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In the evolution of digital power grids, technologies such as artificial intelligence and digital 

twins have emerged as foundational elements. A critical step in this evolution involves 

creating digital avatars of physical power equipment, enabling precise classification crucial 

for digital twin integration. Traditional algorithms for equipment recognition face significant 

challenges due to discrepancies in equipment sizes, and environmental factors like bright 

light and haze, which substantially degrade detection performance. This study introduces a 

novel single-stage recognition method that employs staged training on a dual-scale dataset, 

specifically designed to address these challenges. Equipment images are categorized into 

large-scale and small-scale sets to mitigate issues arising from size disparities. Furthermore, 

a comprehensive dataset featuring multiple scales, angles, and lighting conditions is 

compiled, enhancing the model's generalizability and robustness. The proposed method 

incorporates a feature extraction module, a feature fusion network, and environment context 

modeling, which are trained separately on the large-scale and small-scale datasets. During 

testing, outputs from the dual-scale models are integrated. Comparative experiments 

demonstrate that the proposed method requires only one-third the parameters of the SSD 

algorithm, yet operates at a detection speed of 52.15 frames per second (fps). Despite its 

lightweight structure, the algorithm achieves an impressive mean Average Precision (mAP) 

of 92.13%, effectively reducing false and missed detections. This performance signifies a 

marked improvement in stability and robustness over existing single-stage detection 

methods, particularly in complex natural environments. 
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1. INTRODUCTION

As industries and agriculture undergo automation, the 

demand for electricity has surged, exacerbating the challenge 

of efficiently allocating power resources. To ensure the stable 

operation of electrical equipment, effective power grid 

planning is paramount. Modern power grid planning aims to 

construct a resilient, intelligent power grid. Traditional 

planning methods rely heavily on manual labor, while digital 

planning, characterized by information-based, automated, and 

intelligent approaches, offers a promising alternative [1]. In 

recent years, digital technology has permeated various sectors 

of the economy and society. Notably, artificial intelligence and 

digital twins have emerged as crucial components for 

establishing a digital power grid [2]. A digital power grid 

necessitates the digitization of the entire process, 

encompassing all elements and business aspects of the power 

grid, to create a seamless virtual digital world mirroring the 

physical one. Leveraging digital information, novel business 

models and optimization methods can be devised to enhance 

the operation and management of the power grid [3]. 

The cornerstone technologies of a digital twin system 

include modeling, simulation, and data fusion-based digital 

threads. Establishing a corresponding "digital replica" of real 

power equipment along the physical power lines is a 

prerequisite for a digital twin power grid. Moreover, effective 

management and classification of this "digital replica" are 

essential for conducting precise simulations and optimizations. 

Intelligent recognition algorithms play a pivotal role in 

automatically tagging and classifying collected device image 

information. However, developing robust power equipment 

recognition algorithms poses numerous challenges. These 

algorithms must accurately detect various objects, ranging 

from large devices like wires, utility poles, and transformers 

to smaller components like insulators and crossbars. 

Disparities in scale among different power equipment 

components further complicate accurate detection. 

Additionally, complex environmental factors such as strong 

light and haze can distort object features, necessitating 

solutions to maintain high detection accuracy under varying 

conditions. Furthermore, for deployment on edge data 

acquisition devices such as robots and drones, detection 

algorithms must prioritize lightweight designs and meet real-

time performance requirements. 

Presently, research on power equipment target detection and 

recognition primarily revolves around traditional detection 
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algorithms and deep learning-based approaches. Traditional 

algorithms rely on manually designed features for template 

matching, followed by feature classification and regression to 

achieve object recognition [4]. While these algorithms offer 

fast detection speeds, they often struggle with robustness in 

practical applications due to complex environmental factors, 

leading to issues like false positives and false negatives. In 

contrast, deep learning algorithms leverage hierarchical 

feature extraction and learning capabilities to achieve 

breakthroughs in object detection performance. These 

methods automatically learn advanced features from massive 

datasets, significantly improving recognition accuracy. Many 

studies have applied deep convolutional neural networks 

(CNNs) to power equipment detection, reflecting the general 

trend towards using intelligent detection methods to maintain 

power grid systems. For instance, Jiang et al. [5] propose a 

recognition model for substation equipment images based on 

Mask-RCNN [6] and Faster-RCNN [7], highlighting the need 

for enhancements to achieve better results in specific 

application scenarios. Similarly, Lin et al. [8] introduce a 

transmission line inspection image detection algorithm based 

on an improved Faster-RCNN, addressing challenges related 

to recognition accuracy and real-time detection. Despite these 

advancements, certain limitations persist, such as slow 

recognition speeds, large model sizes, and challenges in 

optimizing detection accuracy under various environmental 

conditions. Wan et al. [9] use the position information of 

largerscale power equipment to correct the probability of small 

components based on the position-related relationship 

between small and large components of transformers, and 

improve the recognition accuracy of the small objects, but a 

large number of conditional judgments need to be artificially 

set in the postprocessing process, and the generalization ability 

is weak. Chen et al. [10] improved the single-stage object 

detection algorithm, RFBNet [11], use a lightweight backbone 

network to improve the model’s detection speed, but the 

detection accuracy of small-scale equipment still needs to be 

further improved. Xiong et al. [12] add a de-fogging algorithm 

to the power equipment detection algorithm for data 

preprocessing to improve the recognition accuracy of the 

detection algorithm in foggy weather, but the detection 

accuracy in other complex environments such as strong light 

and night scenes still needs further optimization. Due to the 

slow speed and large model parameter size of two-stage object 

detection algorithms such as RCNN [13] and Fast RCNN [14], 

they cannot meet the real-time detection requirements. 

In this paper, we present an improved single-stage 

multiscale object detection algorithm designed to address 

these challenges. Leveraging lightweight backbone networks, 

context mining, and feature fusion technology, our algorithm 

enhances detection accuracy and speed while significantly 

reducing model parameter size. We constructed a large-scale 

recognition dataset encompassing multiple categories of 

power equipment for training purposes. To tackle the issue of 

poor recognition caused by extreme differences in target scales, 

we divided device images into two scales and employed multi-

stage training on data from different scales. Various data 

augmentation techniques were applied to enhance the 

algorithm's generalization ability and robustness against 

diverse weather and lighting conditions. During testing, the 

model was trained on both large-scale and small-scale device 

datasets, and the detection results were combined to establish 

an end-to-end multi-scale power equipment recognition 

pipeline. Our proposed method achieved a mAP of 92.13% 

and a recognition speed of 52.15 fps on the test set. Extensive 

experiments demonstrate the efficacy of our multiscale 

recognition method in power equipment detection, with 

potential applications in constructing digital twin power grid 

equipment tags. 
 

 

2. RELATED WORKS 
 

Deep learning models have recently been broadly applied 

throughout the whole area of computer vision, including 

generic and task-specific object detection. Detectors typically 

use CNNs to extract features from input images, classify 

objects, and locate them. A few important contributions have 

been made since the first CNN-based object detector, R-CNN 

[13], was proposed. In summary, the object detectors can be 

divided into anchor-based and anchor-free methods. 
 

2.1 Anchor-based detectors 
 

Anchor-based detectors inherit ideas from the sliding 

window and region proposals. In the anchor-based pipeline, 

anchors serve as the fundamental element for classification 

and location refinement. They regard objects as a partial area 

of a picture and use anchors to determine the boundary and 

scope of the area. During training, the network gradually 

refines the scale and position of these anchors. Based on 

anchors, a model has an initial optimization point, which 

promotes the neural network to converge. Today’s anchor-

based methods can be divided into two-stage and one-stage 

detectors. The former defines detection as the process of 

"going from coarse to fine,” while the latter defines detection 

as “one-step completion." R-CNN, as the first successful 

anchor-based object detector, enumerates a large set of 

candidates as region proposals in the first stage and classifies 

the cropped candidate boxes using a deep CNN. Then, SPP-

Net [15], Fast R-CNN, Faster R-CNN, and other approaches 

based on R-CNN are proposed, which have improved 

efficiency and accuracy to a certain extent. Two-stage methods 

rely on region proposals for classification and regression, 

while one-stage detectors complete the classification and 

regression with one network. SSD [16] sets a series of prior 

anchors before training and uses multi-scale feature maps, 

which significantly improve single-stage detector accuracy 

and become the baseline for subsequent approaches. Recently, 

YOLOv3 [17], RetinaNet [18], EfficientDet [19], and other 

detectors have been proposed. These are all anchor-based, 

one-stage detectors with good performance. 
 

2.2 Anchor-free detectors 
 

Anchor-free detectors do not use prior anchors or region 

proposal networks (RPN) and solve object detection as a 

keypoint estimation task. The emergence of CenterNet [20], 

CornerNet [21], and other anchor-free detection methods has 

brought new inspiration to object detection. The rise of full 

convolution networks [22] (FCN) provides a new paradigm 

that solves the object detection problem through the local 

response on the feature map. The following works have shown 

that the performance of anchor-free detectors can be equal to 

that of anchor-based detectors. CornerNet detects objects as a 

pair of keypoints, the top-left corner and bottom-right corner 

of the bounding box. At the detection head, a convolutional 

layer is used to generate a heatmap and predict an embedding 

vector for each detected corner. CenterNet represents objects 
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with a single point at the bounding box center. Other properties, 

including size, dimension, and orientation, are regressed from 

predictions. Built on down-scale feature maps, FCOS [23] 

constructs a set of detection heads sharing parameters to deal 

with objects of various scales. Each head detects the center of 

a bounding box, and an offset branch is built to predict the 

deviation of the estimated center. YOLOX [24], which is an 

improved version of YOLOv3, modifies the baseline to be 

anchor-free. Two parallel prediction branches are integrated 

into the detection head for classification and regression. Such 

improvements achieve better performance compared to 

YOLOv3. 
 

 

3. METHOD 

 

3.1 Overview 

 

Existing single-stage object detection algorithms (e.g., 

YOLO [25] and SSD) pre-set prior boxes with different aspect 

ratios on the feature maps. A prior box will be classified as an 

object by the network if the overlap ratio between the prior box 

and the ground truth box reaches 0.5. The network gradually 

fine-tunes the sizes of the prior boxes through training to fit 

the ground truth object. However, due to the scale of the small 

objects, which have a relatively small range on the feature map, 

the corresponding prior boxes will have a larger deviation 

from the ground truth boxes. Thus, it is difficult for the 

network to filter the small objects and take them into the 

training process, which will also lead to poor detection 

performance for small objects during testing. The scales of 

different power equipment vary greatly. Large-scale 

equipment includes transformers, utility poles, etc.; densely 

packed small-scale equipment includes crossbars and 

insulators. As shown in Table 1, the scale of large equipment 

is tens or hundreds of times that of small equipment. The 

image of equipment with different scales is shown in Figure 1. 

It can be seen that the overall contour of the large-scale 

equipment is clear. But it is difficult to see the details of the 

small-scale equipment's details are difficult to see. Simply 

increasing the resolution of small-scale equipment is not a 

suitable solution. Because the large-scale equipment in the 

image will only have local information, The input image 

resolution of the SSD algorithm is 300×300 or 512×512. 

Small-scale equipment will lose more details at this resolution, 

making detection difficult. 

 

Table 1. The ratio of object area to image size 

 
Object Utility Pole Transformer Crossbar Insulator 

Area Ratio 1.483% 0.663% 0.068% 0.017% 

 

 
 

Figure 1. Scale comparison between large equipment and 

small equipment: the green box is the area of large 

equipment, and the red box is the area of small equipment 

 

To solve the problem of low detection accuracy caused by 

differences in the scales of electric equipment, we divide the 

dataset into dual-scale datasets (large-scale and small-scale) 

based on the size of the equipment. In this paper, we propose 

a detection approach based on training on dual-scale datasets 

and an improved single-stage multi-scale object detection 

algorithm. The network is trained on both the large-scale and 

small-scale datasets separately. The outputs of the two models 

are merged during testing, followed by non-maximum 

suppression (NMS), to generate unified detection results. 

Figure 2 shows the complete pipeline of the proposed 

framework. 

 

 
 

Figure 2. Overall pipeline 
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The detection algorithm is single-stage with a feature 

extraction module, a feature fusion network, and a detection 

head. The feature fusion network combines multi-scale 

features with global context for object detection. To facilitate 

model deployment on edge devices such as drones, our 

backbone network replaces VGGNet [26] with the more 

efficient and lightweight EfficientNet [27]. We improve the 

original feature pyramid structure with multiple levels of 

feature fusion to balance the network’s ability to extract 

semantic features and locate objects. Consequently, our 

network is adaptable to different sizes of equipment data in 

real-world scenarios. The detection neck also incorporates an 

attention-like global semantic information module, which 

enhances the network’s focus on the target by exploiting 

spatial domain context information and weakens interference 

from cluttered backgrounds. 

 

3.2 Dual-scale dataset 

 

We classify data based on the equipment's true scale. Large-

scale data refers to large-scale power equipment such as 

transformers and utility poles; small-scale data consists of 

dense small equipment such as crossbars and insulators. To 

balance the algorithm’s recognition ability for objects of 

different scales, we build two datasets of large and small-scale 

power equipment, respectively, and train the network 

separately. This strategy solves the problem of insufficient 

training of small objects caused by mismatches between prior 

boxes and ground truth, thus improving the accuracy of small-

scale device detection. 

We use real images of power equipment on transmission 

lines as the data source, which covers multiple scales, angles, 

and lighting conditions. The dataset includes four types of 

equipment: utility poles, transformers, insulators, and 

crossbars. The resolution of the actual shooting image is 

3000×4000, and the equipment scale ratio is determined based 

on the area ratio of the equipment in the image. We classify 

poles and transformers as large-scale equipment, and 

insulators and crossbars as small-scale equipment. The dataset 

is annotated using the LabelImg tool, and the annotation 

format follows the PASCAL VOC 2007 dataset format. To 

facilitate network training, the resolution of the images in the 

training set is fixed at 300×300. Since large-scale equipment 

occupies the entire image frame of the actual image, the actual 

shooting image is scaled to 225×300 and padded with zeros 

around the edges to obtain the large-scale training set. Actual 

shooting images containing small-scale equipment are 

selected, and a series of sub-images are generated by 

traversing the image using a sliding window with a resolution 

of 300×300 and a stride of 15×15. The sub-images are cropped 

and labeled to create a small-scale dataset. Table 2 shows the 

number of objects for each class in the dataset. The dataset is 

randomly sampled and divided into training and testing sets, 

with a ratio of 9:1 for both large and small-scale datasets. 
 

Table 2. Statistics of various objects in the dataset 
 

Object Utility Pole Transformer Crossbar Insulator 

Number 2341 549 1836 7044 

 

In actual outdoor scenarios, there are complex natural 

environmental influences, including noise, backlighting, 

changing weather conditions, as well as complex scale and 

angle changes. It is difficult to gain rich and realistic data with 

manual photography, which limits the detection accuracy of 

algorithms in extreme situations. To improve the 

generalization ability of the model, enhance the robustness of 

the recognition algorithm, and strengthen the performance 

under actual scenarios, we follow the data optimization 

method explored by Zoph et al. [28] and have applied various 

data augmentation techniques to both datasets. 

 

 
 

Figure 3. The network structure of EfficientNet-b3 

 

3.3 Single-stage object detection algorithm 

 

To optimize detection speed, edge devices require 

lightweight and efficient detection algorithms. The SSD 

algorithm has demonstrated commendable detection 

performance on public datasets, owing to its single-stage 
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structure, which facilitates seamless integration across diverse 

platforms. In this paper, we introduce an enhanced object 

detection approach that integrates multiscale features and 

global context into the SSD algorithm. The network 

architecture of our algorithm is depicted in Figure 3. We 

improved the backbone network with EfficientNet-b3. The 

VGG network is based on the traditional stacked convolutional 

layer structure. But the network depth of VGGNet is not 

enough, and it uses more parameters. The EfficientNet is 

constructed by neural architecture search (NAS), achieving 

better accuracy and efficiency while expanding the network 

scale. By searching for optimization, the depth and width of 

each convolutional layer are determined, and then the modules 

are stacked to maximize the feature extraction ability of the 

model with limited model parameters. Introducing 

EfficientNet-b3 in the feature extraction part can significantly 

reduce the number of parameters and improve the feature 

extraction ability, enabling the model to increase feature 

extraction performance and be greatly lightweight, so that the 

model can be deployed on edge devices with limited device 

storage space. EfficientNet b3 is composed of seven modules 

in series. Each module contains a series of convolutional, 

batch normalization, and activation layers. The network 

structure diagram of EfficientNet-b3 is shown in Figure 3. We 

select the output feature maps from the 7th, 17th, and 25th 

convolutional modules for object recognition and detection, 

and the scale of these feature maps is 38×38, 19×19, and 

10×10, respectively. For predicting the position and size of 

detection boxes, we select shallow feature maps, which 

achieve good results. 

 

 
 

Figure 4. The network structure of the proposed single-stage 

algorithm 

 

Object detection is a multifaceted task, encompassing two 

crucial components: classification and localization. The 

classification aspect involves learning high-level semantic 

information to establish invariant feature representations. 

Meanwhile, localization aims to pinpoint changes in object 

location and scale, necessitating an understanding of the 

interplay between the object and its background, as well as the 

relationships between local and global features. Achieving this 

necessitates the acquisition of rich equivariant features within 

the lower-level feature maps. Consequently, an effective 

detector must simultaneously learn both high-level semantic 

features and shallow, locally equivariant features. CNNs 

naturally organize themselves into a hierarchical feature 

pyramid. However, in the case of Single Shot MultiBox 

Detector (SSD), it independently detects objects of varying 

scales on different branches of these feature maps, overlooking 

the correlations between feature maps at various levels. This 

leads to an imbalance that affects the detection performance, 

causing a disparity between semantic and detailed information 

across different levels of feature maps. To address this issue 

and ensure more efficient utilization of extracted features, it 

becomes essential to enhance the semantic content of the 

shallow feature maps. In this research paper, we propose a 

novel approach: concatenating the feature maps from different 

levels for feature fusion. This concatenation approach offers 

several advantages. Notably, it obviates the need for 

converting feature maps from different levels to the same 

channel, a requirement in some other fusion methods. 

Consequently, it enhances the flexibility of fusing feature 

maps while reducing computational resource consumption 

compared to element-wise summation. 

In our approach, we incorporate three feature maps 

produced by the backbone network and apply upsampling to 

standardize the feature map size to 38×38 while preserving a 

channel size of 256. Subsequently, we interconnect these 

feature maps to create a unified 38×38×768 feature map, as 

illustrated in Figure 4. This novel methodology ensures the 

seamless integration of both high-level semantic information 

and shallow, locally equivariant features, resulting in 

enhanced object detection performance. 

 

 
 

Figure 5. The network structure of GCBlock 

 

The convolution operation utilizes local information to 

calculate the target pixel, and the receptive field is determined 

by the size of the convolution kernel. Due to the inability to 

introduce global information, traditional convolution has 

limitations in prediction. Currently, there are some 

straightforward methods to alleviate this problem, such as 

using larger convolution filters or building deeper networks. 

However, these methods do not significantly improve the 

results. The receptive fields of specific layers are still limited 

even with feature fusion, which increases the computational 

costs. The SSD algorithm does not consider the impact of 

environmental context on local objects, greatly limiting its 

ability to recognize small-scale, occluded, and low-resolution 

objects. There is a certain positional correlation between 

different pieces of power equipment. For example, in large-

scale datasets, transformer equipment is usually installed 

between two utility poles; in small-scale datasets, there are 

adjacent positions between insulators and crossbars. 

Introducing context information into the model can implicitly 

model the positional correlation between different pieces of 
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equipment and avoid missed or false detections. However, not 

all environmental context information is beneficial to 

improving object detection performance; adding meaningless 

background noise may even impair detection performance. 

Therefore, identifying useful context information is necessary. 

We introduce a global context block (GCBlock) for modeling 

context semantics at specific query positions. It can help the 

model assign different weights to remote positions of the input, 

extract critical information, and make more accurate 

judgments without causing significant computational and 

storage costs. As shallow feature maps contain more context 

information, the first three feature maps output by the 

backbone network are input into the GCBlock for context 

information extraction to obtain more accurate positional 

correlation modeling. Figure 5 shows the network structure of 

the global context block. 

During training, if the intersection over union (IoU) 

between the prior box and the ground truth box is greater than 

50%, it can be considered that the prior box matches the true 

target. The network simultaneously performs object 

classification and box regression on the matched prior boxes, 

and the total loss function is calculated as Eq. (1). 

 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁
(𝐿𝑐𝑙𝑠(𝑥, 𝑐) + 𝛼𝐿𝑟𝑒𝑔(𝑥, 𝑙, 𝑔)), (1) 

 

where, 𝐿𝑐𝑙𝑠(𝑥, 𝑐) is the classification loss, 𝐿𝑟𝑒𝑔(𝑥, 𝑙, 𝑔) is the 

regression loss, N is the number of matched detection boxes, 

and α is a weighting factor, which is usually set to 1. We use 

the cross-entropy loss for classification, as in Eq. (2). 

 

𝐿𝑐𝑙𝑠(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑘

𝑁

𝑖∈𝑃𝑜𝑠

log (∅(𝑐𝑖
𝑘))

− ∑ log (∅(𝑐𝑖
0))

𝑁

𝑖∈𝑁𝑒𝑔

, 

(2) 

 

where, x,k,i,j ∈ {0, 1} is the true class label of the object, using 

one-hot encoding, and k is the number of object classes. ∅ is 

the Softmax function, which gives the probability that the 

target belongs to a certain class. 𝐿𝑟𝑒𝑔(𝑥, 𝑙, 𝑔)  regresses the 

detection frame position and size using smooth L1 loss to 

calculate the relative distance between the detection frame and 

the real frame calculated as Eq. (3). 

 

𝑙𝐿𝑟𝑒𝑔(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘𝜑(𝑙𝑖

𝑚 − 𝑔𝑗
𝑚̅̅ ̅̅ )

𝑚∈𝐵𝑜𝑥

𝑁

𝑖∈𝑃𝑜𝑠

, (3) 

 

𝐵𝑜𝑥 = {𝑐𝑥, 𝑐𝑦, 𝑤, ℎ}, (4) 

 

𝑔𝑗
𝑐𝑥̅̅ ̅̅̅ =

𝑔𝑗
𝑐𝑥 − 𝑑𝑖

𝑐𝑥

𝑑𝑖
𝑤 , (5) 

 

𝑔𝑗
𝑐𝑥̅̅ ̅̅̅ =

𝑔𝑗
𝑐𝑦
− 𝑑𝑖

𝑐𝑦

𝑑𝑖
ℎ , (6) 

 

𝑔𝑗
𝑤̅̅ ̅̅ = log (

𝑔𝑗
𝑤

𝑑𝑗
𝑤), (7) 

 

𝑔𝑗
ℎ = 𝑙𝑜𝑔 (

𝑔𝑗
ℎ

𝑑𝑗
ℎ), (8) 

where, 𝑙𝑖
𝑚 is the relative offset of the m-parameters of the i-th 

detection frame, 𝑔𝑗
𝑚̅̅ ̅̅  is the offset between the j-th real labeled 

box and the prior box, 𝑔𝑚
𝑗

 and 𝑑𝑖
𝑚  correspond to the m-

parameters of the real labeled box and the prior box, 

respectively. 

 

 

4. EXPERIMENT AND RESULT ANALYSIS 

 

4.1 Experimental platform and parameters 

 

The experimental environment for training and testing is 

Ubuntu 20.04, NVIDIA GeForce RTX 2080 Ti, and Intel i9-

9900K. The transfer learning model is pre-trained on 

ImageNet. We first train the large-scale dataset with 120k 

iterations. Then we stop and train the small-scale dataset with 

160k iterations. Each image in the training set has a size of 

300×300, and the batch size is set to 16. We use Adam as the 

optimizer, with an initial learning rate of 0.001 and a 

parameter of 0.9. We also use the poly decay strategy to 

dynamically adjust the learning rate, as shown in Eq. (9). 

 

𝑙𝑟 = 𝑙𝑟0 × (1 −
𝑒𝑝𝑜𝑐ℎ

𝑁
)
𝛾

, (9) 

 

where, lr represents the current learning rate, 𝑙𝑟0 represents the 

initial learning rate, epoch represents the current iteration 

round, N represents the maximum number of iteration rounds, 

and γ is a hyperparameter that is set to 0.9. 

 

4.2 Experimental results and evaluation 

 

4.2.1 Detection results 

We train and store the model using both large-scale and 

small-scale datasets, employing phased detection during 

testing. Real-world images serve as inputs to the network. 

Initially, these images undergo large-scale object detection, 

followed by feeding the detection results into the small-scale 

detection network to produce final detection boxes. 

Subsequently, NMS is applied. We evaluate the recognition 

performance using power equipment images under diverse 

conditions, encompassing environmental factors like 

occlusion, shadows, and backlighting, as well as image 

acquisition variables such as shooting angle, scale, and 

rotation. 

 

 
 

Figure 6. Detection results of real image under different 

weather, light and natural environment conditions, and 

different angles and scales 
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The detection results are shown in Figure 6. All large-scale 

objects are detected completely, without false or missed 

detections. The small-scale target detection results are pretty 

good, though some objects are not detected due to their 

incomplete appearance and insufficient features caused by 

occlusion. Since the small-scale dataset retains the appearance 

details of small devices well and the small and large-scale 

models are trained independently, the detector does not suffer 

from cross-scale interference. Therefore, our network allows 

the small-scale dataset to be sufficiently learned, and 

effectively solves the problem of poor small-scale target 

detection performance in single-stage detection algorithms. 

 

4.2.2 Comparative experiments 

In the field of object detection, accuracy and recall are 

generally used as quantitative indicators to evaluate 

recognition accuracy, and fps is used to evaluate the model’s 

inference speed. For recognition accuracy, precision is defined 

as the proportion of correctly identified objects in all positive 

samples, which measures whether the algorithm can 

distinguish between positive and negative examples. Recall is 

defined as the proportion of true objects that can be correctly 

detected by the model in all true objects, which measures 

whether the algorithm can find all positive examples. In an 

actual detection task, it is difficult to balance precision and 

recall. So, we use the AP value, which combines the calculated 

precision and recall, to evaluate the algorithm’s 

comprehensive performance, as shown in Eq. (12): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%, (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%, (11) 

 

𝐴𝑃 = ∫𝑃𝑑𝑅,

1

0

 (12) 

 

where, TP is the number of correctly detected objects by the 

model, MP represents the number of incorrectly detected 

objects by the model, and FN is the number of correctly 

identified objects that the model missed. To evaluate the 

model’s recognition performance for each target class in 

multiple classes N, the mAP is used, as shown in Eq. (12): 
 

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑘

𝑁

𝑘=1

 (13) 

 

We perform a series of comprehensive experiments to 

assess the algorithm's performance, comparing it against other 

single-stage object detection algorithms, namely SSD [16], 

YOLOv3 [17], and RetinaNet [18], as depicted in Figures 7-9. 

Our findings reveal that the algorithm proposed in this paper 

exhibits superior average detection accuracy compared to its 

counterparts. Additionally, it demonstrates faster inference 

speed and boasts a smaller model parameter size, rendering it 

particularly well-suited for deployment on data collection 

devices with constrained storage capacity. 

To address these limitations and further enhance algorithm 

performance, several potential avenues for improvement can 

be explored. These may include refining the algorithm's 

feature extraction capabilities to better capture intricate details 

across different scales and orientations. Additionally, 

augmenting the training dataset with a diverse range of images 

that closely mirror real-world scenarios can aid in improving 

the algorithm's generalization ability. Furthermore, fine-

tuning model parameters and exploring novel optimization 

techniques could contribute to further enhancing both 

detection accuracy and inference speed. 
 

 
 

Figure 7. The detection accuracy of different algorithm 
 

 
 

Figure 8. The model size of different model 
 

 
 

Figure 9. The fps of different model 
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Overall, our experiments provide valuable insights into the 

strengths and limitations of the proposed algorithm, paving the 

way for future research directions aimed at advancing single-

stage object detection methodologies. 

 

4.2.3 Ablation experiment 

The proposed method offers significant enhancements over 

the SSD algorithm in areas such as the feature extraction 

module and feature fusion module, as confirmed by our 

ablation studies. Notably, substituting VGGNet with 

EfficientNet-b3 in our model markedly bolsters its feature 

extraction capabilities, which in turn substantially boosts 

inference performance. This is attributable to EfficientNet-

b3's ability to optimize the parameter size of each module 

through a search strategy, enhancing performance without 

significantly increasing the parameter count. Specifically, 

adopting EfficientNet-b3 as the backbone network results in a 

remarkable 321% acceleration in inference speed compared to 

using VGGNet. Moreover, the integration of our feature fusion 

module allows for a more effective utilization of bottom-level 

feature maps' equivariant information, significantly improving 

the model's precision in object localization. Our feature fusion 

approach not only outperforms other methods in terms of 

efficiency but also achieves this with minimal impact on 

inference speed. Before feature fusion, our algorithm models 

the environmental context, subtly increasing parameter count 

but significantly boosting recognition accuracy for dense and 

occluded objects. By leveraging the spatial relationship 

between targets and the overall environment, our method 

prioritizes critical global features, offering a distinct advantage 

in identifying stationary objects. Omitting the feature pyramid 

and global context modules notably hinders network 

convergence speed, underscoring our algorithm's superior 

adaptability and stronger fit compared to the SSD algorithm. 

This makes it highly applicable across diverse scenarios 

(Table 3). 

 

Table 3. Ablation experiment 

 
VGGNet EfficientNet-b3 Feature Fusion GCBlock Large-Scale Small-Scale Overall fps 

√    80.28% 73.23% 76.76% 16.41 

 √   86.57% 86.57% 84.96% 69.23 

 √ √  88.41% 88.41% 90.37% 53.05 

 √  √ 87.76% 87.26% 87.51% 68.85 

 √ √ √ 95.24% 89.02% 92.13% 52.15 

 

 

5. CONCLUSION 

 

In the quest for a digitized, automated, and intelligent 

approach to power grid planning, the transformation of the 

power grid into a digital counterpart is imperative. This 

transformation necessitates the creation of a "digital twin" for 

physical power equipment, facilitating precise classification 

and management. Our research introduces a pioneering deep 

learning-based method for the object detection of power 

equipment, leveraging staged training on dual-scale datasets to 

accommodate the diverse scales of power equipment. This 

methodology divides the dataset into large-scale and small-

scale categories, with the model trained on each dataset to 

address the challenges of scale disparity, complex data 

labeling, and the nuanced learning requirements of smaller 

objects. 

We meticulously constructed a dataset specific to power 

equipment identification, encapsulating a broad spectrum of 

scales, angles, and lighting conditions, comprising four 

distinct types of equipment: utility poles, transformers, 

insulators, and crossbars, all meticulously labeled. Through 

strategic sample selection and sophisticated data augmentation 

techniques, we have achieved an optimal balance between 

model generalization and applicability to specific scenarios. 

Our single-stage object detection model, tailored for data 

acquisition devices such as drones, sets a new standard in 

recognition accuracy and processing speed while requiring 

significantly fewer parameters than existing solutions. 

The algorithm presented in this paper not only achieves an 

exemplary mAP of 92.13% and a detection speed of 52.15 fps 

but also demonstrates robust performance across a variety of 

natural conditions, including occlusion, shadow, and diverse 

weather phenomena. It adeptly handles the complexities of 

multiple scales, angles, and rotations in image acquisition, 

showcasing remarkable adaptability to the dynamic and 

intricate environments encountered in practical inspection 

scenarios. Notably superior to other deep learning-based 

object detection algorithms, our proposed method meets the 

stringent requirements for low-latency, multi-angle, and multi-

target recognition and positioning of power equipment in the 

domain of intelligent grid line identification. 

This research not only marks a significant advancement in 

the field of power equipment recognition but also lays the 

groundwork for the digitization and intelligent management of 

power grids. By striking a balance between accuracy, 

efficiency, and model compactness, our algorithm paves the 

way for the seamless integration of digital simulations and data 

management tasks. This contributes substantially to the 

realization of an intelligent power grid planning system, 

emphasizing our method's potential to revolutionize energy 

management practices and underscore its vital role in 

promoting sustainable and efficient power grid operations. 

Through this work, we envision fostering a future where 

digital twin technologies are at the forefront of innovative 

power grid planning and management, driving progress 

towards a more sustainable, efficient, and intelligent energy 

infrastructure. 
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