇𝑁𝑈) ∇𝑁𝑈+𝑔(∇𝑆𝑈) ∇𝑆𝑈+𝑔(∇𝐸𝑈) ∇𝐸𝑈+𝑔(∇𝑊𝑈)∇𝑊𝑈]𝑖,𝑗

𝑛

[𝑔(∇𝑁𝑈)+𝑔(∇𝑆𝑈)+𝑔(∇𝐸𝑈)+𝑔(∇𝑊𝑈)]𝑖,𝑗
𝑛  

(10) 

 

The diffusion coefficient used is g(∇U)=
1

1+(
∇𝑈

𝐾
)

2, where K is 

a constant. 

According to the literature, the diffusion class of filters 

provides smoothing. The basic PM anisotropic diffusion 

algorithm smooths things out while keeping the edges when 

Gaussian noise is present. Developing a diffusion algorithm 

that provides good smoothing and efficient impulse noise 

removal is a challenging task. The other modified versions of 

the PM anisotropic diffusion algorithm tried to achieve this by 

modifying the diffusion coefficient function, introducing 

additional stages, and using the adaptive anisotropic diffusion 

algorithm [9-13]. However, these modified algorithms failed 

to produce significant results in the context of impulse noise 

removal with image smoothing. The Anisotropic diffusion 

model has diverse applications across image processing 

domains [14-21]. 

In Section 2, a novel, unified model for the diffusion class 

of images is proposed. Any existing image diffusion algorithm 

can be reframed in accordance with the proposed unified 

model. In Section 3, four foundational diffusion algorithms are 

reframed in accordance with the unified model. Four new 

image diffusion algorithms for mixed noise removal based on 

the unified model are proposed in Section 4. The performance 
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of the four proposed models is discussed in Section 5. 

 

 

2. UNIFIED MODEL FOR PDE BASED IMAGE 

DENOISING  

 

A search for the common ground among diffusion-based 

robust filters reveals that robust diffusion smoothing 

algorithms have two or more stages of operation, namely, 

preprocessing, diffusion, and post-processing. It is proposed 

that image diffusion is a computational process that simulates 

the physics of mass, charge, and energy transport. The 

computational process is a composite signal processing 

operation T such that Uout=T[Uin], where Uout is the processed 

output image and Uin is the corrupted input image. The signal 

processing operation T on an input image corrupted by impulse 

noise is a composite operation consisting of three distinct 

operations T0, T1, and T2, where T0 is preprocessing, T1 is 

diffusion, and T2 is post processing. In the simplest of the 

situation, preprocessing T0 and post processing T2 may be 

absent. Let: 

 

𝑈𝑖 ,𝑗
𝑛+1=𝑇[𝑈𝑖,𝑗

𝑛 ] (11) 

 

be a Markov process, where T is the signal processing 

operation on input 𝑈𝑖,𝑗
𝑛  and 𝑈𝑖 ,𝑗

𝑛+1  is the output, T is a 

combination of three operations T0, T1, and T2. The 

preprocessing operation T0 can be a median sorting or a 

selection logic procedure applied on the pixel intensity values 

of the image, such that: 

 

�̂�𝑖 ,𝑗
 𝑛 =𝑇0[𝑈𝑖,𝑗

𝑛 ] (12) 

 

where, the cap symbol represents an estimate in a general 

statistical sense. The second operation T1 is the diffusion stage 

operation and the diffusion process is based on a statistical 

estimation operation [22] on the directional 

derivatives ∇1�̂�𝑖 ,𝑗
 𝑛 , ∇2�̂�𝑖 ,𝑗

 𝑛 , ∇3�̂�𝑖 ,𝑗
 𝑛 , … … … , ∇𝑁�̂�𝑖 ,𝑗

 𝑛 . 

Mathematically, the diffusion stage is represented as: 

 

�̂�𝑖 ,𝑗
 𝑛+1=�̂�𝑖 ,𝑗

 𝑛 + 

𝛼 𝑇1[∇1�̂�𝑖 ,𝑗
 𝑛 , ∇2�̂�𝑖 ,𝑗

 𝑛 , ∇3�̂�𝑖 ,𝑗
 𝑛 , … … … , ∇𝑁�̂�𝑖 ,𝑗

 𝑛 ] 
(13) 

 

where, ∇1�̂�𝑖 ,𝑗
 𝑛 , ∇2�̂�𝑖 ,𝑗

 𝑛 , ∇3�̂�𝑖 ,𝑗
 𝑛 , … … … , ∇𝑁�̂�𝑖 ,𝑗

 𝑛  represent the 

directional derivatives of �̂�𝑖 ,𝑗
 𝑛 . Let Eq. (13) be written as: 

 

�̂�𝑖 ,𝑗
 𝑛+=�̂�𝑖 ,𝑗

 𝑛 +𝛼 𝑇1[∇𝑘�̂�𝑖 ,𝑗
 𝑛 ] (14) 

 

where, k=1 to N. 

Let Eq. (14) be written as: 

 

�̂�𝑖 ,𝑗
 𝑛+1=�̂�𝑖 ,𝑗

 𝑛 +𝛼�̂�(𝐹) (15) 

 

where, α is the control parameter and �̂�(𝐹) ≜ 𝑇1[∇𝑘�̂�𝑖 ,𝑗
 𝑛 ], k=1 

to N, T1 is a statistical estimation operation such that 

�̂�(𝐹) mean, weighted mean, median, mode and adaptive 

weighted mean so on; if k=1 to 4. 

 

�̂�(𝐹)=𝑇1[(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 ), (�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )] 

(16) 

 

In (15), �̂�(𝐹) represents an estimation of flux density based 

on the directional derivatives where the estimate depends on 

the distribution F. In isotropic diffusion, �̂�(𝐹)  is a simple 

average of the directional derivatives. In anisotropic diffusion, 

�̂�(𝐹) is a weighted average of directional derivatives, where 

the weighting coefficient with respect to each directional 

derivative is a function of the directional gradient along that 

direction. In this section, algorithms are developed for 

isotropic diffusion filter, anisotropic diffusion filter, 

anisotropic median diffusion filter and robust scale space filter 

consistent with the proposed unified model (15). The post 

processing stage T2 can be a median sorting or a selection logic 

procedure applied on the pixel intensity values of the diffused 

image after the operation T1, such that: 

 

𝑈𝑖 ,𝑗
𝑛+1= 𝑇2[�̂�𝑖 ,𝑗

 𝑛+1] (17) 

 

Since the diffusion is an iterative process, the n+1th image 

in the present iteration stage becomes the nth image in the next 

iteration stage. Therefore, 𝐼𝑖 ,𝑗
𝑛+1 of Eq. (17) becomes 𝐼𝑖 ,𝑗

𝑛  of Eq. 

(11) in the next iteration. 

The unified model is developed for the class of diffusion 

smoothing of images. Any image smoothing algorithm based 

on PDE can be reframed in accordance with the proposed 

unified model, and this, in turn, helps the researchers modify 

their algorithm to be suitable for different noise perturbations 

for a variety of applications. Image smoothing with edge 

preservation is required in various fields such as medical 

imaging, remote sensing, computer vision, photography, and 

so on. 

Preprocessing, diffusion, and postprocessing are the 

possible three stages present in a diffusion smoothing filter. 

Diffusion is the mandatory main stage that provides smoothing 

of images. Preprocessing and postprocessing are the optional 

additional stages present, along with the diffusion stage, based 

on the type of noise present in the image. It is very essential to 

choose the right preprocessing or postprocessing function in 

order to achieve maximum performance based on the type of 

noise present in the image.  

 

 

3. ALGORITHMIC FORMULATION OF 

FOUNDATIONAL DIFFUSION SMOOTHING 

MODELS ACCORDING TO THE UNIFIED MODEL 

 

The unified model can be applied to any algorithm that 

belongs to the diffusion smoothing class. It is sufficient to 

consider only four foundational diffusion algorithms for 

illustration. All other diffusion algorithms can be shown to be 

modifications or extensions of these foundational algorithms. 

The four foundational diffusion algorithms are: 

(i) isotropic diffusion [4] (ii) Perona-Malik anisotropic 

diffusion [5] (iii) anisotropic median diffusion [7] (iv) a robust 

scale space filter [8]. A detailed description of these models is 

already presented in the introduction section. It is proposed 

that the diffusion smoothing class of image denoising 

algorithms are different realizations of the unified Markov 

model �̂�𝑖 ,𝑗
 𝑛+1 = �̂�𝑖 ,𝑗

 𝑛 + 𝛼 �̂�(𝐹) , where �̂�𝑖 ,𝑗
 𝑛  and �̂�𝑖 ,𝑗

 𝑛+1  are the 

image intensity values of a pixel located at i, j before diffusion 

and after diffusion, respectively; α is a constant called the 

control parameter and �̂�(𝐹)  is the statistical estimation 

operation. The numerical algorithms for the foundational 

filters are derived as follows in accordance with the unified 
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model: 

 

3.1 Case I: Isotropic diffusion 

 

Stage 1 (T0): Not selected 

Preprocessing stage (T0) is not selected for isotropic 

diffusion; therefore, �̂�𝑖 ,𝑗
 𝑛 = 𝑈𝑖,𝑗

𝑛 . 

Stage 2 (T1): �̂�(𝐹) is simple mean 

Let ∇NU, ∇SU, ∇EU, ∇WU be the gradients along north, south, 

east and west directions, respectively; and (�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ),

(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 )  and (�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )  are their 

respective numerical approximations. From (15), 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝐷𝜆[(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) + (�̂�𝑖−1,𝑗
𝑛 −

�̂�𝑖,𝑗
𝑛 ) + (�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) + (�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )]  

(18) 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼�̂�(𝐹) 

 

where, α=4Dλ. 

 

�̂�(𝐹) =
1

4
[(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + (�̂�𝑖−1,𝑗

𝑛 − 𝑈𝑖,𝑗
𝑛 ) + (�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 )

+ (�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )] 

 

where, �̂�(𝐹) is the simple mean of the directional derivatives. 

Stage 3 (T2): Not selected 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

3.2 Case II: Perona-malik anisotropic diffusion 

 

Stage 1 (T0): Not selected 

Preprocessing stage (T0) is not selected for isotropic 

diffusion; therefore, �̂�𝑖 ,𝑗
 𝑛 = 𝑈𝑖,𝑗

𝑛 . 

Stage 2 (T1): �̂�(𝐹) is the weighted mean. 

From (15) 

 

 �̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝜆[𝑔(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) +

𝑔(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗−1

𝑛 −

�̂�𝑖,𝑗
𝑛 )].  

(19) 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼�̂�(𝐹) 

 

where, α=4λ. 

 

�̂�(𝐹)=
1

4
[𝑔(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖+1,𝑗

𝑛 − 𝑈𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖−1,𝑗

𝑛 −

�̂�𝑖,𝑗
𝑛 )(�̂�𝑖−1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) +

𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )] 

 

where, �̂�(𝐹)  is the weighted mean of the directional 

derivatives.  

Stage 3 (T2): Not selected 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

3.3 Case III: Anisotropic median diffusion 

 

Stage 1 (T0): Not selected  

Preprocessing stage (T0) is not selected for anisotropic 

diffusion; therefore, �̂�𝑖 ,𝑗
 𝑛 =𝑈𝑖,𝑗

𝑛 . 

Stage 2 (𝑇1): �̂�(𝐹) is the weighted mean. 

From (15) 

 

 �̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝜆[𝑔(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) +

𝑔(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗−1

𝑛 −

�̂�𝑖,𝑗
𝑛 )]  

(20) 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼�̂�(𝐹) 

 

where, α=4λ. 

 

�̂�(𝐹)=
1

4
[𝑔(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖−1,𝑗

𝑛 −

�̂�𝑖,𝑗
𝑛 )(�̂�𝑖−1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) +

𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )] 

 

where, �̂�(𝐹)  is the weighted mean of the directional 

derivatives.  

Stage 3 (T2): Median filtering 

The median filtering operation is employed in the post 

processing stage, therefore: 

 

𝑈𝑖 ,𝑗
𝑛+1=Median (�̂�𝑖,𝑗

𝑛+1, W) 

 

where, W is the window size used for median filtering. 

 

3.4 Case IV: Robust scale space filter 

 

Stage 1 (T0): Not selected 

Preprocessing stage (T0) is not selected for isotropic 

diffusion; therefore, �̂�𝑖 ,𝑗
 𝑛 =𝑈𝑖,𝑗

𝑛 . 

Stage 2 (T1): �̂�(𝐹) is the adaptive weighted mean. 

From (15) 

 

 �̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 +

𝜆 

[𝑔(𝑈𝑖+1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )(𝑈𝑖+1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )+𝑔(𝑈𝑖−1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )(𝑈𝑖−1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )

+𝑔(𝑈𝑖,𝑗+1
𝑛 −𝑈𝑖,𝑗

𝑛 )(𝑈𝑖,𝑗+1
𝑛 −𝑈𝑖,𝑗

𝑛 )+𝑔(𝑈𝑖,𝑗−1
𝑛 −𝑈𝑖,𝑗

𝑛 )(𝑈𝑖,𝑗−1
𝑛 −𝑈𝑖,𝑗

𝑛 )]

[𝑔(𝑈𝑖+1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )+𝑔(𝑈𝑖−1,𝑗
𝑛 −𝑈𝑖,𝑗

𝑛 )+𝑔(𝑈𝑖,𝑗+1
𝑛 −𝑈𝑖,𝑗

𝑛 )+𝑔(𝑈𝑖,𝑗−1
𝑛 −𝑈𝑖,𝑗

𝑛 )]
  

(21) 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼�̂�(𝐹) 

 

where, α=4λ. 

 
𝜃(𝐹)  

=
1

4

{
[𝑔(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖−1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖−1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )

+𝑔(�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )]
}

[𝑔(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 ) + 𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )]
 

 

where, �̂�(𝐹) is the adaptive weighted mean of the directional 

derivatives.  

Stage 3 (T2): Not selected. 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

The first diffusion algorithm is isotropic diffusion by 

Wiekert, in which the diffusion coefficient is constant. This 

provides image smoothing but fails to preserve the edges. 

Later, Perona-Malik introduced the first anisotropic diffusion 

filter, which provides good image smoothing with edge 

preservation. In order to achieve edge preservation, Perona-

Malik used the diffusion coefficient as a function of the image 

pixel gradient. The Perona-Malik algorithm provides image 

smoothing edge preservation in the presence of Gaussian noise, 
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but it fails to provide good results under the perturbation of 

impulse noise. This algorithm serves as the basis for all other 

research in the diffusion class of images. Then, an anisotropic 

median diffusion algorithm is developed, which is the first 

contribution towards image smoothing with edge preservation 

under the perturbation of impulse noise. This is a two-stage 

algorithm in which a post-processing stage is present after the 

diffusion stage. A median filtering operation is involved in the 

postprocessing stage in order to reduce impulse noise. This 

filter could provide a satisfactory result only at very low 

impulse noise densities. Later, a robust scale space filter is 

developed, in which an adaptive diffusion scheme is adapted 

in order to provide image smoothing with edge preservation 

under Gaussian plus impulse noise conditions. This filter could 

also provide satisfactory performance under low noise density 

conditions. This is another foundational contribution towards 

the diffusion smoothing of images. All these foundational 

algorithms are not suitable for images with Gaussian plus 

high-density impulse noise conditions. Hence, four new 

diffusion models based on the unified model suitable for 

Gaussian plus high-density impulse noise conditions are 

discussed in the next section. 

 

 

4. MATHEMATICAL MODELS FOR THE 

REDUCTION OF MIXED NOISE BASED ON THE 

UNIFIED MODEL 

 

In this section, four different mathematical models based on 

the unified model for the reduction of mixed noise have been 

developed. 

 

4.1 Model 1 

 

Stage 1 (T0): Median filtering. 

The median filtering operation is employed in the 

preprocessing stage (T0), therefore: 

 

�̂�𝑖 ,𝑗
 𝑛 =Median (𝑈𝑖,𝑗

𝑛 , W) 

 

where, W is the window size used for median filtering. 

Stage 2 (T1): �̂�(𝐹) is the simple median with exponential 

diffusion coefficient. 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼𝑔 (�̂�(𝐹)) �̂�(𝐹)  (22) 

 

where, α=λ, �̂�(𝐹) is the median of the directional derivatives. 
 

�̂�(𝐹)=𝑀𝑒𝑑[(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ),(�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 ), (�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )] 

𝑔 (�̂�(𝐹))=𝑒−�̂�(𝐹) 2⁄  

 

Stage 3 (T2): Not selected. 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

4.2 Model 2 

 

Stage 1 (T0): Median filtering. 

The median filtering operation is employed in the 

preprocessing stage (T0), therefore: 

 

�̂�𝑖 ,𝑗
 𝑛 =Median (𝑈𝑖,𝑗

𝑛 , W) 

where, W is the window size used for median filtering. 

Stage 2 (T1): �̂�(𝐹) is the simple median with Gaussian 

diffusion coefficient. 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼𝑔 (�̂�(𝐹)) �̂�(𝐹) (23) 

 

where, α=λ, �̂�(𝐹) is the median of the directional derivatives. 

 

�̂�(𝐹)=𝑀𝑒𝑑[(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ),(�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 ), (�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )] 

𝑔 (�̂�(𝐹))=𝑒−(�̂�(𝐹) 2⁄ )
2

 

 

Stage 3 (T2): Not selected. 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

4.3 Model 3 

 

Stage 1 (T0): Non-Iterative Replacement Strategy 

The preprocessing stage (T0) consists of a non-iterative 

replacement strategy where if a pixel value is either 0 or 1, 

then such pixels are replaced by the next immediate neighbor 

pixel. 

 

�̂�𝑖 ,𝑗
 𝑛 =𝑇0 (𝑈𝑖,𝑗

𝑛 ) 

 

Stage 2 (T1): �̂�(𝐹) is the weighted mean. 

From Eq. (15) 

 

 �̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝜆[𝑔(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )

+ 𝑔(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 )

+ 𝑔(�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗+1
𝑛 − �̂�𝑖,𝑗

𝑛 )

+ 𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )] 

(24) 

 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼�̂�(𝐹) 

 

where, α=4λ. 

 

�̂�(𝐹)=
1

4
[𝑔(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖+1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖−1,𝑗

𝑛 −

�̂�𝑖,𝑗
𝑛 )(�̂�𝑖−1,𝑗

𝑛 − �̂�𝑖,𝑗
𝑛 ) + 𝑔(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 )(�̂�𝑖,𝑗+1

𝑛 − �̂�𝑖,𝑗
𝑛 ) +

𝑔(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )(�̂�𝑖,𝑗−1
𝑛 − �̂�𝑖,𝑗

𝑛 )] 

 

where, �̂�(𝐹)  is the weighted mean of the directional 

derivatives.  

 

𝑔(∇�̂�) = 𝑒−(∇𝑈 2⁄ )2
 

 

Stage 3 (T2): Not selected. 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

4.4 Model 4 

 

Stage 1 (T0): Non-Iterative Replacement Strategy 

The preprocessing stage (T0) consists of a non-iterative 

replacement strategy where if a pixel value is either 0 or 1, 

then such pixels are replaced by the next immediate neighbor 

pixel. 

 

�̂�𝑖 ,𝑗
 𝑛 =𝑇0 (𝑈𝑖,𝑗

𝑛 ) 
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Stage 2 (𝑇1) : �̂�(𝐹) is the simple median with Gaussian 

diffusion coefficient. 
 

�̂�𝑖,𝑗
𝑛+1 = �̂�𝑖,𝑗

𝑛 + 𝛼𝑔 (�̂�(𝐹)) �̂�(𝐹)  (25) 

 

where, α=λ, �̂�(𝐹) is the median of the directional derivatives.  
 

�̂�(𝐹)=𝑀𝑒𝑑[(�̂�𝑖+1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ), (�̂�𝑖−1,𝑗
𝑛 − �̂�𝑖,𝑗

𝑛 ),(�̂�𝑖,𝑗+1
𝑛 −

�̂�𝑖,𝑗
𝑛 ), (�̂�𝑖,𝑗−1

𝑛 − �̂�𝑖,𝑗
𝑛 )] 

𝑔 (�̂�(𝐹))= 𝑒−(�̂�(𝐹) 2⁄ )
2

 

 

Stage 3 (T2): Not selected. 

Since T2 is not selected, 𝑈𝑖 ,𝑗
𝑛+1=�̂�𝑖,𝑗

𝑛+1. 

 

 

5. RESULTS AND DISCUSSION  
 

Four diffusion filter models based on the unified model are 

proposed in this paper. The qualitative and quantitative 

performance of these models is shown in Figures 1-3 and 

Tables 1-8. The quantitative performance of these models is 

measured in terms of the peak signal-to ratio (PSNR) and the 

structural similarity index measure (SSIM). 
 

 0.01 GN + 20% 

S&P 

0.01 GN + 50% 

S&P 

0.01 GN + 70% 

S&P 

Model 

1 

   
 Fig. 1(a).1 Fig. 1(b).1 Fig. 1(c).1 

Model 

2 

   

 Fig. 1(a).2 Fig. 1(b).2 Fig. 1(c).2 

Model 

3 

   
 Fig. 1(a).3 Fig. 1(b).3 Fig. 1(c).3 

Model 

4 

   

 Fig. 1(a).4 Fig. 1(b).4 Fig. 1(c).4 

 

Figure 1. Simulation results of Model 1 to Model 4 at 20%, 

50% and 70% salt and pepper and 0.01 variance Gaussian 

noise 

Table 1. PSNR 

 

Models/Noise 

Density 

PSNR 

0.01 GN + 

20% S&P 

0.01 GN + 

50% S&P 

0.01 GN + 

70% S&P 

Model 1 25.1796 23.9368 19.5779 

Model 2 25.1813 23.9371 20.0799 

Model 3 23.0723 22.6183 21.8030 

Model 4 24.5349 23.6948 22.0810 
 

Table 2. SSIM 

 

Models/Noise 

Density 

SSIM 

0.01 GN + 

20% S&P 

0.01 GN + 

50% S&P 

0.01 GN + 

70% S&P 

Model 1 0.7574 0.6981 0.4958 

Model 2 0.7588 0.6853 0.4930 

Model 3 0.6916 0.6710 0.6447 

Model 4 0.7300 0.6985 0.6478 

 

Table 3. Simulation time 

 

Models/Noise 

Density 

Simulation* time in Seconds 

0.01 GN + 

20% S&P 

0.01 GN + 

50% S&P 

0.01 GN + 

70% S&P 

Model 1 1.323 1.398 1.402 

Model 2 1.352 1.378 1.398 

Model 3 0.533 0.583 0.459 

Model 4 1.385 1.755 1.863 
*The Simulations are carried in Matlab R2023b 

 

Table 4. PSNR 

 

Models/Noise 

Density 

PSNR 

0.01 GN + 

20% S&P 

0.1 GN + 

20% S&P 

0.25 GN + 

20% S&P 

Model 1 25.2150 19.1375 12.0133 

Model 2 25.1921 19.0210 11.9645 

Model 3 23.1009 18.4829 12.3963 

Model 4 24.4640 18.8941 12.3261 

 

In Figure 1, the performance of these models is analyzed at 

different noise levels of mixed noise (salt and pepper (S&P) 

plus Gaussian noise (GN)). The number of iterations is chosen 

as 10. In Figure 1(a)-1(c), Gaussian noise of variance 0.01 plus 

salt and pepper noise of noise densities of 20%, 50%, and 70% 

is added, respectively. As per the quantitative analysis, the 

performance of all four proposed models is almost similar and 

satisfactory in terms of PSNR and SSIM (Tables 1-2). 

Watching closely the PSNR and SSIM, it is clear that the 

Model 1 and Model 2 performances are better in comparison 

with Model 3 and Model 4 at low and medium noise densities. 

Model 4 outperforms all other models at high noise density. 

From the qualitative and quantitative analysis of Figure 1, it is 

clear that mixed noise is removed in all four models with good 

edge preservation. The simulation taken for each model is 

shown in Table 3. 

In Figure 2, the performance of all four models is analyzed 

at different Gaussian noise variances plus a fixed salt and noise 

density. From Figures 2(a)–2(c), the Gaussian noise variance 

is 0.01, 0.1, and 0.25, respectively, with a fixed salt and noise 

density of 20%. The corresponding performance metrics are 

shown in Table 4 and Table 5. The simulation time taken for 

these models is shown in Table 6. It is clear from Figure 2, 

Table 4, and Table 5 that the performance of all the models is 

satisfactory at various levels of Gaussian noise, although the 

performance is better at a low Gaussian noise variance of 0.01 
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(Figure 2(a)). A keen analysis of the performance metrics 

(Table 4 and Table 5) shows that Model 1 performance is 

slightly better as compared to the remaining three models. 

 

 0.01 GN + 20% 

S&P 

0.1 GN + 20% 

S&P 

0.25 GN + 20% 

S&P 

Model 

1 

   
 Fig. 2(a).1 Fig. 2(b).1 Fig. 2(c).1 

Model 

2 

   

 Fig. 2(a).2 Fig. 2(b).2 Fig. 2(c).2 

Model 

3 

   
 Fig. 2(a).3 Fig. 2(b).3 Fig. 2(c).3 

Model 

4 

   

 Fig. 2(a).4 Fig. 2(b).4 Fig. 2(c).4 

 

Figure 2. Simulation results of Model 1 to Model 4 at 20% 

salt and pepper and Gaussian noise of variance 0.01, 0.1 and 

0.25 

 

Table 5. SSIM 

 

Models/Noise 

Density 

SSIM 

0.01 GN + 

20% S&P 

0.1 GN + 

20% S&P 

0.25 GN + 

20% S&P 

Model 1 0.7603 0.6898 0.6114 

Model 2 0.7585 0.6892 0.6123 

Model 3 0.6914 0.6518 0.5853 

Model 4 0.7281 0.6841 0.6070 

 

Table 6. Simulation time 

 

Models/Noise 

Density 

Simulation* Time in Seconds 

0.01 GN + 

20% S&P 

0.1 GN + 

20% S&P 

0.25 GN + 

20% S&P 

Model 1 1.340 1.370 1.425 

Model 2 1.374 1.424 1.443 

Model 3 0.521 0.610 0.621 

Model 4 1.421 1.451 1.472 
*The Simulations are carried in Matlab R2023b 
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Figure 3. Simulation results of Model 1 to Model 4 at 20%, 

50% and 70% salt and pepper noise densities 

 

Table 7. PSNR 

 
Models/Noise 

Density 

PSNR 

20% S&P 50% S&P 70% S&P 

Model 1 25.8899 24.8335 20.3033 

Model 2 25.9483 25.0511 21.3970 

Model 3 24.2123 23.8080 22.9530 

Model 4 26.1375 25.3888 23.7741 

 

Table 8. SSIM 

 
Models/Noise 

Density 

SSIM 

20% S&P 50% S&P 70% S&P 

Model 1 0.8128 0.7779 0.5951 

Model 2 0.8124 0.7771 0.6121 

 Model 3 0.7499 0.7350 0.7180 

Model 4 0.8090 0.7835 0.7506 

 

The performance of the four models under the perturbation 

of salt and pepper noise alone at different noise densities of 

20%, 50%, and 70% is shown in Figure 3. The corresponding 

performance metrics are shown in Tables 7 and 8. From Figure 

3, it is clear that all four models are suited for low and medium 

noise densities (Figure 3(a) and Figure 3(b)). The performance 

of Model 3 and Model 4 is good even at a high noise density 

of 70% (Figure 3(c)-3 and Figure 3(c)-4). The Model 4 

outperforms all the models at all levels of noise densities. 
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6. CONCLUSION AND FUTURE ENHANCEMENTS 

 

Four foundational diffusion smoothing algorithms are 

discussed and compared. A unified model for the diffusion-

smoothing class of algorithms is proposed. The four 

foundational diffusion algorithms are expressed in accordance 

with the unified model. Four new models, Model 1, Model 2, 

Model 3, and Model 4, in accordance with the unified model, 

are proposed for the removal of mixed noise. The qualitative 

and quantitative performances of the four models are analyzed. 

The unified model can serve as the basis for the development 

of any diffusion smoothing filter. Different diffusion 

smoothing filters for the removal of different types of noise 

can be developed in accordance with the unified model. The 

unified model can serve as a basis for the development of new 

diffusion smoothing filters for several applications under the 

perturbation of different types of noise. Diffusion smoothing 

filters for the removal of different types of noise can be 

developed in accordance with the unified model by 

appropriately choosing the statistical estimation operation and 

the operations on the preprocessing or postprocessing stage. 

Developing a diffusion smoothing filter in accordance with the 

unified model for the diffusion smoothing of satellite images 

under the perturbation of speckle noise can be considered a 

future work. 
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NOMENCLATURE 

 

U(x, y), U initial image 

G(x, y;t) Gaussian kernel 

U(x, y;t)) scale-space of the initial image  

(x, y) spatial co-ordinates 

t  time parameter  

∆t small increment in time 

∆x small increment in space along 𝑥 direction 

Uin corrupted input image 

Uout processed output image 

D diffusion coefficient 

∇NU, ∇SU, 

∇EU, ∇WU 

the gradients along the north, south, east and 

west directions respectively 

g(x, y;t) direction dependent diffusion coefficient 

K a constant 

Ke 𝐾

√5
, a constant 

W local window size 

T a signal processing operation 

T0 preprocessing operation 

T1 diffusion operation 

T2 post processing operation 

F distribution 
GN Gaussian noise 
S&P salt and pepper noise 

 

Greek symbols 

 

λ step size parameter 

α Dλ, a constant called control parameter 

�̂�(𝐹) an estimation of flux density based on the 

directional derivatives 

 

Subscripts 

 

i, j image pixel co-ordinate  

n an index 

N, S, E, W north, south, east and west directions 

respectively 

t time parameter 

in input 

out output 
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