
SNResNet: A New Architecture Based on SqNxt Blocks and Rish Activation for Efficient

Face Recognition

Mostafa Diba , Hossein Khosravi*

Electronics - Image Processing, Faculty of Electrical Engineering, Shahrood University of Technology, Daneshgah Blvd.,

Shahrood 3619995161, Iran

Corresponding Author Email: hosseinkhosravi@shahroodut.ac.ir

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410235 ABSTRACT

Received: 31 July 2023

Revised: 20 September 2023

Accepted: 16 December 2023

Available online: 30 April 2024

In this paper, we present a novel face recognition architecture based on the Inception-ResNet

framework, called SNResNet. The Inception-ResNet architecture, is effective in computer

vision applications but exhibits limitations such as computational complexity, high memory

consumption, and data dependency. It uses the ReLU activation function and softmax loss

function which are not best-suited for face recognition. The proposed SNResNet uses triplet

loss as the loss function to be able to train the model on large datasets. The advantages of

the triplet loss over the softmax are handling one-shot learning, robustness to class

imbalance and fine-grained discrimination. The ReLU activation function rejects all

negative values that in some applications reduce the accuracy of the model. To overcome

this problem, we introduced a new activation function called Rish which has better

performance. In addition, we optimized the Inception-ResNet-B block using the SqNxt

block to control the model's computational costs. The CASIA-WebFace dataset is used to

train the models. This dataset has some challenges; e.g., some photos have more than one

face, and all faces have a background. Preprocessing conditions are defined to identify and

align the correct face. SNResNet achieves 94.63% accuracy on CASIA-WebFace.

Performance evaluation on the LFW benchmark database yields an impressive accuracy of

99.68%, surpassing the standard model's accuracy of 98.85%. Further, we reduced the

FLOPS of the Inception-ResNet model by 15.61% which indicates a lower computational

cost and a faster model for face recognition.

Keywords:

deep learning, face recognition, Inception-

ResNet, activation function, triplet loss,

SqNxt block, ArcFace

1. INTRODUCTION

Face recognition is a biometric authentication method with

many applications in the fields of public security, military, and

attendance systems [1]. It can be implemented anywhere

because it does not require complex hardware to capture data;

we can install a camera and use facial recognition systems.

However, other biometric authentication methods, such as iris

and fingerprint detection, require special sensors that cannot

be used everywhere. Face recognition holds a distinctive

position among biometric authentication methods due to

several key advantages. Unlike invasive methods such as iris

or fingerprint recognition, face recognition is non-invasive and

user-friendly. Its non-contact nature, which does not require

physical interaction, contributes to user convenience and

acceptance. This advantage aligns with human familiarity in

recognizing faces, making it an intuitively accepted method.

In addition, facial recognition is more affordable compared to

other methods such as iris recognition that require special

hardware. Its scalability allows for simultaneous recognition

of multiple individuals, suited for crowd applications like

surveillance. The versatility of integrating facial recognition

into existing devices with cameras extends its usability. Face

recognition stands out for its resistance to forgery, as

deceiving robust face recognition systems is inherently

challenging. This is especially true when advanced techniques

take into account multiple facial features, ensuring higher

security. Additionally, the adaptability of facial recognition to

natural aging and appearance changes, such as hairstyles or

facial hair, makes it a practical choice.

Thus, the combination of accessibility, versatility, security

and compatibility of facial recognition makes it a compelling

option for biometric authentication in various applications. For

this reason, the development of facial recognition systems has

always been one of the areas of interest among researchers.

Following the introduction of deep neural networks, large-

scale facial recognition systems have been developed. Face

recognition on a large scale has several challenges, including

image distortion, racial changes, facial poses, expression,

gender, and age changes. To overcome these challenges, it was

necessary to design models that could extract appropriate

features from data sets with low intra-class and high inter-class

correlation to increase the generalization power of the models.

Fortunately, in recent years, with the introduction of various

deep architectures, many problems of face recognition systems

have been solved [2-4]. Tran et al. [2] proposed an attendance

kit, which integrates real-time Ultra-High Frequency (UHF)

RFID technology with face recognition within a suite of

Traitement du Signal
Vol. 41, No. 2, April, 2024, pp. 949-959

Journal homepage: http://iieta.org/journals/ts

949

https://orcid.org/0000-0003-4198-6112
https://orcid.org/0000-0003-4798-0109
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410235&domain=pdf

mobile applications tailored for institutions, lecturers, parents,

and students. This tool is powered by the FaceNet model [5],

renowned for its innovations, including the introduction of the

triplet loss function, utilization of the Siamese Network

Architecture, and implementation of triplet Selection

Strategies. FaceNet is designed to withstand various facial

changes, such as alterations in pose, lighting conditions, and

facial expressions. This robustness is achieved through a

combination of data augmentation techniques employed

during training and the application of the aforementioned

innovations.

In a survey paper, Wang and Deng [4] provide a

comprehensive review of various approaches to large-scale

face recognition. Domain adaptation methods play a crucial

role in transferring knowledge from controlled environments

to real-world settings. Transfer learning, on the other hand,

harnesses pre-trained models to boost recognition

performance. Ensemble learning combines predictions from

multiple models, elevating accuracy and resilience.

Techniques like GANs are employed for synthetic face

generation, augmenting training data and fortifying resistance

to age-related changes.

Researchers usually propose methods to increase the depth

and width of models in order to solve complex problems.

Increasing the depth means increasing the number of network

layers, and increasing the width means increasing the number

of blocks and filters in each layer. In a deep learning model,

the higher the number of layers, the more abstract features the

model can extract. The reason is the use of a non-linear

activation function in each layer. Suppose we remove the

activation function from a deep architecture with any number

of layers. In that case, we will finally have a linear classifier,

so the essential element in a deep learning model is its

activation function. The activation function plays a

fundamental role in extracting features, and the convergence

speed of the model is affected by it.

In this paper, we optimize and use one of the favored

architectures called Inception-ResNet for face recognition.

The Inception-ResNet architecture stands out as a robust

solution for face recognition tasks, offering several distinctive

advantages over other deep learning architectures. It combines

the strengths of Inception and ResNet, resulting in an efficient

yet deep network that excels in capturing intricate facial

features. This deep architecture addresses the vanishing

gradient problem, enabling the learning of complex facial

representations, particularly when dealing with extensive

datasets. Inception-ResNet's hierarchical feature learning

encompasses a wide range of facial characteristics, from low-

level textures to high-level facial features, enabling it to excel

in capturing the subtleties of facial identity. Its parallel

processing capabilities, facilitated by Inception modules,

empower the model to simultaneously consider both fine-

grained and coarse facial details. Its ability to generalize well

to diverse facial variations, such as pose, expression, and

lighting, renders it suitable for real-world face recognition

applications. According to the reasons that were raised, we

chose the Inception-ResNet architecture as the basic

architecture in our proposed model .

The optimization of this architecture consists of two parts.

First, we define a new activation function called Rish and then

generalize it to obtain two models using the Rish activation

function and its generalization to achieve higher accuracy. The

second novelty is fusing the Inception-ResNet-B block of this

architecture with the SqNxt block [6]; the idea is to reduce the

computational cost of the model. We trained the proposed

models with the CASIA-WebFace dataset, and evaluated their

performance with the LFW benchmark [7, 8]. The results

showed that the FLOPS (floating-point operations per second)

of the proposed models are 2.4013B and 2.4042B, respectively,

while the FLOPS of the Inception-ResNet architecture is

2.8492B. Also, the proposed models achieved the accuracies

of 99.41% and 99.68% on the LFW benchmark which are 0.36%

and 0.63%, better compared to the initial model. In other

words, we were able to increase the accuracy of the model

using proposed activation functions and reduce the

computational cost using the Inception-ResNet-B block along

with SqNxt. The rest of the paper is organized as follows: In

section 2, the activation functions of deep neural networks will

be reviewed.

section 3 presents the proposed activation functions. The

CASIA-WebFace dataset, its challenges and proposed

solutions are discussed in section 4. In section 5, we will

briefly introduce the Inception-ResNet architecture and detail

the modifications we have made to this architecture. The

experimental results will be expressed in section 6. Sections 7

and 8 are devoted to the discussion and conclusion,

respectively.

2. HISTORY OF ACTIVATION FUNCTIONS

As mentioned in the previous section, the activation

function is one of the essential elements in deep learning

models. In this section, we will review different types of

activation functions, and will state the advantages and

disadvantages of them.

·Sigmoid

The sigmoid function has been the most widely used in

neural networks. As seen in Figure 1, the output of this

function is always in the range [0, 1]. For this reason, this

function does not have a zero mean, which is one of the

disadvantages of this activation function. Eq. (1) expresses the

sigmoid function.

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (1)

Figure 1. Sigmoid function

Among other disadvantages of this function, we can

mention saturated areas. As shown in Figure 1, the function's

behavior is linear in areas close to zero. However, the

function's gradient is shallow when we move away from zero,

for example, for data greater than +4 or smaller than -4, which

indicates that the gradient of this function tends to be zero in

these areas. This problem causes the network weights not to

be updated during the network training in the backpropagation

950

stage. In addition, there is an exponential function (ex) in the

Sigmoid function, which increases the computational cost and

reduces the model training speed.

·Tanh

The output of the Tanh activation function is in the interval

[-1,1], which gives it a zero mean. This is an advantage of the

tanh activation function over the sigmoid. As shown in Figure

2, the tanh activation function has saturation areas like the

sigmoid, and the same problem of zero gradients is also

present in this function.

tanh(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 (2)

Figure 2. Tanh activation function

·ReLU

The ReLU activation function introduced in 2012 by

Krizhevsky et al. [9] is a piecewise linear function. As seen in

Figure 3, in this function, the output is zero for negative data,

and equal to the input value for positive data.

𝑅𝑒𝐿𝑢 = max(0, 𝑥) (3)

Figure 3. ReLU activation function

Compared to the previous functions, the advantages of

ReLU activation function are as follows:

·It does not saturate for positive data, and the gradient is

always one in these areas.

·It is very computationally efficient: Sigmoid and tanh

functions require exponentiation (ex), which increases the

computational cost, while the ReLU function does not.

·Reports have indicated that using the ReLU activation

function in a deep architecture makes the model converge up

to 6 times faster than tanh and sigmoid.

The above advantages have made the ReLU activation

function one of the most popular activation functions

introduced so far, and most deep learning models use this

function by default. However, ReLU also has disadvantages,

that include:

·The function is not continuous or differentiable for data

with zero value. This challenge is unimportant because we

rarely have data whose value is zero.

·ReLU does not have zero mean.

·Dead ReLU: The function's gradient is zero for negative

inputs, so the network is not trained in this region in the

backpropagation stage. Also, due to the initial weighting,

several filters may not extract any features at the beginning of

the training and only impose an additional computational cost

on the model.

·Leaky ReLU

As mentioned, one of the challenges that ReLU faces is the

zero output for negative data. To solve this problem, Mass et

al. introduced the Leaky ReLU activation function [10].

Which considered a small slope (for example, 0.01) for the

negative area (Eq. 4) Figure 4 shows the plot of Leaky ReLU.

𝑓(𝑥) = max(0.01𝑥, 𝑥) (4)

Figure 4. Leaky ReLU activation function

The problem of dead filters was solved using this method,

and the average of this function was closer to zero. The

gradient of this function for negative data is a small constant

we have considered (for example, 0.01). The question arises

what should be the constant coefficient considered for the

negative area, and what is the best coefficient? The ideal

coefficient will differ for different problems, so proposing a

fixed number to solve all problems is impossible. Researchers

introduced the PReLU activation function to solve this

challenge.

·Parametric ReLU (PReLU)

He et al. [11] introduced the PReLU activation function in

2015. The gradient control coefficient of the negative part is

determined as a hyper-parameter, and the model should obtain

the appropriate value through training in the backpropagation

stage (Eq. (5) and Figure 5).

𝑓(𝑥𝑖) = max(0, 𝑥𝑖) + 𝑎𝑖 min(0, 𝑥𝑖) (5)

Figure 5. PReLU activation function

951

·ELU

Clevert et al. [12] introduced another modification of ReLU

using an exponential function for negative regions to make the

function smoother (Figure 6) . This function called ELU [12]

behaves more smoothly than PReLU, but due to the

exponential term for negative area (Eq. (6)); It increases the

computational cost of the model.

{
𝑥 𝑥 > 0
𝛼(𝑒𝑥𝑝(𝑥) − 1) 𝑥 ≤ 0

 𝛼 > 0 (6)

Figure 6. ELU activation function

·Softplus

Zheng et al. [13] used the Softplus function as an activation

function for the first time. This function is known as the

softened ReLU (Figure 7). The advantage of this function

compared to the ReLU is its soft derivative, which is helpful

in the backpropagation stage. This function has a higher

computational cost than ReLU due to exponential and log

terms (Eq. (7)). The classification accuracy of Softplus is

5.81% lower than that of ReLU, and the average training time

of the model that uses Softplus is 135 seconds more than the

model that uses ReLU [14]. For this reason, using Softplus as

an activation function in deep learning models is not

recommended.

𝑓(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥) (7)

Figure 7. Softplus activation function

·Swish

Google researchers introduced the Swish activation

function in 2017 as an alternative to ReLU [15]. This function

has a trainable hyperparameter called β (Eq. (8)). The behavior

of this non-linear function varies smoothly from linear to

ReLU-like based on the value of the hyperparameter β. Figure

8 shows the graph of the Swish function for different values of

β.

𝑓(𝑥) = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) (8)

Figure 8. Swish activation function, the behavior of this

function changes smoothly from a linear function to a non-

linear function for different values of β

This function has almost zero mean for small values of β.

Because the Swish activation function is continuous, its

gradient can be calculated for any input value, and the gradient

vanishing challenge does not exist for negative values.

However, its computational cost is more than ReLU.

Figure 9. Mish activation function

·Mish

Mish is One of the newest activation functions introduced

in 2019 by Mish [16] (Figure 9). According to the mish

equation (Eq. (9)), its computational cost is significantly

higher than that of ReLU. For this reason, the run time of the

models implemented with mish is higher than those

implemented with ReLU. For example, the execution time in

the forward stage for float16 data in the model implemented

with ReLU is 223.7 microseconds. In contrast, if the same

952

model uses the mish activation function, the run time in the

forward stage will be 658.8 microseconds [16]. However, the

accuracy obtained in mish is higher than other activation

functions introduced. Therefore, using this activation function

is recommended where accuracy is important.

{
𝑓(𝑥) = 𝑥. 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)

𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥)
 (9)

3. PROPOSED ACTIVATION FUNCTION - RISH

As discussed earlier, the activation function is one of the

essential elements in deep architecture. If the activation

function is selected correctly, the accuracy and convergence

speed of the model will increase. For this reason, one of our

goals in this article is to design a new activation function. As

stated, ReLU is one of the best functions ever introduced as an

activation function. Although ReLU is not computationally

complex, it performs well for positive data. Because the ReLU

gradient for positive data is one, and in the backpropagation

stage, the gradients obtained from the previous layer,

transferred to the next layer without vanishing. However, it

faces challenges for negative data; this has caused new

activation functions to develop. The Mish activation function

ranks among the most well-designed activation functions ever

created. Mish addresses the " dead ReLU " problem, reducing

inactive neurons during training, thus enhancing learning

capacity. Unlike ReLU, which zeros negative values, Mish

offers a smooth transition for both positive and negative inputs,

preserving information from negative activations, and making

it advantageous for data with negative values. Unfortunately,

as stated in section 2, Mish involves a more complex

mathematical formulation compared to the ReLU. This

complexity increases computation time and resource

requirements.

As you can see in Figure 10, in the proposed activation

function, the output is defined as ReLU, for positive data, and

Mish for negative data. we are removing the computational

complexity of the Mish activation function for positive data,

thus reducing the computational cost of the model. On the

other hand, negative data is treated like Mish, which has higher

accuracy among other activation functions. We call our

proposed activation function as Rish (ReLU + Mish), which is

defined in Eq. (10):

𝑓(𝑥) = {
𝑥 𝑥 ≥ 0
𝑥. tanh (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) 𝑥 < 0

Or:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝑥. 𝑡𝑎𝑛ℎ(1 + 𝑒𝑥)

(10)

Figure 10. Proposed activation function, called Rish

The Rish activation function can also be generalized and

had a trainable hyperparameter α as in Eq. (11):

𝑓(𝑥) = {
𝑥 𝑥 ≥ 0

𝑥. 𝑡𝑎𝑛ℎ (𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝛼𝑥)) 𝑥 < 0

Or:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝑥. 𝑡𝑎𝑛ℎ(1 + 𝑒𝛼𝑥)

(11)

The best choice of hyperparameter α for the proposed model

was found to be 0.01. We employed the random search method

to determine the optimal value of this hyperparameter, with the

objective of mitigating the adverse impact of negative data

during model training. To achieve this, we constrained the α

value to be less than 0.5. Under this constraint, we defined a

reasonable range for the hyperparameter α, encompassing

values such as 0.001, 0.005, 0.01, 0.02, and so forth, up to 0.5.

To assess the effectiveness of different α values, we conducted

experiments on a subset of 100 classes from the CASIA-

WebFace training dataset. Each α value was evaluated by

training our model over five iterations. We employed accuracy

as the primary criterion for assessing the optimality of α. As a

result of our evaluation process, we identified the optimal

value for the hyperparameter α to be 0.01. Figure 11 shows the

graph of Eq. (11) for α=0.01.

Figure 11. Graph of the generalized Rish activation function,

for α=0.01

To validate our assertion that the utilization of the Rish

activation function leads to a reduction in computational costs,

we conducted an analysis of runtime performance during the

forward pass. To facilitate this assessment, we constructed a

simple model comprising two convolutional layers. In this

model, we initially employed the Mish activation function and

calculated the mean execution time over 100 iterations using

float16 data. Subsequently, we substituted the activation

function with Rish. Our observations revealed that the average

execution times for the models were 0.126357 and 0.109018

seconds, respectively. Notably, the model employing the Rish

activation function exhibited a 14.73% improvement in

average execution speed compared to the one utilizing the

Mish activation function.

4. CASIA-WEBFACE DATASET AND MTCNN FACE

DETECTOR

The training dataset used to train the face recognition

models proposed in this article is CASIA-WebFace. This

dataset contains 494,414 images in 10,575 classes. Figure 12

displays some samples of this dataset.

953

Figure 12. Sample data from the CASIA-WebFace dataset

Figure 12 shows that the CASIA-WebFace images are not

focused on people's faces, and each image contains a part of

the body and the background in addition to the person's face.

As a result, the first stage of pre-processing is the extraction of

people's faces from the images. For this purpose, we used the

MTCNN face detector [17]. Another challenge is that there is

more than one face in some images of the dataset (Figure 12).

This challenge causes more than one face to be extracted for

some images during the face detection by MTCNN. It will

increase the label noise of the dataset. To solve this problem,

we made two assumptions:

(a) In every image with more than one face, we choose the

face with a higher confidence as the main face.

(b) If two faces have the same confidence, we assume that

the image of the main face is always bigger than the image of

the side face because the purpose of collecting this image was

the first person. With this assumption, we extract the image of

a person with larger dimensions as the target image.

Figure 13 shows this challenge and how to solve it.

Figure 13. Data preprocessing using an MTCNN face

detector in order to extract the main face from each image

In order to reduce the computational cost of the face

recognition model, we considered the size of the input images

to be 160×160 pixels. LFW benchmark is used to check the

performance of the final model.

5. PROPOSED FACE RECOGNITION MODEL

As mentioned in section 4, we first extract the target face

from the images in the CASIA-WebFace dataset. Now,

convenient features for face recognition should be extracted

using a deep neural network. For this purpose, we optimized

the Inception-ResNet and used it to extract features. Figure 14

displays the basic architecture of this network in standard

mode [18].

As shown in Figure 14, the size of input images for standard

Inception-ResNet is considered (229×229×3). To reduce the

computational cost of the model, we set the dimensions of the

input images to (160×160×3). Figure 15 displays one of the

blocks used in this architecture, called Inception-ResNet-B.

Figure 14. Inception-ResNet standard architecture [18]

Figure 15. Inception-ResNet-B block [18]

To reduce the computational cost, we replaced the third

branch of the Inception-ResNet-B block with the SqueezeNext

(SqNxt) block and named the new block SNResNet. In 2018,

Gholami et al. designed the SqNxt architecture to reduce the

computational cost of models implemented on embedded

systems. This block consists of a combination of ResNet and

SqueezeNet blocks and their optimization [6].

The SqNxt block presents a set of noteworthy advantages

that position it as a valuable component within deep neural

network architectures. It adeptly strikes a balance between

model size and computational efficiency, a critical

consideration in contemporary deep learning endeavors. This

balance is elegantly achieved by the incorporation of a

"squeeze" layer, which harmoniously combines 1x1

convolutions and pointwise activations. This amalgamation

serves the purpose of effectively reducing input channels

while preserving essential information. In addition, the ability

of the SqNxt architecture is highlighted by the presence of

expand layers. These layers harness the potential of 1x1

convolutions, followed by 3x3 convolutions, yielding a

judicious augmentation of channel dimensions. This

augmentation significantly strengthens the model's capacity to

represent complex features without imposing undue

computational burdens. Additionally, SqNxt introduces skip

connections, drawing inspiration from the ResNet paradigm.

These connections are instrumental in facilitating more

streamlined gradient flow during training, thus enhancing the

model's training efficiency and convergence properties. In

pursuit of further computational efficiency, certain iterations

954

of SqNxt incorporate reduction layers. These layers

judiciously reduce spatial dimensions within feature maps,

thereby yielding substantial reductions in computational

overhead for subsequent layers. Collectively, the SqNxt block

exemplifies a refined approach to deep learning, enabling the

creation of compact yet potent models ideally suited for

deployment in resource-constrained settings or applications

necessitating real-time processing. Figure16 shows the

structure of the SqNxt block.

Figure 17 shows the proposed SNResNet block, an

optimized version of the Inception-ResNet-B block using the

SqNxt block.

With this method, the number of computational parameters

of the model decreased from 22,779,312 to 19,258,384. This

amount is equivalent to a 15.56% reduction in the calculation

parameters of the model. The next step to optimize the basic

architecture of the Inception-ResNet is to use the activation

functions proposed in section 3. Inception-ResNet, by default,

uses the ReLU activation function. At this stage, we replaced

ReLU with our proposed activation functions. We will finally

have two models using the proposed activation function and

its generalized version. The first model uses the activation

function of Eq. (10), and the other uses the activation function

of Eq. (11). Figure 18 shows the final architecture of the

proposed SNResNet block after replacing the proposed

activation functions.

Figure 16. SqNxt block structure [18]

Figure 17. An optimized version of Inception-ResNet block-B by using SqNxt block

Figure 18. Optimized Inception-ResNet-B block using

SqNxt block and suggested activation functions

In the training phase, the triplet loss is used as our loss

function. This function was first introduced by the Google

research team to design the FaceNet model [5]. We also used

the Adam optimizer to optimize the model in the

backpropagation stage [19]. Our models extract 512 features

from people's faces, by which each person can be identified.

6. EXPERIMENTAL RESULTS

In this section, we will express the experimental results

obtained by the proposed models. We used the CASIA-

WebFace dataset to train the models. Model's batch size in the

training stage was set to 8. The training process was conducted

as follows: first, face detection is performed by the method

presented in section 4. Then the according to the requirement

of triplet loss, three faces (anchor, positive and negative) are

entered into the model for training in groups of 8. Figure 19

shows an example batch of the input data to the model.

Each model is trained for 50 epochs. The first model is

implemented with the Rish activation function (Eq. (10) and

α=1) and the second with α = 0.01. The first model obtained

the accuracy of 91.95%, and the second achieved the higher

accuracy of 94.63%. Figures 20 and 21 show the training

graphs for the two proposed models, respectively.

955

Figure 19. A batch of face images prepared for training the model

Figure 20. Accuracy graph of training and validation data for the first model (The activation function is Rish with α=1)

Figure 21. Accuracy graph of training and validation data for the second model (The activation function is Rish with α=0.01)

In Table 1, we compared the accuracy of the validation data

of the proposed models with other models. We compare the

Inception-ResNet network with different activation functions

against the optimized SNResNet network.

Table 1. Comparing the accuracy of the proposed models

with other models

Figure 22. Some results of the validation data that shows the

resistance of the proposed models against age changes

Architecture
Activation

Function

Loss

Function
Accuracy

Inception-

ResNet
ReLU

ArcFace

[20]
84.24%

Inception-

ResNet
RReLU ArcFace 83.75%

Inception-

ResNet
SELU ArcFace 80.62%

Inception-

ResNet
Mish ArcFace 84.41%

Inception-

ResNet
Rish (α=1) ArcFace 84.96%

SNResNet Rish (α=1) Triplet Loss 91.95%

SNResNet Rish (α=0.01) Triplet Loss 94.63%

956

Figure 23. Some results of the validation data that show the

resistance of the proposed models to changes in facial

appearance

Figure 24. Some results of the validation data that shows the

resistance of the proposed models against emotional changes

Figure 25. An example of validation data that includes label

noise (the positive sample is not the same as the anchor)

Our proposed models have better generalization power. As

shown in Figure 22, the proposed models resist against age

changes.

In addition, the proposed model of SNResNet was able to

withstand facial appearance changes, such as makeup, beard,

glasses, and other things. Figure 23 shows this issue.

The results of the validation data show that the proposed

model is also resistant to emotional changes like anger,

sadness, and happiness, examples of which are shown in

Figure 24.

Unfortunately, the CASIA-WebFace dataset has label noise.

Hu et al. reported that this noise is between 9.3% and 13% [21].

This means that when we make our triple data, there is a

possibility that this noise will cause the model to be wrong.

We observed an average of 4.75% label noise on 100 samples

of validation data outputs. To check the amount of label noise,

we obtained label noises four times, each time in 100

validation data, in which 3, 5, 5, and 6 label noises were

observed, respectively. As a result, in ideal conditions, any

model trained with this data set will have about a 5% error in

the validation data. So, for the models trained with the Casia-

WebFace dataset, the maximum accuracy they can achieve in

the validation stage is 95%.

In Figures 22-25 the first number indicates the distance

between the anchor and the positive, and the second indicates

the distance between the anchor and the negative.

Figure 25 displays an example of a label noise challenge.

We investigated the FLOPS of the proposed models next.

The obtained FLOPS for our models are 2.4013B and 2.4042B,

respectively (“B” stands for billion). These values of FLOPS

are 15.72% and 15.61% lower than the standard model,

respectively, while our proposed activation function had more

computational cost; this indicates that optimizing the

Inception-ResNet-B block by the SqNxt block has been

efficient. Table 2 compares the amount of FLOPS of our

models with other models. Our models show the least amount

of FLOPS in this table.

Table 2. Comparison of FLOPS of the proposed models with

standard models. (B stands for billion)

Backbone Activation

Function

FLOPS

Inception-ResNet-V1 ReLU 2.8492B

Inception-ResNet-V1 Mish 2.8523B

SNResNet

(proposed)

Rish (α=1) 2.4013B

SNResNet

(proposed)

Rish (α=0.01) 2.4042B

Table 3. Comparing the classification accuracy of the proposed models with other advanced models on LFW dataset

Method Year Loss Architecture Training Set Accuracy

SphereFace [22] 2018 A-Softmax ResNet64 CASIA-WebFace 99.42%

 2019 AMS-Softmax ResNet50 CASIA-WebFace 99.34% [23]

Marginal Loss 2019 Marginal Loss ResNet50 CASIA-WebFace 98.91% [23]

ArcFace 2019 ArcFace ResNet50 CASIA-WebFace 99.35% [23]

ACNN [24] 2020 Arcface ResNet-100 DeepGlint-MS1M 99.83

RCM Loss [25] 2020 Rotation Consistent Margin loss ResNet-18 CASIA-WebFace 98.91

Ben Fredj et al.’s work [26] 2021 Softmax with center loss GoogleNet-Inception CASIA-WebFace 99.2

----- 2023 Softmax Inception-ResNet-V1 CASIA-WebFace 98.85%

----- 2023 Triplet Loss Inception-ResNet-V1 CASIA-WebFace 99.05%

IAM [27] 2020 IAM loss Inception ResNet-V1 CASIA-WebFace 99.12

SNResNet 2023 Triplet Loss SNResNet (Rish (α=1)) CASIA-WebFace 99.41%

SNResNet 2023 Triplet Loss SNResNet(Rish (α=0.01)) CASIA-WebFace 99.68%

957

We used the LFW dataset to check the performance of the

proposed models with other advanced face recognition models.

Table 3 compares the classification accuracy of the proposed

models with other face recognition models using LFW dataset.

The classification accuracy of our models was 99.41% and

99.68%, respectively.

7. DISCUSSION

During this work, we encountered certain limitations,

notably related to hardware constraints during the model

training process. Specifically, we used a 1660 GPU for the

training, which imposed a restriction on the achievable batch

size, capping it at 8.

Another problem was label noise of the CASIA-WebFace

dataset. As indicated in Section 6, this dataset contains various

types of noise, with approximately 5% attributed to label noise

among the overall range of 9.3% to 13%. Regrettably, the task

of identifying and mitigating this noise significantly escalates

the computational demands on our system, and rectifying this

dataset's label noise presents a formidable challenge that could

serve as a potential avenue for future research. This label noise

presence had a notable impact on the accuracy of all models

trained on this dataset, none of which achieved an accuracy

exceeding 90% during the evaluation phase with test data.

However, our proposed model managed to attain an

impressive accuracy of 94.63%, marking the highest reported

accuracy to date.

The dataset primarily comprises classes related to

Hollywood celebrities, resulting in limited ethnic diversity

representation. This inherent challenge can hinder the model's

performance across various ethnicities. To address this issue,

we applied data augmentation techniques.

The CASIA-WebFace dataset, like many face recognition

datasets, exhibits a long-tail distribution in terms of the

number of images per individual or identity. In a long-tail

distribution, a small number of identities have a large number

of images, while the majority of identities have relatively few

images. This distribution is common in real-world scenarios,

as there are typically many more "common" individuals with

numerous images (e.g., celebrities or public figures) and

relatively fewer images of "uncommon" individuals. The long-

tail distribution in the CASIA-WebFace dataset can have

important implications for face recognition research and the

training of machine learning models. When the dataset is used

to train models, the overrepresentation of some identities and

underrepresentation of others can lead to issues like bias and

overfitting. Models may perform exceptionally well on the

well-represented identities but struggle with the less-

represented ones. To mitigate the effects of the long-tail

distribution, we employed data augmentation techniques and a

triplet loss function.

8. CONCLUSIONS

In this paper, we proposed a face recognition model to

enhance face identification accuracy and decrease the model's

computing cost. For this purpose, we introduced a new deep

architecture called SNResNet. The proposed model is an

optimized deep architecture of Inception-ResNet. In

SNResNet, we combined the Inception-ResNet-B block with

the SqNxt block. Using this method, we reduced the FLOPS

of the proposed models by 15.72% and 15.61%, respectively,

compared to the standard model. Furthermore, the number of

model parameters optimized by our proposed method is

15.56% less than the standard model. To increase the accuracy

of the proposed model, we introduced a new activation

function called Rish which is a combination of ReLU and

Mish. Then we designed the generalized Rish activation

function with a trainable hyper-parameter to optimize the Rish

activation function to solve different problems. We used the

Rish activation function and its generalization in the

SNResNet architecture and finally obtained two face

recognition models. We considered triplet loss as the loss

function for both models and used Adam as the optimizer. We

used the CASIA-WebFace dataset to train the proposed

models. The second model, Rish with α=0.01, achieved an

accuracy of 94.63% for the validation data using the Casia-

WebFace dataset. However, the highest possible accuracy for

this dataset is 95% in ideal conditions. To check the

performance of the proposed models and compare them with

other models, we used the benchmark data set of LFW. The

classification accuracy in the LFW criterion for our proposed

models are 99.41% and 99.68%, respectively. In comparison,

the model's accuracy used the Inception-ResNet base network,

and the triplet loss function is 99.05%; This shows the

excellent performance of Rish's activation function.
In addition to face recognition, SNResNet works well in

other tasks like image classification, object detection, semantic

segmentation, medical image analysis as well as Inception-

ResNet architecture. Because SNResNet optimized Inception-

ResNet architecture. Therefore, the use of SNResNet in these

tasks is recommended as future works.
SNResNet can work well for practical face recognition

applications such as surveillance systems, identity verification

and authentication, healthcare, airports and travel. Because in

practical applications, model accuracy and model size are very

important. Our model with 94.63% accuracy and its 90 MB

size is efficient for implementation on most of todays'

computers.

REPLICATION OF RESULTS

The code of the paper is placed in the link below:

https://github.com/mosdiba/SNResNet/blob/4e5d9ed6925e

b38ab8ce9eb3b8b4cd80fffbc7e2/SNResNet.ipynb.

The dataset used in this article is CASIA-WebFace, which

could not be uploaded due to its large volume.

REFERENCES

[1] Smith, M., Miller, S. (2022). The ethical application of

biometric facial recognition technology. Ai & Society, 1-

9. https://doi.org/10.1007/s00146-021-01199-9

[2] Tran, T.D., Huynh, K.T., Nguyen, P.Q., Ly, T.N. (2022).

AttendanceKit: A set of role-based mobile applications

for automatic attendance checking with UHF RFID using

Realtime firebase and face recognition. In: Dang, T.K.,

Küng, J., Chung, T.M. (eds) Future Data and Security

Engineering. Big Data, Security and Privacy, Smart City

and Industry 4.0 Applications. FDSE 2022.

Communications in Computer and Information Science,

vol 1688. Springer, Singapore.

https://doi.org/10.1007/978-981-19-8069-5_29

958

[3] Waelen, R.A. (2023). The struggle for recognition in the

age of facial recognition technology. AI and Ethics, 3(1):

215-222. https://doi.org/10.1007/s43681-022-00146-8

[4] Wang, M., Deng, W. (2021). Deep face recognition: A

survey. Neurocomputing, 429: 215-244.

https://doi.org/10.1016/j.neucom.2020.10.081

[5] Schroff, F., Kalenichenko, D., Philbin, J. (2015).

FaceNet: A unified embedding for face recognition and

clustering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA,

USA, pp. 815-823.

https://doi.org/10.1109/CVPR.2015.7298682

[6] Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P.,

Zhao, S.C., Keutzer, K. (2018). SqueezeNext: Hardware-

aware neural network design. Neural and Evolutionary

Computing. https://doi.org/10.48550/arXiv.1803.10615

[7] Yi, D., Lei, Z., Liao, S., Li, S.Z. (2014). Learning face

representation from scratch. arXiv preprint

arXiv:1411.7923.

https://doi.org/10.48550/arXiv.1411.7923

[8] Huang, G.B., Learned-Miller, E. (2014). Labeled faces in

the wild: Updates and new reporting procedures.

Computer Science, Corpus ID: 17716267.

[9] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012).

ImageNet classification with deep convolutional neural

networks. Advances in Neural Information Processing

Systems, 25.

[10] Maas, A.L., Hannun, A.Y., Ng, A.Y. (2013). Rectifier

nonlinearities improve neural network acoustic models.

In Proceedings of the 30 th International Conference on

Machine Learning, Atlanta, Georgia, USA.

[11] He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep

into rectifiers: Surpassing human-level performance on

imagenet classification. In 2015 IEEE International

Conference on Computer Vision (ICCV), Santiago, Chile,

pp. 1026-1034. https://doi.org/10.1109/ICCV.2015.123

[12] Clevert, D.A., Unterthiner, T., Hochreiter, S. (2015). Fast

and accurate deep network learning by exponential linear

units (elus). arXiv preprint arXiv:1511.07289.

https://doi.org/10.48550/arXiv.1511.07289

[13] Zheng, H., Yang, Z., Liu, W., Liang, J., Li, Y. (2015).

Improving deep neural networks using softplus units. In

2015 International Joint Conference on Neural Networks

(IJCNN), Killarney, pp. 1-4.

https://doi.org/10.1109/IJCNN.2015.7280459

[14] Szandała, T. (2021). Review and comparison of

commonly used activation functions for deep neural

networks. Bio-Inspired Neurocomputing, 203-224.

https://doi.org/10.1007/978-981-15-5495-7_11

[15] Ramachandran, P., Zoph, B., Le, Q.V. (2017). Searching

for activation functions. arXiv preprint

arXiv:1710.05941.

https://doi.org/10.48550/arXiv.1710.05941

[16] Mish, M.D. (2019). A self regularized non-monotonic

activation function. arXiv preprint arXiv:1908.08681.

https://doi.org/10.48550/arXiv.1908.08681

[17] Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face

detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10): 1499-1503.

https://doi.org/10.1109/LSP.2016.2603342

[18] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. (2017).

Inception-v4, inception-ResNet and the impact of

residual connections on learning. In Proceedings of the

AAAI Conference on Artificial Intelligence, 31(1).

https://doi.org/10.1609/aaai.v31i1.11231

[19] Kingma, D.P., Adam, J.B. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

[20] Deng, J., Guo, J., Xue, N., Zafeiriou, S. (2019). ArcFace:

Additive angular margin loss for deep face recognition.

In 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Long Beach, CA, USA, pp.

4690-4699. https://doi.org/10.1109/CVPR.2019.00482

[21] Hu, W., Huang, Y., Zhang, F., Li, R. (2019). Noise-

tolerant paradigm for training face recognition CNNs.

https://doi.org/10.48550/arXiv.1903.10357

[22] Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L. (2017).

Sphereface: Deep hypersphere embedding for face

recognition. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI,

USA, pp. 6738-6746.

https://doi.org/10.1109/CVPR.2017.713

[23] Srivastava, Y., Murali, V., Dubey, S.R. (2020). A

performance evaluation of loss functions for deep face

recognition. In Computer Vision, Pattern Recognition,

Image Processing, and Graphics: 7th National

Conference, NCVPRIPG 2019, Hubballi, India, pp. 322-

332. https://doi.org/10.1007/978-981-15-8697-2_30

[24] Ling, H., Wu, J., Huang, J., Chen, J., Li, P. (2020).

Attention-based convolutional neural network for deep

face recognition. Multimedia Tools and Applications, 79:

5595-5616. https://doi.org/10.1007/s11042-019-08422-2

[25] Wu, Y., Wu, Y., Gong, R., Lv, Y., Chen, K., Liang, D.,

Hu, X.L., Liu, X.L., Yan, J. (2020). Rotation consistent

margin loss for efficient low-bit face recognition. In 2020

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA, pp. 6866-6876.

https://doi.org/10.1109/CVPR42600.2020.00690

[26] Ben Fredj, H., Bouguezzi, S., Souani, C. (2021). Face

recognition in unconstrained environment with CNN.

The Visual Computer, 37: 217-226.

https://doi.org/10.1007/s00371-020-01794-9

[27] Sun, J., Yang, W., Gao, R., Xue, J.H., Liao, Q. (2020).

Inter-class angular margin loss for face recognition.

Signal Processing: Image Communication, 80: 115636.

https://doi.org/10.1016/j.image.2019.115636

959

