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COVID-19, a contagious respiratory virus with symptoms like a dry cough, prompted 

intensive diagnostic efforts. Current standards fall short in controlling transmission, driving 

researchers to explore automated identification methods. In this work, using artificial 

intelligence and audio signal processing techniques, an automated system is developed. 

After extracting cough segments from audio recordings through the eXtreme Gradient Boost 

algorithm, the system attempts to detect COVID-19 employing a deep learning-based 

approach known as Long Short-Term Memory. In particular, the XGBoost model identifies 

the cough segment, and the LSTM-based model conduct binary classification on it to 

establish whether a person is positive or negative for COVID-19. To assess the proposed 

detection scheme, several experiments were conducted with the use of two publicly available 

cough sound datasets, namely COUGHVID and VIRUFY, which were collected from 

coronavirus-infected and non-infected persons through a large-scale crowdsourced 

campaign. The suggested system results were validated through comparisons with prior 

studies, demonstrating its strong performance even in noisy environments. Additionally, the 

obtained results indicate that the proposed method for detecting COVID-19 performs 

admirably under ideal conditions, achieving approximately 97% accuracy on the VIRUFY 

dataset and an impressive classification rate of nearly 88% on the COUGHVID dataset. 
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1. INTRODUCTION

The SARS-CoV-2 (COVID-19) virus, identified in 

December 2019, has affected hundreds of millions of 

individuals worldwide, resulting in a global-scale mortality. 

According to medical references [1-3], COVID-19 infection is 

characterized by a variety of symptoms, including fever, 

fatigue, and a persistent cough [4, 5]. Understanding these 

symptoms and detecting them early is crucial for accurate 

diagnosis. Generally, the COVID-19-associated cough is 

typically dry, without mucus, and can result in intense, 

recurring coughing episodes that may endure for an extended 

duration. Hospitals and labs use various testing methods, such 

as PCR, Chest CT imaging, and antigen tests, which vary in 

effectiveness, cost, and speed [6, 7]. Utilizing artificial 

intelligence (AI) for COVID-19 detection through cough 

analysis is a promising alternative [8]. AI techniques, 

primarily machine and deep learning-based, are user-friendly, 

non-invasive, offer rapid detection, and ensuring swift results. 

In this regard, we will introduce several studies from the 

literature that focus on the automatic detection of COVID-19 

based on cough sounds. 

A review article [9] discussed recent research on COVID-

19 diagnosis using AI and respiratory sound analysis. The 

researchers [10] outlined AI-driven efforts for diagnosing 

COVID-19, offering a valuable automated system that utilizes 

non-invasive biological signals from both speech and non-

speech audio. In their study, using cough signals, Pahar et al. 

[11] employed two datasets, Coswara and Sarcos, derived

from smartphone voice recordings. Employing seven machine

learning classifiers with various features, their top-performing

classifier, ResNet50, achieved an impressive area under the

ROC Curve (AUC) of 0.98, while the LSTM-based classifier

reached an AUC of 0.94. A study by Imran et al. [12]

employed a deep transfer learning-based multi-class classifier

to diagnose COVID-19 based on cough, achieving an accuracy

of 92.64%. MFCC features were extracted from cough

recordings and processed through a Convolutional Neural

Network (CNN) architecture featuring three pre-trained

ResNet50 models and a parallel Poisson biomarker [13]. The

results exhibited a remarkable COVID-19 sensitivity of 98.5%

with a specificity of 94.2% and an AUC of 0.97. For

asymptomatic individuals, the sensitivity reached 100% with

a specificity of 83.2%.

Ponomarchuk et al. [14] claim to introduce a new deep 

learning and signal processing-based approach to detect 

COVID-19, as well as providing denoising methods, cough 

detection and classification. A classification was made 

between a dry cough and wet cough by applying some modern 

and traditional machine learning methods to the COUGHVID 

database, where it has been shown that the decision tree 

models are superior to the rest of the models in terms of overall 

performance [15]. Based on logistic regression and support 

vector machines for acoustic data, and decision tree models for 

symptoms data, the researchers [16] proposed a multi-modal 

diagnostic for COVID-19. Using Coswara dataset, an AUC of 
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0.92 has been reached. 

To the best of our knowledge, all the examined relevant 

COVID-19 diagnosis methods utilizing cough signals are 

vulnerable to environmental noise and undesirable signals, 

which could compromise the efficiency of AI-driven COVID-

19 detection systems. To address this noise issue, this study 

suggests an automated system referred to as XGBoost-LSTM, 

which relies on XGBoost and LSTM algorithms for COVID-

19 detection using cough audio signals. Specifically, the main 

contributions of this work are: 

(1) Generally, datasets of cough sounds are often 

contaminated by environmental noise and undesirable parts 

(laughter, speech, music, and loud instruments), which may 

affect drastically AI system training. Thus, an XGBoost-based 

signal preprocessing system is used to accurately detect cough 

segments in recordings. Then, the scheme evaluates cough 

segment quality by estimating the signal-to-noise ratio (SNR) 

of the audio signal, and effectively preserves records that 

actually contain cough sounds. 

(2) COVID-19 affects males and females differently [17-

19], leading to a slight distinction in their cough signals. As a 

result, two separate classification models have been developed 

for each gender. 

(3) To classify the detected cough segments extracted from 

the acquired audio recordings into COVID-19+ and COVID-

19-, the LSTM neural network, capable of modeling time 

series variations, is employed along with MFCC features and 

log energy. 

The remainder of the paper is laid out as follows. A general 

idea of the proposed framework is depicted in section 2. In 

particular, Cough detection and Cough Classification are 

described. In Section 3, the experimental results with a 

detailed discussion are reported. The conclusion is described 

in Section 4. 

 

 

2. PROPOSED METHOD 

 

 
 

Figure 1. XGBoost-LSTM diagnostic system flowchart 

In this section, the two main processing stages of the 

proposed system are described, as shown in Figure 1. The first 

stage detects cough segments in audio recordings and 

estimates their quality by computing the SNR. Then, the 

second part of the system performs a classification of 

previously detected cough segments to determine whether or 

not they come from a person with COVID-19. 

 

2.1 Cough detection phase 

 

Cough detection is an important step in any automatic 

COVID-19 detection systems. Commonly, a typical cough 

signal usually has three phases related to the person state of 

health: an early loud explosive first stage, an intermediate 

stage, and in most cases a later audible phase. Moreover, since 

the cough classification is highly dependent on identified 

cough segments and their assessed quality, the detection phase 

should take into account the cough signal temporal variations. 

Figure 2 depicts in detail the different processing steps to 

detect the cough portions in an audio file. In addition, the 

signal quality is measured using the signal to noise ratio (SNR). 

 

 
 

Figure 2. Cough detection system flowchart 
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2.1.1 Cough segmentation phase 

Using the signal power and a hysteresis comparator, cough 

segmentation is accomplished. The algorithm looks for 

regions of the signal with rapid power spikes, which are typical 

of cough sounds. It employs two thresholds: the high threshold 

𝑇𝐻𝐻  for detecting the beginning of a cough and the low 

threshold 𝑇𝐻𝐿  for detecting the end of a cough segment. The 

two thresholds are defined by: 

 
𝑇𝐻𝐻 = 𝑅𝑀𝑆𝑠 ∙ 𝑀𝐻

𝑇𝐻𝐿 = 𝑅𝑀𝑆𝑠 ∙ 𝑀𝐿
 (1) 

 

where, the 𝑅𝑀𝑆𝑠 represents the root mean square of the audio 

signal. The adopted values of MH and ML are chosen 

empirically as in the study of Orlandic et al. [20] and are equal 

to 2 and 0.2 respectively which allow efficient segmentation 

of the employed dataset. 

The onset cough instant is detected when the signal power 

is above the high threshold, while its end is determined by the 

signal power falling below the lower threshold for a 

continuous duration of 0.01 second, ensuring the accurate 

detection of the end of the cough signal. Note that cough 

sounds lasting less than 0.2 second are discarded. However, to 

guarantee that the detected cough is not cut short, the 

algorithm considers a duration of 0.2 second before and after 

the signal as a part of the cough. Figure 3 depicts the process 

of detecting the onset and end times of the cough segment. 

 

 
(a) Cough signal 

 

 
(b) Cough power signal 

 

Figure 3. Detection of the onset and end times of the cough 

segment 

 

2.1.2 Pre-processing and feature extraction phase 

This phase includes three distinct stages: pre-processing, 

SNR estimation, and feature extraction. In this section, we will 

provide a detailed description of each step. 

 

Pre-processing stage 

This phase aims to minimize variations due to different 

recording conditions. Each recording is first normalized to the 

[−1, 1] range, and then filtered by a 4th order low-pass 

Butterworth filter, with a cut-off frequency of 6kHz. 

Subsequently, all recordings are downsampled to a 12kHz 

frequency since the relevant cough-related information is 

practically present below 4kHz [20]. 

 

SNR estimation stage 

Crowdsourced cough recordings are highly affected by 

background environmental noises such as: laughter, speech, 

music, phone ringtones, and other types of noise, affecting 

considerably the performance of the classifier, hence an 

estimation of the noise is essential. Hence, the SNR is 

estimated by calculating the ratio of the power of the cough 

portions to the rest of the signal samples power, suspected to 

be background noise. Note that a recording may contain one 

or more portions of cough, so the SNR can be expressed as: 

 

𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔10

(

 
√∑ (

1
𝑁𝑐

∑ 𝑥𝑐(𝑘)2𝑁𝑐
𝑘=1 )𝐶

𝑐=1

√
1
𝑁𝑛

∑ 𝑥𝑛(𝑘)2𝑁𝑛
𝑘=1 )

  (2) 

 

where, 
𝑥𝑐(𝑘): Cough portion samples 

c: Cough portion index 

𝐶: Number of cough portions 

𝑁𝑐: Number of samples within a cough portion 

𝑥𝑛(𝑘): Noise samples 

𝑁𝑛: Number of noise samples 

 

Feature extraction stage 

The audio features used are mainly derived from different 

studies related to the analysis, segmentation, and classification 

of cough signals. In this work, 68 audio features, reported in 

Table 1, are extracted for each cough segment. The temporal 

features used in the study of Chatrzarrin et al. [21] represent 

the 19 peaks detected in the energy envelope (EEPD) of the 

cough signal, with the aim of differentiating the sounds of dry 

cough from wet cough, because in an early stage COVID-19 

can cause a dry cough in most cases. The spectral features 

outlined in in the study of Monge-Álvarez et al. [22] depict the 

power spectral density within 8 specific energy bands, which 

have been chosen to ensure robust cough segmentation in 

various noisy environments. MFCC features are widely used 

with deep learning algorithms for cough detection and 

classification [23-26], the rest of the features are mainly used 

in audio signal analysis and in different natural language 

processing domains. 

 

2.1.3 XGBoost cough detection model 

Based on the audio features mentioned earlier, the cough 

detection is performed using the XGBoost model and 

COUGHVID dataset [26], which contains audio recordings of 

coughs, and was developed for COVID-19-related research. 

XGBoost provides the probability that a particular recording 

contains cough noises: if the probability is greater than 0.8, the 

recording is assumed to have at least one cough. To train this 

model, a set of 215 audio files from dataset are, first, randomly 

selected. Then, each audio file is classified as a cough sound 

if it contains at least one cough, otherwise it is considered as a 

non-cough sound. This procedure yielded a roughly balanced 

sample of 121 cough sounds and 94 non-cough sounds such as 

speaking, laughing, and silence. The resulting model is 95.5% 

accurate, indicating that it successfully removes the vast 

majority of data that do not contain cough while retaining the 

records that do contain cough. 
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Table 1. Cough detection features 

 
Features Reference Count Computation Parameters 

MFCC [27] 26 Mean and St. dev of 13 MFCCs over time 

EEPD [21] 19 BPF intervals in 50-1000 Hz. 

Power Spectral Density [22] 8 
Frequency bands (Hz): 0-200, 300-425, 500-650, 950-1150, 1400-1800, 2300-

2400, 2850-2950, 3800-3900 

RMS Power [27] 1 None 

Zero Crossing Rate [27] 1 None 

Crest Factor [27] 1 None 

Recording Length  1 None 

Dominant Frequency [27] 1 None 

Spectral Centroid [27, 28] 1 None 

Spectral Rolloff [27, 28] 1 None 

Spectral Spread [27, 28] 1 None 

Spectral Skewness [27, 28] 1 None 

Spectral Kurtosis [27, 28] 1 None 

Spectral Bandwidth [28] 1 None 

Spectral Flatness [27, 28] 1 None 

Spectral Std Dev [27, 28] 1 None 

Spectral Slope [27, 28] 1 None 

Spectral Decrease [27, 28] 1 None 

 

2.2 Cough classification phase 

 

2.2.1 Feature extraction 

A crucial stage in any classification system is feature 

extraction. This study utilizes MFCC, the predominant feature 

for COVID-19 identification through cough sound (Figure 4 

[29]). The cough segment is divided into 30 ms frames with a 

13 ms overlap, and these frames are smoothed using a 

Hamming function. Subsequently, a Discrete Fourier 

Transform (DFT) computes the magnitude spectrum, which is 

further processed through Mel-scale triangular filters designed 

for auditory-guided analysis. These filters also include pre-

emphasis to equalize high-frequency components. The 

resulting log energy from this process is then subjected to a 

Discrete Cosine Transform (DCT) for decorrelation. Each 

frame yields 13 MFCC coefficients along with log energy. 

 

 
 

Figure 4. Acoustic features used for COVID-19 detection 

 

2.2.2 Description of the LSTM classifier 

In this work, LSTM networks, well suited for classification 

and time series prediction, are used to distinguish between 

COVID-19 cough and non-COVID-19 cough. It is a special 

type of recurrent neural network (RNN) known to have the 

ability to learn long-term sequences [30]. As previously 

mentioned, coughing generally comprises three distinct stages, 

which LSTM perceives as relatively stable time series with 

three states. The stability of these states depends on the 

specific respiratory tract condition causing irritation. The 

subsequent section will provide a detailed description of the 

LSTM Layer Architecture. 

The flow of a time series 𝑋 with 𝐶 features (channels) of 

length S through an LSTM layer is depicted in Figure 5. In this 

diagram, ℎ𝑡  and 𝐶𝑡 denote the output (also known as the 

hidden state) and the cell state at time step t, respectively. In 

our work, C and S represent the dimensions of feature matrices 

extracted using MFCC and log energy. 

 

 
 

Figure 5. LSTM Layer Architecture 

 

The first LSTM block computes the first output and the 

updated cell state using the network initial state and the first-

time step of the sequence. Then, the block computes the output 

and the updated cell state 𝐶𝑡 at time step 𝑡 using previous state 

of the network (𝐶𝑡−1 , ℎ𝑡−1 ) and the next time step of the 

sequence. 

The LSTM layer output for this time step is stored in the 

hidden state at time step t, and the preceding time steps 

information is also saved in the cell state. At each time step, 

the layer modifies the cell state by adding or removing 

information, employing gates to control these updates. 

Figure 5 illustrates the data flow at each the time step 𝑡. The 

block diagram shows how gates for a cell and hidden states are 

forgotten, updated, and ejected. In addition, Figure 5 illustrates 

the LSTM cell block diagram comprising four components 

responsible for controlling the layer cell state and hidden state: 

the input gate, the forget gate, the cell candidate, and the output 

gate, as defined by the following equations: 

− Input gate (i): Denotes the update level of the cell state 

 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖x𝑡 + R𝑖h𝑡−1 + 𝑏𝑖) (3) 
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− Forget gate (f): Represents the cell state reset control level 

(forget) 

 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓x𝑡 + R𝑓h𝑡−1 + 𝑏𝑓) (4) 

 

− Cell candidate (g): Adds information to cell state 

 

𝑔𝑡 = 𝜎𝑐(𝑊𝑔x𝑡 + R𝑔h𝑡−1 + 𝑏𝑔) (5) 

 

− Output gate (o):  Expresses the control level of the cell 

state added to the hidden state 

 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜x𝑡 + R𝑜h𝑡−1 + 𝑏𝑜) (6) 

 

𝑊,𝑅, and 𝑏, the learnable weights of the LSTM layer, are 

concatenations of the input weights, the recurrent weights, and 

bias, respectively: 

 

𝑊 =

[
 
 
 
𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]
 
 
 
, 𝑅 =

[
 
 
 
𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]
 
 
 

, 𝑏 =

[
 
 
 
𝑏𝑖

𝑏𝑓

𝑏𝑔

𝑏𝑜]
 
 
 

 (7) 

 

The cell state and the hidden state at the time step t are given 

by: 

 

𝐜𝑡 = 𝑓𝑡 ⊙ 𝐜𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 (8) 

 

h𝑡 = 𝑜𝑡 ⊙ 𝜎𝑐(𝐜𝑡) (9) 

 

where, ⊙  denotes the Hadamard product (element-wise 

multiplication of vectors). Also, 𝜎𝑐 and 𝜎𝑔 represent the state 

activation function and the gate activation function 

respectively. In this work, the hyperbolic tangent function 

(tanh) is used to compute the state activation function, whereas 

the sigmoid function given by 𝜎(𝑥) = (1 + 𝑒−𝑥)−1  is 

employed to calculate the gate activation function. 

 

 

3. EXPERIMENTAL RESULTS 

 

3.1 Datasets description 

 

3.1.1 COUGHVID dataset 

Over 25,000 crowdsourced cough recordings are available 

in the COUGHVID collection, covering a wide range of 

participant ages, genders, geographic areas, and COVID-19 

statuses. Between April 1st, 2020, and December 1st, 2020, all 

of the recordings were collected using a Web application 

hosted on a private server at the École Polytechnique Fédérale 

de Lausanne (EPFL) in Switzerland. There are roughly 35 

hours of audio samples in the COUGHVID database 

corresponding to almost 37,000 segmented coughs with a 

sampling frequency of 48 kHz. More than 2,800 recordings 

were labeled by four qualified physicians in order to diagnose 

medical problems from the cough. All publicly available data 

records, as well as metadata, are stored in the Zenodo 

repository (https://zenodo.org/record/4498364#.YgBQj-

rMJPY) [20], where we can distinguish three types of 

variables in metadata: (1) context information (timestamp and 

likelihood that the recording actually contains cough sounds), 

(2) user-reported information, and (3) labels provided by 

expert medical annotators about the cough recordings clinical 

assessment. 

 

3.1.2 VIRUFY dataset 

VIRUFY is an open source database 

(https://github.com/virufy/virufy-data) containing cough 

sounds for the two categories (COVID-19 positive and 

negative). This database was collected through the VIRUFY 

mobile data collection application as a resource of 

crowdsourcing data by smartphones public users. With the 

help of VIRUFY clinical researchers and medical advisors 

[31], the VIRUFY database was attached to information 

(symptoms, medical history, gender, and age) for all patients 

along with PCR test results and whether the patient was a 

smoker or not. VIRUFY contains 16 subjects (10 males and 6 

women) containing more than 120 cough sound samples 

between positive and negative COVID-19 sounds sampled at 

48kHz. 

 

3.2 Dataset cleaning 

 

The utilization of crowdsourcing has paved the way for 

unconventional approaches in contrast to traditional data 

collection methods. This, in turn, has positioned 

crowdsourcing as a catalyst for research, given its capacity to 

facilitate cost-effective and expedited data access within the 

research community. Nonetheless, integrating crowdsourced 

data into artificial intelligence applications continues to 

encounter a range of challenges, with data quality, as 

highlighted in the study of Lease [32], standing out as a key 

concern. Crowdsourced data often includes samples unrelated 

to the content subject matter. Consequently, this study 

incorporates data cleaning processes to address this issue by 

using the metadata in order to choose the most reliable data in 

building the proposed automated system. 

To clean the data from the COUGHVID database, we 

selected records that have a probability greater than 0.8 by the 

XGBoost cough detection model described earlier which are 

assumed to contain cough. Then, we selected the subjects 

whose expert opinion agrees with the self-report of people 

with COVID-19 or healthy people only, while excluding 

subjects with other pathologies, since our main objective is the 

detection of people with COVID-19. After cleaning, the 

retained recording samples are reported in Table 2. 

Concerning the VIRUFY database, depicted in Table 3, it 

does not require any cleaning due to its high-quality recording. 

 

Table 2. Cough samples retained after cleaning the 

COUGHVID dataset 

 
Gender Healthy Covid-19 Total 

Male 236 241 477 

Female 106 160 266 

Total 342 401 743 

 

Table 3. Cough samples retained after cleaning the VIRUFY 

dataset 

 
Gender Healthy Covid-19 Total 

Male 40 47 87 

Female 26 12 38 

Total 66 59 125 

 

3.3 Results and discussion 

 

The LSTM model performs the classification of cough 
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audio segments transformed into MFCC supported by log 

energy features at its input. Using the Scikit-Learn random 

search algorithm with COUGHVID and VIRUFY datasets, the 

most effective obtained model configuration, adopted in this 

work, is presented in Table 4. It includes a sequence input 

layer for 14-dimensional sequences, a BiLSTM layer with 100 

hidden units for capturing temporal dependencies, two fully 

connected layers for information transformation, a sigmoid 

activation function, and a classification output layer utilizing 

binary cross-entropy. 

During experiments on the COUGHVID and VIRUFY 

datasets, two LSTM models, one for each sex, were utilized, 

since physiological differences in the phonatory apparatus has 

an impact on the two sexes in terms of infection and symptom 

variance, and therefore may affect the cough classification 

process [17-19]. Additionally, these two databases provide 

descriptive information on the sexual status of audio 

recordings. 

In order to evaluate the performance of the proposed system, 

a set of metrics, namely specificity, recall (sensitivity), 

precision, accuracy and F1 score, were used: 

- Specificity is a measure of how many healthy people can be 

correctly identified as healthy: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (10) 

 

- Recall (sensitivity) indicates the proportion of genuinely 

unhealthy individuals correctly predicted: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (11) 

 

- Precision is, intuitively, the classifier capacity to avoid 

identifying a healthy sample as a positive covid-19 sample: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (12) 

 

- Accuracy is the proportion of correctly identified individuals 

to the total number of samples: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

- F1-score is defined as an average of the model precision and 

recall: 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 )

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 )
 (14) 

 

where, 

- TP (True positive): The classifier detected covid-19 when 

covid-19 cough was present. 

- TN (True negative): The classifier identified healthy cough 

when the healthy cough was present. 

- FP (False positive): The classifier identified covid-19 in the 

presence of a healthy cough. 

- FN (False negative): The classifier detected the healthy 

cough when covid-19 was present. 

 

Tables 5-7 display the simulation results obtained for the 

XGBoost-LSTM diagnostic system using the COUGHVID 

and VIRUFY datasets with different LSTM minibatch sizes. 

These results were obtained through a 4-fold stratified cross-

validation (CV) approach, where the data was divided into 

four subsets. Three folds were used for training, constituting 

75% of the data, while one fold was reserved for testing, 

representing the remaining 25% of the data. This approach 

improved the reliability of model evaluation by systematically 

testing it on various data segments, thereby enhancing its 

overall performance. 

Table 5 and Figure 6 present the results for females in the 

COUGHVID dataset, where it can be noted that the best results 

were obtained for SNR ≥15dB with F1-score=92% and 

sensitivity=94.73%. It is noteworthy that for the case of better 

recording quality with SNR≥20dB, a lower F1-score=90% 

was achieved which may be due to the low number of training 

cough samples, that may result in underfitting of the model. 

 

Table 4. The LSTM configuration 

 

Hyperparameter Description 

Input dimension 14 

Number of classes 2 

Number of layers 5 

Minibatch size ~ 

Number of hidden units 100 

Initial learn rate 1e-3 

Optimizer Adam 

Number of epochs 100 

 

 

Table 5. Female classification results for COUGHVID dataset dataset (LSTM Minibach=30) 

 

SNR Level 

(dB) 

Number of Coughs Used 

for Training 

Number of Coughs Used 

for Testing 
Recall 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1-score 

(%) 
Covid-19 Healthy Covid-19 Healthy 

All Samples 112 75 48 31 88.57 61.36 73.41 64.00 74.00 

SNR≥10 93 61 39 26 78.57 73.91 76.92 84.00 81.00 

SNR≥15 47 42 20 17 94.73 88.88 91.90 90.00 92.00 

SNR≥20 25 30 10 12 83.33 100.0 90.90 100.0 90.00 

 

Table 6. Male classification results for COUGHVID dataset (LSTM Minibach=25) 

 

SNR Level 

(dB) 

Number of Coughs Used for 

Training 

Number of Coughs for 

Used Testing 
Recall 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1-score 

(%) 
Covid-19 Healthy Covid-19 Healthy 

All Samples 169 166 72 70 62.50 64.51 63.38 69.00 65.00 

SNR≥10 140 138 46 45 97.05 77.19 84.61 71.70 82.00 

SNR≥15 79 105 26 35 70.83 75.67 73.77 65.00 68.00 

SNR≥20 62 83 20 27 88.88 68.42 72.34 40.00 55.00 
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Table 7. Classification results for VIRUFY dataset (LSTM Minibach=27) 

 

Sex Type 

Number of Coughs Used 

for Training 

Number of Coughs Used 

for Testing Recall (%) 
Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1-score 

(%) 
Covid-19 Healthy Covid-19 Healthy 

Female 9 20 3 6 100.0 100.0 100.0 100.0 100.0 

Male 36 30 11 10 90.90 100.0 95.23 100.0 95.00 

 

 
 

Figure 6. Female classification results for COUGHVID 

dataset 

 

 
 

Figure 7. Male classification results for COUGHVID dataset 

 

Table 6 and Figure 7 report the results for males in the 

COUGHVID dataset where the best results were achieved for 

SNR ≥10dB with F1-score=82% and a sensitivity of about 

97%. For the cases of SNR ≥15dB where there is not enough 

number of samples to train the model properly, the 

classification system performs poorly with relatively low 

values of sensitivity and F1-score. 

Table 7 and Figure 8 show the results for the VIRUFY 

dataset for both females and males. Because the recordings in 

this dataset are of good quality, the SNR level was not taken 

into account. Female samples reached a percentage of 100% 

for all metrics, whereas male samples achieved a sensitivity 

(recall) of 90.9% and an F1-score of 95%. It is important to 

note that sensitivity and F1-score were the primary metrics 

used to assess the results because of their significance in 

evaluating the classifier ability to detect pathological samples. 

Meanwhile, specificity, accuracy, and precision play a critical 

role in evaluating the classifier performance in identifying 

healthy samples and determining the overall classification 

accuracy. 

 

 
 

Figure 8. Classification results for VIRUFY dataset 

 

Using the VIRUFY dataset, the suggested scheme shows 

high classification performance for both sexes, with a 

precision and specificity of 100%, and an average F1-score 

and accuracy of nearly 98%. It is noteworthy that all the data 

of this dataset are labeled with COVID-19 PCR test status and 

are quite accurate due to the fact that they were taken at a 

hospital under the observation of physicians using standard 

operating procedures. For the COUGHVID dataset, which is 

relatively less accurate due to self-reported information 

provided by the user and the lack of agreement among the 

experts about the patient health status, the suggested diagnosis 

system exhibits thoroughly good classification performance in 

terms of the SNR, and, specifically, a quite high sensitivity 

(recall) as reported in Tables 5 and 6. 

 

Table 8. A comparative table of our classification results with relevant results in the literature 

 

Dataset Reference Model Features Sex 
Recall  

(%) 

Specificity 

(%) 

Precision 

(%) 

Accuracy 

(%) 

F1-score 

(%) 

COUGHVID 

[33] LSTM MFCC - 60.00 62.00 - 62.00 - 

[34] 

Multi-Branch 

Network 

Architecture 

MFCC+ 

clinical feature 

+ 

Mel-spectrograms 

F 81.12 98.30 - - - 

M 74.40 98.70 - - - 

[35] LSTM Mel-spectrograms - 72.88 82.17 78.76  77.75 75.71 

Our 

approach 

XGBoost-

LSTM 

13MFCC+log 

energy 

F 94.73 100.0 90.00 91.89 92.00 

M 97.05 77.19 71.7 84.61 82.00 

VIRUFY 

[36] CNN Chromagram - - - 87.60 92.90 93.40 

[36] DNN Chromagram - - - 99.00  91.70 91.00 

[37] DNN 
Frequency- domain 

feature vector 
- - - 100.0 97.50 97.40 

Our 

approach 

XGBoost-

LSTM 

13MFCC+log 

energy 

F 100.0 100.0 100.0 100.0 100.0 

M 90.90 100.0 100.0 95.23 95.00 
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In order to evaluate the efficiency of the proposed COVID-

19 detection technique, Table 8 gives a comparison of the 

classification achieved results with those reported in the 

literature based on the same two datasets. It can be considered 

that the proposed model outperforms the literature results for 

both datasets. First, from Table 8 it can be noticed that the 

suggested model performs better for females than for males, 

achieving an F1-score of 92% for COUGHVID and 100% for 

VIRUFY datasets. This difference may be attributed to the fact 

that the female model was trained on an imbalanced dataset 

with more COVID-19 cases than healthy cases, as shown in 

Table 5, while the male model was trained on a balanced 

dataset, as reported in Table 6. 

For both datasets the suggested scheme exhibits relatively 

better sensitivity with 94.73% for females and 97.05% for 

males with COUGHVID dataset, and 100% for females and 

90.9% for males with VIRUFY dataset. Furthermore, it also 

showcases superior accuracy, with results of 91.89% for 

females and 84.61% for males in the COUGHVID dataset, and 

100% for females and 95.23% for males in the VIRUFY 

dataset. Additionally, the precision of our proposed scheme is 

noteworthy, attaining 90.0% for females and 71.7% for males 

in the COUGHVID dataset, and a 100% for both females and 

males in the VIRUFY dataset. 
 

 

4. CONCLUSIONS 
 

The present paper addresses the development of an 

automated system for COVID-19 detection based on cough 

sounds, aiming for swift and efficient identification of 

coronavirus patients. The proposed approach involves two 

steps: initially, an XGBoost model identifies the cough 

segment within an audio recording and assesses the signal-to-

noise ratio (SNR) to evaluate background noise. Subsequently, 

LSTM-based models execute binary classification on the 

identified cough segments to determine COVID-19 positivity 

or negativity. 

Crowdsourced cough sound data collected through mobile 

apps and websites often suffers from the interference of 

ambient noise, potentially compromising the effectiveness of 

automated COVID-19 detection systems based on cough 

sounds. In this study, we conducted experiments using two 

datasets: the COUGHVID dataset, contaminated by 

environmental noises, and the VIRUFY dataset, recorded in 

controlled acoustic conditions. According to the obtained 

results, the suggested XGBoost-LSTM based scheme for 

COVID-19 detection exhibited strong performance, achieving 

an average classification accuracy of approximately 88% for 

the noise-contaminated COUGHVID dataset and nearly 97% 

for the VIRUFY dataset. Furthermore, in comparison to other 

pertinent studies, our proposed method outperforms state-of-

the-art algorithms, achieving an F1-score of 100% for females 

and 95% for males, along with an accuracy of 100% for 

females and roughly 95% for males. However, in noisy 

environments, while the suggested method still performs well 

with an F1-score of 92% for females and 82% for males, it 

shows a slight decrease in precision and specificity for males. 
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