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 Autism spectrum disorder (ASD) is becoming a crucial issue in ages 6 to 17. This disease 

causes a neurological state that affects social interactions and communication abilities. ASD 

introduces depression, anxiety, hyperacidity, etc. It may lead to severe disorders in the 

patients. So, its diagnosis is essential in the early stages. Brain MRI is the popular diagnostic 

tool used for the detection of ASD. Moreover, with technological advancements, many 

sophisticated and proven techniques need to be developed for ASD detection. Advanced 

machine learning and Deep Convolution Neural Networks (DCNN) have attracted the 

attention of researchers for various applications such as image classification, automotive 

software engineering, and speech recognition, enabling significant progress in neuroscience. 

The DL supports improved computational intricacy, the ability to handle larger data, and the 

high efficiency of the algorithm. However, the DCNN is a well-known algorithm most 

commonly used for neuro-imaging applications due to the requirement of extensive 

hyperparameter tuning, data scarcity problems, and inadequate feature representation. This 

paper discusses ASD detection with functional magnetic resonance imaging (fMRI) using 

parallel DCNN (PDCNN). The PDCNN helps to acquire distinctive features with different 

filter kernels at parallel layers to describe the distinct local connectivity features of fMRI 

images and improve ASD detection accuracy. Also, a Generative Adversarial Network 

(GAN) is employed for data augmentation, which helps to generate synthetic realistic MRI 

samples by learning the fundamental distribution of the inputs to diminish the data 

imbalance problem. The performance of the proposed system is evaluated with a multisite 

dataset named the Autism Brain Imaging Exchange (ABIDE-I). The suggested PDCNN 

gives an accuracy of 90.63%, precision of 0.96, recall of 0.87, and F1-score of 0.92. The 

suggested PDCNN provides improved results and utilizes fewer trainable parameters than 

the traditional methods. 
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1. INTRODUCTION 

 

According to the World Health Organization, ASD affects 

one child in 160, with a probable incidence of anxiety, 

attention, mental stress, and depression deficit hyperactivity 

disorder [1]. Mostly, children from 6 to 17 years of age have 

ASD, a neurological condition that impairs social interaction 

and communication abilities. The term ASD defines a group 

of neurological and mental ability development diseases. A 

few initial symptoms of ASD include abnormal social 

interaction and emotional control, limited interest, redundant 

behaviors, and hypo-reactivity or hyper-reactivity to sensory 

stimuli [2, 3].  

Many autistic people face challenges in learning, growing, 

controlling, interacting, or specific basic living skills. ASD 

places a significant financial burden on society and the 

families of sufferers. An early and precise diagnostic 

framework is required to separate ASD subjects from normal 

controls. Non-invasive and neuroimaging approaches have 

recently attracted researchers to contribute to the additional 

diagnosis of ASD. For the detection of ASDs, a variety of 

structural and functional brain imaging modalities are 

frequently utilized, including structural MRI (sMRI) [4], fMRI 

[5], diffusion MRI [6], electroencephalography (EEG) [7], 

magnetoencephalography (MEG) [8], and 

electrocardiography (ECG) [9]. Structural MRI explores the 

structural characteristics of the brain. Early age ASD 

identification is crucial, but it will help children with ASD 

improve their communication skills and social awareness, thus 

improving their quality of life [10, 11]. An early diagnosis 

plays an important role in illness management and proper 

treatment. Creating a model based on interactions between 

functional or structural brain regions is crucial in diagnosing 

neurological illnesses, including epilepsy, Alzheimer's, and 

autism [12-14]. The fMRI is employed to examine the brain 

and its structures, which recognizes linked changes in the 
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blood oxygen level-dependent (BOLD) signals from the 

various parts of the brain. The functional connection between 

different brain areas that affect global brain networks has been 

demonstrated to be disrupted by ASD.  

Figure 1 shows the MRI images of an average person and 

autism patient. For both the autism and normal groups, there 

was sizable bilateral activity in the amygdala in the familiar 

face versus fixation condition. The stranger versus fixation 

comparison and the stranger versus typical face comparison 

revealed no discernible amygdala activity in either group. 

 

 
 

Figure 1. MRI images of a normal person and an autism 

patient [15] 

 

As a result, the primary objective of the research is to 

categorize individuals with ASD and healthy controls using 

brain patterns of functional connectivity [16]. The early 

detection of ASD can help to provide the proper medical and 

psychological treatment to the patients. The traditional ASD 

detection schemes include behavioral analysis and monitoring, 

which is tedious, time-consuming, and depends upon the 

expert's knowledge. The vast growth in the population and 

ASD screening has led to an automatic ASD detection scheme 

that is faster, more efficient, and more reliable [17]. 

In categorization and representation learning, the usage of 

CNN has garnered much interest recently [18]. CNNs are 

robust classifiers performing well in various applications with 

significant free parameters [19]. Additionally, CNN models 

can handle many free parameters and have improved feature 

extraction accuracy. The CNN model consists of the 

convolutional, fully connected, normalization, and pooling 

layers. The CNN model can analyze brain biomarkers in 

individuals with ASD using fMRI. The CNN models better 

represent spatial and spectral features from the MRI images, 

which help to characterize the minor variations in the brain 

region due to autism. CNN can provide a better balance 

between the local and global features of the MRI images. 

However, the effectiveness of the CNN is limited due to 

extensive hyper-parameter tuning, more significant trainable 

parameters, data scarcity problems, poor feature 

discrimination, etc. [20, 21]. 

The limitations of current methods, such as extensive 

hyperparameter tuning and data scarcity problems, present the 

need for a more efficient and accurate ASD detection method. 

This paper proposes a novel methodology using parallel deep 

learning networks (PDCNN) to address these challenges. 

 

 

2. RELATED WORK 

 

In the last decade, various DL techniques have been 

employed for ASD detection using sMRI and fMRI because of 

their better distinctive properties to characterize functional and 

structural characteristics of brain MRIs. Heinsfeld et al. [22] 

explored deep neural network (DNN), which uses anti-

correlation between the posterior and anterior regions of the 

brain for ASD detection. It used a 2-stacked denoising auto-

encoder (SDA) for pre-training and DNN for classification to 

boost the generalization capability and subjectivity in larger 

datasets for ASD detection systems. The ASD subject has 

larger anti-correlation in the Supra-marginal and Paracingulate 

Gyrus regions. Kong et al. [23] presented an ASD detection 

scheme based on DNN with A.E., which utilized connectivity 

maps as input to A.E. It used gray matter volume and destrieux 

atlas for separating cortial regions to detect ASD. 

Sherkatghanad et al. [24] presented a parallel CNN that used 

correlation features of rs-fMRI for ASD detection. It has 

significantly contributed to ASD detection accuracy, but its 

performance is limited due to a high trainable parameter 

(4,398,802) and data scarcity problems.  

Wang et al. [25] combined Ensemble Learning (E.L.) 

Multilayer Perceptron (MLP) classifier for ASD detection. 

The features are acquired using multi-atlas deep feature 

characterization of fMRI using SDA. Using multiple 

classification schemes and deep learning-based feature 

representation leads to a high computational burden on the 

system. Dvornek et al. [26] used time series fMRI for ASD 

detection where the long short-term memory (LSTM) based 

recurrent neural network is used to identify the distinctiveness 

in the ordinary and ASD samples. High variability in an 

anatomical region hugely affects the network's performance. 

Soussia et al. [27] proposed an ASD detection strategy based 

on T1-weighted MRI based on High-Order Morphological 

Network Construction (HON) and a supervised ensemble 

classifier. It used structural information from different cortical 

areas to design a morphological brain network (MBN). Faria 

et al. [28] presented DNN that used functional connectivity 

features for ASD detection. It provided an accuracy of 88.00% 

on the ABIDE dataset. 

Further, Eslami et al. [29] investigated the ASD-DiagNet 

framework based on correlation features for ASD detection, 

including an autoencoder for capturing lower dimensional 

patterns from the functional connectivity features. It used the 

Extended Frobenius Norm (EROS) for the data augmentation 

to increase the dataset size and found that data augmentation 

helped to improve the ASD detection accuracy by 3%. The 

summary of various recent schemes utilized for ASD detection 

is presented in Table 1. It focuses on the methodology for ASD 

detection, dataset, performance metrics, and total trainable 

parameters used for the deep learning framework.  
 

Table 1. Comparative analysis of previous ASD detection methods 
 

Author and Year  Method  Dataset Accuracy (%)  Total Trainable Parameters  

Wang et al. [25] (2020)  MLP and EL  ABIDE-I 74.52 - 

Heinsfeld et al. [22] (2018)  DNN ABIDE-I 70  - 

Dvornek et al. [26] (2017)  RNN-LSTM  ABIDE-I 68.50 - 

Rajat et al. [30] (2020)  3D CNN  ABIDE-I 62.00 257585 

Sherkatghanad et al. [24] 

(2020)  

Parallel CNN  ABIDE-I 70.22  4398802  

Faria Subah et al. [28] (2021)  DCNN  ABIDE-I 88 - 
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Deep learning-based ASD detection techniques have 

significantly improved over ML-based ASD detection 

techniques. However, the performance of the DL architecture 

is limited because of extensive hyper-parameter tuning, more 

significant trainable parameters, data scarcity problems, poor 

feature discrimination, etc. This paper presents autism 

spectrum disorder detection using the novel PDCNN and 

generative adversarial neural network (GAN). 

 

 

3. PROPOSED METHODOLOGY 
 

Figure 2 explores the process flow of the suggested ASD 

detection scheme that includes data augmentation, training, 

and testing phases to classify normal and ASD patients. The 

significant offerings of the suggested ASD scheme are 

summarized as follows: 

• Development of novel PDCNN for ASD detection to 

improve the feature distinctiveness of the fMRI 

images. 

• Implementing a GAN for data augmentation to 

minimize the data scarcity problem due to varying 

dataset sizes. 

The arrangement of the remaining article is as follows: 

Section II describes information regarding the recent trends in 

ASD using deep learning. Section III gives a detailed 

description of the dataset and data augmentation using the 

GAN and PDCNN framework. Further, section IV delivers the 

discussions on simulation outcomes. Lastly, it offers the 

concise findings of the work and provides future scope.  

 

 
 

Figure 2. Process flow of the proposed method 

 

3.1 Dataset: ABIDE-I 

 

The ABIDE, a collaborative project including 

neuroimaging and phenotypic data acquired from 1,112 

individuals, is the most popular data-driven technique for 

diagnosing autism and exploring its biomarkers. ABIDE-I 

dataset is a global multisite database comprising 1,112 

samples of phenotypic data and structural, resting-state fMRI 

from 16 sites, including 539 people with ASD and 573 others 

[31]. The proposed system uses preprocessed fMRI images 

from the ABIDE-I dataset. The images are resized to 128×128 

pixels for computational simplicity. 

 

3.2 Data augmentation using GAN 

 

The availability of ASD MRI images is challenging due to 

inadequate resources, unavailability of experts for assessing 

MRI images, ethical issues, etc. The lower and uneven 

samples in the training dataset lead to data scarcity and often 

result in poor ASD accuracy. Thus, data augmentation is 

essential to create the synthetic dataset for ASD detection. The 

following Figure 3 shows the GAN network. 

 

 
 

Figure 3. GAN generator and discriminator working [29] 

 

The GAN creates the synthetic data samples from the 

available samples and increases the dataset's number of 

samples. It consists of a generator (GN) and discriminator 

network (DN). The GAN is an unsupervised deep learning 

architecture. The GN generates the enhanced sample by 

accepting the arbitrary input. The DN compares the original 

sample to an enhanced sample produced by the GN to 

distinguish an authentic sample from a fraudulent one. The 

original fMRI images are utilized as the input to the GAN 

network in the deliberate effort to expand the database. The 

GAN is trained for 500 epochs with an initial learning rate of 

0.01 and batch size of 128. The predicted absolute error E(GN, 

DN) for the GN and DN is given by Eq. (1). 

 

𝐸(𝐺𝑁, 𝐷𝑁) =
1

2
𝐸𝑥~𝑃𝑡[1 − 𝐷𝑁(𝑥)] +

1

2
𝐸𝑥~𝑃𝑧[𝐷𝑁(𝐺𝑁(𝑧))]  (1) 

 

During the training of GAN, GN tries to lessen the error 

whereas DN aims to increase the error in training and synthetic 

samples using Eq. (2). 

 

min
𝐺𝑁

(max
𝐷𝑁

𝐸(𝐺𝑁, 𝐷𝑁))  (2) 

 

Table 2. Original and augmented dataset (ABIDE-I –fMRI) 

 

Database Site 
Original Dataset Augmented Dataset 

ASD TD Total ASD TD Total 

Caltech 21 17 38 100 100 200 

KKI 20 35 55 100 100 200 

SDSU 12 24 36 100 100 200 

Leuven 30 34 64 100 100 200 

Trinity 24 25 49 100 100 200 

MaxMun 23 34 57 100 100 200 

USM 58 43 101 100 100 200 

NYU 105 79 184 100 100 200 

OHSU 13 15 28 100 100 200 

Yale 28 28 56 100 100 200 

Olin 20 16 36 100 100 200 

Pitt 31 26 57 100 100 200 

SBL 14 16 30 100 100 200 

Stanford 21 19 40 100 100 200 

UCLA 56 43 99 100 100 200 

UM 68 77 145 100 100 200 

Total 544 531 1075 1600 1600 3200 

 

GN(z) signifies the GN output, z denotes the random noise 

factor, DN(x) represents the DN output, x represents the 

training sample, Pt denotes the likelihood of real MRI data, 
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and Pz represents the likelihood of artificial MRI. A total of 

100 synthetic images are created per class for every site using 

GAN to overcome the data scarcity, as described in Table 2. 

The Adam optimization algorithm trains the GAN algorithm 

for 200 epochs. The cross-entropy function is used for the loss 

evaluation during training, and the initial learning rate is set to 

0.001. 

 

3.3 PDCNN architecture  

 

The sequential DCNN uses cascaded layers of the CNN 

layers with uniform convolution filter size. However, different 

filter sizes can help capture the fMRI image's various local and 

global characteristics, which can be missed in sequential 

DCNN. Also, increasing the layer in sequential DCNN may 

lead to a vanishing gradient problem and a poor detection rate 

[32-35].  

Thus, the proposed PDCNN includes 3 parallel arms of a 

sequential DCNN with different filter sizes to combine the 

attributes captured by various filters. Each parallel arm 

encompasses three layered DCNNs that include the 

convolution layer (𝐶𝑜𝑛𝑣), rectified linear unit (𝑅𝑒𝐿𝑈), batch 

normalization (𝐵𝑁)  layer, and maximum pooling layer 

(𝑀𝑎𝑥𝑃𝑜𝑜𝑙) as illustrated in Figure 2. The first, second, and 

third parallel arm of the PDCNN uses a convolution filter with 

a size of 3×3, 5×5, and 7×7, respectively. However, every 

sequential DCNN at the parallel arm uses 32, 64, and 128 

convolution filters in each CNN layer.  

The original image with 128×128 pixels dimensions is fed 

to three parallel arms. The output of the third 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 layer 

of all three parallel arms is assembled in vector, which is 

further provided to a fully connected layer (FC) that connects 

each neuron of the parallel and sequential arm and help in 

boosting the connectivity and correlation between different 

global and local features of the fMRI image. Lastly, the 

Softmax classifier layer (𝑆𝑜𝑓𝑡𝑚𝑎𝑥) is employed to classify 

regular and ASD patients. 

 

3.4 Deep convolutional neural network 

 

The CNN has shown good spatial representation capability 

for biomedical images. It offers high-order abstract-level 

features and assists in capturing hierarchical features. Each 

DCNN layer includes 𝐶𝑜𝑛𝑣, 𝐵𝑁, 𝑅𝑒𝐿𝑈, and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 layers. 

Increasing the Conv layers boosts the feature distinctiveness 

of the fMRIs. 

 

A. Convolution Layer 

In the Conv layer, the fMRI is converse with a filter size of 

𝑤 ×  𝑤, as given in Eqs. (3) and (4). It transforms the input 

brain fMRI into high-dimensional feature maps. Because of its 

high level of abstraction, this layer is frequently known as a 

hidden feature extractor. 

 

𝑐(𝑥, 𝑦) = 𝑖𝑚 ∗ 𝑓 (3) 

 

𝐶(𝑥, 𝑦) = ∑ ∑ 𝑖𝑚(𝑥 − 𝑖, 𝑦 − 𝑗). 𝑓(𝑖, 𝑗),𝑐𝑜𝑙
𝑗=1

𝑟𝑜𝑤
𝑖=1   (4) 

 

where, im denotes the original picture, C denotes the Conv 

layer output, and f represents the Conv filter kernel. Eq. (5) can 

determine the 𝐶𝑜𝑛𝑣  layer output's dimensions while 

accounting for padding and striding. 
 

𝐷𝑜𝑢𝑡 = [
𝐷𝑖𝑛−2𝑃−𝑤

𝑠
+ 1]  (5) 

Here, the filtered measurements are w. The parameters p 

and s are padding sizes in pixels, striding value in pixels, and 

initial and output image dimensions, respectively.  

Eq. (6) provides the Conv layer output's multidimensional 

dimensions. 

 

[𝑟𝑜𝑤, 𝑐𝑜𝑙, 𝑘] ∗ [𝑤, 𝑤, 𝑁𝑓] = {
𝑟𝑜𝑤+2𝑝−𝑤

𝑠
+

1,
𝑐𝑜𝑙+2𝑝−𝑤

𝑠
+ 1, 𝑁𝑓},  

(6) 

 

where, 𝑁𝑓 indicates the number of image channels, w depicts 

the dimension of the filter, row represents the fMRI’s width, 

col denotes the image's height, 𝑁𝑓 denotes the number of Conv 

filters, and S means the stride value. Before training, the Conv 

filter weights are set randomly and then changed to their 

optimal value using learning algorithms like the Adam 

optimizer, stochastic gradient descent (SGD), RMSProp, and 

mini-batch gradient descent (MBGD). 

 

 

4. RESULT AND DISCUSSION 

 

4.1 Performance and evaluation metrics 

 

The proposed ASD detection scheme is simulated using 

MATLAB R2018b on a personal computer with a core i5 

processor with 8 GB RAM, 2.64 GHz speed, and a Windows 

operating system. Various quantitative and qualitative criteria 

validate the suggested scheme's results. Eqs. (14)-(17) 

describe precision, recall, accuracy, and F1-score, where 

TP=True Positives, TN=True Neatives, FP= False Positives, 

and FN= False Negatives. Accuracy signifies the total number 

of accurate predictions over complete predictions, including 

TP, TN, FP, and FN. Precision gives the true positive 

predictions over total positive predictions, and recall signifies 

the negative predictive values. F1-score is the relative 

parameter consisting of precision and recall values. 

 

Precision =
TP

TP+FP
  (14) 

 

Recall =
TN

TN+FN
  (15) 

 

Accuracy(%) =
TP+TN

TP+TN+FP+FN
× 100  (16) 

 

F1 − Score =
2∗Precision∗Recall

Precision+Recall
  (17) 

 
4.2 Parameter configurations 

 

Table 3 describes trainable parameters and activation maps 

of the various layers. For ASD detection, the suggested 

PDCNN offered 93120, 257472, and 504000 trainable 

parameters for three parallel arms with 3×3 filter, 5×5 filter, 

and 5×5 filter, respectively. The proposed PDCNN uses 

920130 trainable parameters overall. Table 3 provides the 

parameter configurations of the proposed PDCNN architecture, 

which depicts the filter dimensions, padding value, striding 

value, activation map, and total trainable parameters for each 

parallel arm of the proposed PDCNN. The first, second, and 

third parallel arms of the proposed PDCNN consist of 93120, 

52288, and 50400 trainable parameters, respectively, and 

result in total trainable parameters of 920130. 
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4.3 Simulation results and discussions 

 

The outcomes of the PDCNN are assessed for the diverse 

learning techniques, such as Adam, SGDM, and RMSPROP, 

with an initial learning rate of 0.01, as described in Table 4. 

The data augmentation using GAN helps to improve the F1-

score, which shows the balance between the qualitative 

(precision) and quantitative results of ASD detection. The 

performance evaluation for different learning shows that the 

Adam optimizer provides superior accuracy (90.63%) 

compared with SGDM (88.50) and RMSPROP (85.50%). 

Figure 4 illustrates the performance proposed by PDCNN for 

accuracy for different learning rates. 

The outcomes of the PDCNN are estimated for the different 

layers of CNN in each parallel arm, as described in Figure 5. 

It is noted that the overall performance of ASD detection 

increases as the number of layers in each parallel arm increases. 

The three CNN layers use 32, 64, and 128 filters, respectively, 

and increasing the filter number helps improve the feature 

distinctiveness and connectivity. The PDCNN with one CNN, 

two CNN, and three CNN layers in each parallel arm provides 

an accuracy of 84.96%, 86.14%, and 90.63%, respectively, for 

ASD detection for Adam optimizer. Increasing the layer 

beyond three layers results in a more considerable increase in 

trainable parameters and shows minor improvement in the 

results; therefore, the parallel arms are limited to a three-

layered structure. The increase in the parallel layers with 

different filters at every parallel arm helps to improve the 

feature distinctiveness of the fMRI images. It provides a better 

local description of the local fine, medium, and coarse texture 

with smaller (3×3), medium (5×5), and larger (7×7) 

convolution filter windows. The larger layers assist in 

improving the brain image's local and global connectivity and 

correlation features. 

Table 5 shows the effect of the initial learning rate on the 

ADAM optimizer, which provides superior results compared 

with the SGDM and RMSPROP optimizers. The PDCNN-

Adam offers an accuracy of 90.63% for an initial learning rate 

of 0.01. It shows that the high learning rate value (0.5) 

converges the model quickly but results in lesser accuracy 

(78.76%). However, a lower value means takes more time to 

learn the model and adds a computational burden on the 

system as it provides an accuracy of 86.14%. 

The PDCNN’s results for individual sites from the ABIDE 

dataset are illustrated in Figure 6 for PDCNN and PDCNN-

GAN with three parallel arms. It is observed that sites OHSU, 

Pitt, and SBL show poor F1 scores because of an imbalance 

between precision and recall rates due to lower training 

samples than other sites. However, the proposed PDCNN-

GAN helps minimize the class imbalance issue due to varying 

dataset sizes and helps to improve the F1 score for all the sites. 

The PDCNN-GAN provides a higher accuracy of 94.50% for 

the NYU and USM sites, whereas it gives a lower accuracy of 

85.00% for the Leuven site. 

 

 
 

Figure 4. Proposed PDCNN architecture for ASD detection 

 

 
 

Figure 5. Parallel CNN layers of the proposed scheme 
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Table 3. Proposed PDCNN configurations 

 
Layer Filter Dimensions Padding Stride Activation Map Total Trainable Parameters 

Input Image - - - 128×128× 1 - 

Conv-11 3×3×32 [1,1] [1,1] 128×128× 32 320 

BN-11    128×128× 32 64 

ReLU-11    128×128× 32 - 

MaxPool-11 - - [2,2] 64×64× 32 - 

Conv-12 3×3×64 [1,1] [1,1] 64×64× 64 18496 

BN-12    64×64× 64 128 

ReLU-12    64×64× 64 - 

MaxPool-12 - - [2,2] 32×32× 64 - 

Conv-13 3×3×128 [1,1] [1,1] 32×32×128 73856 

BN-13    32×32×128 256 

ReLU-13    32×32×128 - 

MaxPool-13    16×16×128 - 

Conv-21 5×5×32 [1,1] [1,1] 128×128× 32 832 

BN-21    128×128× 32 64 

ReLU-21    128×128× 32 - 

MaxPool-21 - - [2,2] 64×64× 32 - 

Conv-22 5×5×64 [1,1] [1,1] 64×64× 64 51264 

BN-22    64×64× 64 128 

ReLU-22    64×64× 64 - 

MaxPool-22 - - [2,2] 32×32× 64 - 

Conv-23 5×5×128 [1,1] [1,1] 32×32×128 204928 

BN-23    32×32×128 256 

ReLU-23    32×32×128 - 

MaxPool-23    16×16×128 - 

Conv-31 7×7×32 [1,1] [1,1] 128×128× 32 1600 

BN-31    128×128× 32 64 

ReLU-31    128×128× 32 - 

MaxPool-31 - - [2,2] 64×64× 32 - 

Conv-32 7×7×64 [1,1] [1,1] 64×64× 64 100416 

BN-32    64×64× 64 128 

ReLU-32    64×64× 64 - 

MaxPool-32 - - [2,2] 32×32× 64 - 

Conv-33 7×7×128 [1,1] [1,1] 32×32×128 401536 

BN-33    32×32×128 256 

ReLU-33    32×32×128 - 

MaxPool-33    16×16×128 - 

F.C. (2 layers) - - - 1×1× 2 65538 

SoftMax - - - 1×1× 2 - 

 

Table 4. Performance comparison of proposed PDCNN for various learning algorithms 

 

Method 
Learning 

Algorithm 

Without Data Augmentation With Data Augmentation 

Precision Recall 
F1-

score 
Accuracy Precision Recall 

F1-

score 
Accuracy 

DCNN 

Adam 

0.78 0.75 0.76 76.56 0.87 0.83 0.85 84.96 

PDCNN-2 

Layers 
0.81 0.78 0.79 79.53 0.89 0.88 0.89 88.50 

PDCNN-3 

Layers 
0.87 0.83 0.85 84.74 0.96 0.87 0.92 90.63 

DCNN 

SGDM 

0.61 0.61 0.61 60.84 0.69 0.65 0.67 67.26 

PDCNN-2 

Layers 
0.66 0.65 0.65 65.30 0.87 0.83 0.85 84.96 

PDCNN-3 

Layers 
0.69 0.69 0.69 68.56 0.91 0.86 0.88 88.50 

DCNN 

RMSPROP 

0.64 0.61 0.63 62.98 0.70 0.73 0.72 73.80 

PDCNN-2 

Layers 
0.66 0.65 0.66 65.21 0.83 0.85 0.84 85.20 

PDCNN-3 

Layers 
0.69 0.65 0.67 67.44 0.84 0.85 0.84 85.50 

 

Table 5. Comparison of PDCNN-based ASD with the previous state of arts 

 
Author and Year Method Accuracy (%) Total Trainable Parameters 

Wang et al. [25] (2020) MLP and EL 74.52 - 

Heinsfeld et al. [22] (2018) DNN 70 - 

Dvornek et al. [26] (2017) RNN-LSTM 68.50 - 
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Rajat et al. [30] (2020) 3D CNN 62.00 257585 

Sherkatghanad et al. [24] (2020) Parallel CNN 70.22 4398802 

Subah et al. [28] (2021) DCNN 88 - 

Proposed Method 
PDCNN (2L)-GAN 88.60 416130 

PDCNN (3L)-GAN 90.63 920130 

 

 
 

Figure 6. Performance of proposed PDCNN for different 

learning algorithms 

 

The results of the PDCNN for the distinct numbers of the 

CNN layers is provided in Figure 7. The outcomes are 

analyzed for CNN's one, two, and three layers. It is noted that 

the three-layered framework provides better feature 

representation and accuracy. The outcomes of the PDCNN are 

also analyzed for the individual sites from the ABIDE-I dataset, 

as shown in Figure 8. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7. Performance comparison of proposed PDCNN-

based ASD for different numbers of CNN layers in each 

parallel arm 

a) Recall b) Precision c) F1-score d) Accuracy 
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(b) 
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Figure 8. Performance comparison for an individual site of 

ABIDE-I dataset 

 a) Recall b) Precision c) F1-score d) Accuracy 

 

The results of PDCNN are compared with previous ASD 

detection schemes, which have used the ABIDE dataset for the 

experimental evaluations, as described in Table 5. The 

proposed method outpaces existing deep learning-based ASD 

detection systems regarding overall accuracy. 

Rajat et al. [30] investigated the 3D-CNN that used 257585 

trainable parameters but resulted in a lower accuracy of 

62.00%. The parallel CNN presented by Sherkatghanad et al. 

utilized 4398802 trainable parameters and provided 70.22% 

accuracy in ASD detection on the ABIDE-I dataset. The 

proposed PDCNN can train with fewer trainable parameters 

(920130) and attain superior accuracy than the existing DL-

based state-of-the-art. The suggested PDCNN requires 416130 

and 920130 trainable parameters for two and three parallel 

layers, respectively. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

ASD is a severe disease in the later stages, giving rise to 

high depression and anxiety and may lead to severe health 

problems. Hence, its detection is to be done in the early stages. 

Researchers have proposed different methodologies for its 

detection. Many researchers for the detection of ASD present 

traditional CNN. The dataset samples in other publicly 

available databases for experimentation are of limited sizes. 

There are certain constraints to employing CNN, such as 

extensive hyper-parameter tuning, data scarcity, etc. Limited 

dataset samples could give rise to overfitting during the 

training of neural networks. Hence, it is necessary to enhance 

the sample size of the dataset. 

Thus, a novel methodology is proposed and implemented in 

this work that utilizes PDCNN for detection purposes and 

GAN for data augmentation to increase sample sizes of 

datasets.  

The PDCNN assists in acquiring a better correlation 

between the connectivity and correlation features of fMRI 

images for ASD detection with the help of a parallel arm with 

variable filter size. The proposed PDCNN achieved 

remarkable ASD detection accuracy with fewer trainable 

parameters than the traditional state-of-the-art.  

The accuracies of the models proposed by different 

researchers range from 62% to 88%, with trainable parameters 

not less than 1268160. The proposed PDCNN provides 

improved accuracy of 90.63% and 920130 trainable 

parameters, significantly improving over traditional state-of-

the-art CNN methodologies. The proposed PDCNN is less 

complex, lightweight, and faster than the previous state of the 

arts. The GAN-based data augmentation helps to tackle the 

data scarcity difficulty arising from lower and unequal training 

samples in the data sets.  

In the future, the results of the PDCNN could be improved 

for massive data to increase ASD detection accuracy. Also, the 

system's performance could be analyzed in real scenarios by 

collecting actual dataset samples to generalize the proposed 

methodology. The effectiveness of the PDCNN can be studied 

for various genders and age groups. The PDCNN method can 

further be used to classify the grades of detected ASD and 

explore the risk and severity of the disease.  
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