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In the domain of array signal processing, the identification and suppression of jamming 

signals pose significant challenges, particularly in scenarios where intentional interferers 

operate in the far-field region. This study introduces an innovative beamforming technique, 

the multi-target least square constant modulus algorithm (MT-LSCMA), which surpasses 

traditional direction-of-arrival (DOA) estimation methods like estimation of signal 

parameters via rotational invariant techniques (ESPRIT) and multiple signal classification 

(MUSIC) by addressing their limitations in computational complexity, detection efficacy, 

and inaccuracies arising from coherent sources. Unlike conventional approaches, the MT-

LSCMA, an extension of the blind constant modulus adaptive beamforming method, does 

not rely on a reference signal for the optimization of the mean-square-error (MSE) cost 

function. Instead, it iteratively updates the weights based on constant modulus signal 

information, facilitating the identification of jammer locations even under low signal-to-

noise ratios (SNR). This methodology enhances anti-jamming capabilities by adaptively 

forming nulls in the radiation pattern directed towards the jammers. Simulation results 

demonstrate the superior accuracy of the MT-LSCMA in tracking jammers compared to 

both traditional and recently developed techniques. The proposed method yields significant 

improvements in detection probability, resolution probability, failure rate, computational 

complexity, and root-mean-square-error (RMSE), thus offering a robust solution for 

effective jammer location identification and suppression. 
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1. INTRODUCTION

Refuting intentional interference or mitigation of jamming 

signals has continued to be a major challenge for wireless 

communication and radar researchers for years [1-8]. Jamming 

remains a considerable threat to applications that go through 

space-time processing [5-8]. Jammers are used intentionally in 

radio communication to deliberately block and disrupt the 

communication channel, typically by reducing the SNR. 

Consequently, familiarity of specific localization of 

intentional jammers is of utmost importance to radio engineers 

and researchers at low SNR values, so as to mitigate and 

reduce the effect of interfering signals. 

In the entire procedure of jamming signal mitigation, the 

detection of the location of the jammer constitutes an 

important and primary step. Jammer locations can be precisely 

identified by estimating the DOA of the jamming signals 

impinging on an array of antennas or sensors with some array 

processing capabilities. Traditional strategies for estimating 

DOA, such as MUSIC [9] or a variant of ESPRIT [10-14], 

make use of isotropic sensors or omnidirectional antenna 

elements of dense uniform linear array (ULA) to form and 

decompose a square array correlation matrix of the impinging 

signals. Other than settling with a lesser degree of freedom 

(DOF), a major disadvantage of the conventional DOA 

estimation methods is their failure to resolve near-correlated 

jamming sources [11-13, 15-17]. Thus, there always remains 

a possibility of detecting an incorrect number of jammers 

whose spatial separation is narrow. Eventually, this affects the 

mitigation process or the null steering of the antenna array 

beam. 

Various solutions have been proposed by researchers over 

the years for the detection and mitigation of jamming signals. 

The authors [1-8] utilized either the time, frequency, or space 

domains, or a combination of all domains, to exploit the 

detection and mitigation methods. Striking drawbacks evident 

in time domain and frequency domain processing are 

performance deterioration in tracking, inaccurate correlation 
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peaks, and acquisition issues [2-5]. 

 

1.1 Related works 

 

In the space domain, as spatial mitigation is employed, the 

performance gets significantly improved [1, 6]. Space domain 

processing has the potential to estimate the DOA of the 

impinging signals, then direct the main lobe towards the 

location of the signal-of-interest (SOI) (or beam-steering) and 

place nulls in the estimated direction of jamming signals (or 

null-steering) [18-21]. A smart antenna system may be used to 

realize space-domain processing. Typically, a smart antenna 

system consists of an array of sensors with an adaptive signal 

processing capability that can successfully accomplish null-

steering and beam-steering [12, 14, 16]. Of the exclusive two 

categories well explored, the blind class of adaptive beam-

forming algorithms invariably has certain edge over non-blind 

classifications, as the obligatory learning signal is not 

necessary, thus improving the system's spectrum efficiency. 

The most illustrative of the blind adaptive beam-forming 

methods is the CMA [22]. It is an iterative method that 

conserves the envelope of the beam-forming response almost 

at a constant level so as to separate the SOI from the 

interference. But at low SNR values, CMA fails to resolve the 

interference signal with the SOI if the interference signal 

stringently follows the constant modulus property. This issue 

can be sorted out to some degree by using the least squares 

approach, minimizing the cost function of the CMA over one 

block of data vectors, and then updating block-by-block. The 

resulting block iterative method is the LSCMA [14, 23, 24], 

which acquires better global stability and a faster convergence 

rate as compared to conventional CMA. 

Direction finding based on the paradigm of compressive 

sensing (CS) structure has garnered considerable interest 

among researchers in the last decade [25-37]. It provides a 

different perspective to regenerate the original signal with 

sparsity characteristics by appending a high reconstruction 

class at the sensing phase and at the receiver phase, 

respectively. From 2004 onwards, a group of researchers 

published a succession of research papers in which it was 

conclusively proved that exact reconstruction of a signal is 

conceivable with fewer samples than the Nyquist rate 

necessitates, provided that some statistics of the sparsity 

characteristics of the signal are known beforehand. This 

concept led to the development of the theory of CS in signal 

processing [25-27, 34]. 

The achievement of CS-based sparse reconstruction is 

established on two basic properties of the intended signal: 

compressed or sparse representation and incoherency [25-27]. 

In source localization problems, in which the DOA of the 

impinging signals is estimated, the sparsity or compressed 

representation is guaranteed by making use of a suitable 

angular transformation. The framework of CS provides a 

distinguishing edge over the standard models of AOA 

estimation in reduced computational complexity, 

reconstruction by single snapshot, and improved degrees of 

freedom [27-30]. 

The general development of sparse signal classification for 

DOA estimation in the CS domain is well studied in several 

literatures [26-30, 34]. The single snapshot recovery issue is 

effectively addressed in several literatures [26, 27, 30, 35], 

while multiple-time snapshot-based DOA is being estimated 

and studied in the literature [28], exhibiting promising 

resolution characteristics. In the literature [29], various 

optimization algorithms based on ℓ0 , ℓ1  and ℓ2 norms for 

direction finding are examined, and performances are being 

compared in terms of computational complexity, mean-square 

error, resolution, and recovery time. The problem of random 

selection of sensors and the pair-matching issue in 2-D DOA 

estimation by an L-shaped array are well studied in several 

literatures [31-33]. Instead of a ULA, a co-prime array 

structure is effectively used in the CS paradigm for estimating 

the DOA of the receiving signals in several literatures [36, 37]. 

One of the major advantages of the co-prime array structure is 

that it provides a larger array aperture as compared to ULA, 

which enables better resolution in DOA estimation problems. 

In recent years, a deep learning framework has been 

introduced by researchers for identifying a specific signal 

direction from multiple signals impinging on an array of 

antennas [38-41]. Both 1-D and 2-D DOA estimation 

parameters are studied in ULA, uniform circular array (UCA), 

and retro-directive arrays (RDA), respectively. In deep 

learning models, improved resolution is obtained as the 

network does not depend on the statistical properties of the 

signal. 

Contemporary developments in DOA estimation, as 

discussed, have revealed striking advantages over standard 

models, particularly in obtaining enhanced degrees of freedom, 

lower computational complexity, a single snapshot instance, 

and more accurate resolution for near-coherent targets. But the 

requirements of the training data and the decision and 

construction of the sensing matrices remain prominent 

hindrances in both deep learning and sparse reconstruction 

methods. Also, finding the location of an interferer or jammer 

and being able to steer nulls of the antenna array beam, when 

the SNR is low have not been studied or talked about much in 

recent research. 

The main aim of this paper is to introduce a novel high-

resolution DOA estimation method for the jammer signals at 

low SNR estimates that are nearly correlated with each other 

and null-steer the smart antenna system so as to suppress or 

mitigate the jamming directions effectively. The MT-LSCMA, 

which is a variant of the LSCMA algorithm, is a robust 

adaptive beam-forming method that is well exploited in 

separating the multipath signals from the SOI [42]. The 

jamming and the SOI sources or targets are assumed to be 

located in the far-field region with respect to the ULA-based 

smart antenna receiver, and the narrowband signals impinge 

on the ULA indiscriminately from all directions. The intrinsic 

characteristics of the MT-LSCMA are effectively used to 

create two groups of adaptive weights to distinguish between 

the jamming signals and the SOI, so as to beam-steer the main 

lobe on the way to the direction of the SOI and null-steer by 

inserting nulls in the direction of the jamming signals. The 

weights of the steering vector are calculated through a novel 

iterative methodology that results in highly precise DOA 

estimation. The suggested method can clearly resolve closely 

spaced DOAs of jamming signals as well as DOAs of signals 

of interest with the DOAs of the jammers, which makes the 

antijamming effect stronger. Furthermore, it is capable of 

improving the null-steering process and avoiding SOI signal 

level drops while rejecting jamming signals. 

The effectiveness of the proposed approach is evaluated and 

compared with the conventional MUSIC [9] algorithm, the 

recently developed modified MUSIC (M-MUSIC) [43] 

algorithm, and CS-based DOA estimation for randomly 

selected sensors of a ULA [35] and a sparse coprime array [37] 

in terms of RMSE, resolution probability with varying SNR, 
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and computational complexity. The M-MUSIC algorithm 

employs the block adaptation method, similar to the proposed 

technique here. Consequently, the suggested methodology has 

a faster convergence speed as compared to the MUSIC 

algorithm. Investigations are accomplished for single and 

multiple highly correlated jamming signals. Simulation 

findings show that the proposed approach can determine the 

jammer locations more accurately at low values of SNR and 

performs better in terms of probability of detection, failure rate, 

RMSE, and resolution probability, therefore enhancing the 

general system performance. 

This is how the rest of the paper is structured. Section 2 

introduces the system modeling of the DOA estimation 

problem, while Section 3 provides a brief description of the 

conventional MUSIC and the M-MUSIC algorithms. In 

Section 4, the formation of CS-based array pattern 

reconstruction for DOA estimation from randomly selected 

sensors of a ULA and a co-prime array structure is discussed. 

The proposed jammer mitigation algorithm based on MT-

LSCMA is developed in Section 5. Section 6 accords with the 

simulation results and performance comparisons with respect 

to RMSE, computational complexity analysis, probability of 

resolution, etc. The paper is completed by the conclusion in 

Section 7. 

 

 

2. THE DOA ESTIMATION PROBLEM 

 

Notations: N indicates the total number of antenna elements 

in a ULA. It is assumed that there are k and i targets or sources 

(SOI and jammers respectively) located in the far-field region 

of the ULA. It is necessary to estimate the locations of the 

jammers. In the first step, the elevation angle or DOA of the 

target locations (SOI and jammers) are represented by θi and 

θk respectively. Bold upper- and lower-case symbols represent 

matrices and vectors respectively. For instance, a(θi,k) 

represents the array steering vector while A(θi,k) signifies the 

array manifold matrix. (.)T and (.)H signify vector and 

Hermitian transpose apiece. All other notations are made 

acquainted as and when required in the text. 

Figure 1 exhibits the basic structure of array signal 

processing. Multiple targets or sources that are in the far-field 

region emit propagating waves that impinge on the antenna 

array from different angular directions in the form of plane 

waves, as shown. In the far-field region, the antenna array 

radiation pattern is independent of the distance from the array, 

and the direction of propagation of the signals is in the form of 

plane waves. 

 
 

Figure 1. A basic array signal processing model 

Algorithms appropriate for array signal processing are 

applied to the antenna array output, by which some 

information about the sources can be deduced, like source 

direction (or DOA), distance between the targets and the 

antenna array, velocity of the targets, etc. The targets can be 

radio sources (or quasi-stationary objects from which RF 

signals are reflected) or intentional jammers placed 

ingeniously (shown by green and red points, respectively). The 

distances between the targets and the antenna array are 

sufficient (far-field distance), so that the wavefronts can be 

approximated by plane waves. 

The formation of the antenna array is ULA in nature, whose 

elements are assumed to be isotropic, and the interelement 

spacing is optimized at d=λ⁄2, where λ is the wavelength of the 

impinging signals (shown by blue points). This spacing 

benefits from reducing the spatial aliasing and the mutual 

coupling effect between the antenna elements. It is assumed 

that the medium through which the signals propagate and 

impinge on the array is homogenous and non-dispersive in 

nature. Also, each element of the antenna array is considered 

to be isotropic and has no preferred direction of radiation, i.e., 

it radiates consistently in all directions over a sphere centered 

on the origin or source. 

 

 

3. DOA ESTIMATION BY MUSIC AND M-MUSIC 

ALGORITHMS 

 

The main aim of the DOA estimation methodology is to 

determine a function that provides an implication of the 

impinging DOA on an array of sensors based on a plot between 

the maxima and angular values. This functional plot is known 

as the pseudospectrum P(θ) is dependent on the angle of 

arrival. One of the best approaches to defining 

pseudospectrum is by minimizing the mean-squared error of 

the correlation matrix, formed by the array output, by 

eigenvalue decomposition. This gives rise to the MUSIC 

algorithm, developed by Schmidt [9]. It is a subspace-based 

method, as it specifically exploits the noise subspace. This 

approach has been found to work effectively for uncorrelated 

impinging signals as well as noise and has established itself as 

one of the most popular solutions to the DOA estimation 

problem. However, for highly correlated impinging signals, 

MUSIC fails to separate noise as the source correlation matrix 

becomes singular, and the estimation method breaks down 

considerably. Besides, due to eigenvalue decomposition, the 

computational complexity is high and becomes exorbitant for 

a large sensor or antenna array. 

This weakness of the MUSIC algorithm is tackled and 

substantially reduced in the M-MUSIC technique by 

exploiting the Nyström method to approximate the noise 

subspace [43]. A computationally more efficient variant of 

MUSIC, M-MUSIC is founded on the randomly selected 

sensor array output. The eigenvalue decomposition of the 

array correlation matrix is obtained by the Nyström 

approximation for reconstructing the corresponding noise 

subspace. Finally, the modified pseudospectrum function is 

modeled, from which the DOAs are estimated. Consequently, 

the computational efficiency of M-MUSIC is well established 

due to the use of smaller array correlation matrices (for 

randomly chosen small arrays), which reduces eigenvalue 

decomposition complexities. However, if the original sensor 

array itself is small-scale, the computational efficiency of M-

MUSIC reduces. 

Array Signal Processing

Signal Information

jammersource

ULA
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Figure 2. N- element array with impinging signals. Example 

of spatial filtering 

 

Figure 2 shows a spatial filter with an antenna array of N 

isotropic components with N prospective weights. D 

narrowband signals (SOI and jamming signals), originating 

from the far-field region, impinge on the array from D 

directions as shown. It is assumed that D<N. Each received 

signal xi(k) consists of additive white Gaussian noise (AWGN) 

with a zero mean. The array output at the k-th snapshot can be 

written as: 

 

𝑦(𝑘) = 𝒘𝑇 . 𝒙(𝑘) (1) 

 

where, w=[w1 w2 w3……wN]T is the array weight vector. 

 

𝒙(𝑘) = [𝒂(𝜃1) 𝒂(𝜃2) 𝒂(𝜃3) … . . 𝒂(𝜃𝐷)]. [

𝑠1(𝑘)

𝑠2(𝑘)
⋮

𝑠𝐷(𝑘)

] 

+𝒏(𝑘) ⇒ 𝒙(𝑘) = 𝑨(𝜃). 𝒔(𝑘) + 𝒏(𝑘) 

(2) 

 

where, s(k) is the impinging narrowband signal vector, n(k) is 

the zero mean, and 𝜎𝑛
2 variance AWGN vector, a(θi) is the N-

element array steering vector for DOA θi, and A(θ)=[a(θ1) a(θ2) 

a(θ3) …a(θD)]N×D is the array manifold matrix of the steering 

vectors a(θi). 

For the conventional MUSIC algorithm [9, 14], the 

correlation matrix is formed by using Eq. (2) as: 

 

𝑹𝑥𝑥 = 𝑨(𝜃). 𝑹𝑠𝑠. 𝑨(𝜃)𝐻 + 𝑹𝑛𝑛 (3) 

 

where, 𝑹𝑥𝑥 = 𝐸[𝒙(𝑘). 𝒙(𝑘)𝐻]  is the N×N array correlation 

matrix, 𝑹𝑠𝑠 = 𝐸[𝒔(𝑘). 𝒔(𝑘)𝐻] is the D×D source correlation 

matrix and 𝑹𝑛𝑛 = 𝜎𝑛
2𝑰 is the N×N noise correlation matrix (I 

is the identity matrix). Due to the fact that MUSIC is a 

subspace-based approach, it estimates the signal and noise 

subspaces (ES and EN respectively) by eigenvalue 

decomposition of �̂�𝑥𝑥. 

The MUSIC pseudospectrum is given by [9, 42] as: 

 

𝑃(𝜃) =
1

|𝒂(𝜃)𝐻𝑬𝑁𝑬𝑁
𝐻𝒂(𝜃)|

 (4) 

 

The plot of Eq. (4) generates sharp peaks at the angles of 

arrival of the impinging signals (D). 

The angle estimation of Eq. (4) is recognized to achieve a 

splendid balance between the complexity of computation and 

the performance of DOA estimation. Subsequently, the 

MUSIC algorithm has remained a generally accepted method 

in practice as well as in the literature as a standard proposition 

[9-10, 43]. But the MUSIC algorithm is very sensitive to near-

correlated targets and model mismatches. Nevertheless, the 

MUSIC algorithm has stimulated the array processing research 

community to seek better performance in terms of locating 

correlated targets with reduced computational complexity. 

In M-MUSIC algorithm [43], the Nyström approximation is 

used to construct a new array correlation matrix 𝑹𝑥𝑥𝑁′  by 

selecting N' elements at random from N for N'<N. The new 

correlation matrix is designed as: 

 

𝑹𝑥𝑥𝑁′ = 𝐸[𝒙(𝑘). 𝒚(𝑘)𝐻]

= 𝑨(𝜃). 𝑹𝑠𝑠. 𝑨𝑦(𝜃)𝐻 + 𝜎2𝑰𝑁×𝑁′  
(5) 

 

where, 𝒚(𝑘) = [𝑦1 𝑦2 … … 𝑦𝑁′]  is the output vector of the 

randomly chosen 𝑁′  array elements from x(k), Ay(θ) is the 

direction matrix or manifold matrix of the observation vector 

y(k) and 𝑰𝑁×𝑁′ is the N×N' dimensional matrix, in which the 

diagonal elements are one and other elements are zero. 

Applying Nyström approximation to estimating the noise 

subspace, 𝐸𝑁′ , the eigenvalue decomposition yields: 

𝑹𝑥𝑥𝑁′ . 𝒆𝑦 = 𝜆𝑦 . 𝒆𝑛 , where en is the approximate principle 

eigenvector. Following this, the process continues using an 

approach akin to the MUSIC algorithm in estimating the DOA 

angle θ. 

Eventually, the spectral function in Eq. (4) can be reformed 

as:  

 

𝑃(𝜃) =
1

|𝒂(𝜃)𝐻(𝑰𝑁 − 𝑬𝑁′𝑬𝑁′
𝐻 )𝒂(𝜃)|

 (6) 

 

The DOA of the far-field targets is estimated from the 

angles related to the plot of D spectral peaks in Eq. (6). 

 

 

4. ESTIMATION OF DOA IN COMPRESSIVE 

SENSING FRAMEWORK  

 

In recent years, CS has materialized as a unique sampling 

paradigm that permits sparse signal acquisition and 

reconstruction with fewer measurements, less than the Nyquist 

rate. It has been extensively proven that signals can be 

reconstructed at sub-Nyquist sampling rates without any loss 

of information, on condition that they maintain an adequately 

sparse representation in some domain and that the 

measurement approach is appropriately chosen [25-27]. CS 

has recently been used for DOA estimation, exploiting the fact 

that a superposition of planar wavefronts resembles a sparse 

angular power spectrum [26-36]. 

The sparsity and incoherency are two indispensable 

characteristics that enable CS to occur between the basis (Ψ) 

and sensing (or observation, Φ) matrices. Sparsity of a signal 

means the condition or fact of a scanty distribution of values 

over a bound. If the signal sparsity is known, then it is possible 

to intuitively reconstruct the signal with a few measurements. 

The measurement procedure of CS is conceivable as a linear 

projection of the signal vector into a set of judiciously selected 

projection vectors that put together almost each bit of detail 

present in the signal. Every measurement of the signal ought 

to provide some global information. The advantage of 

incoherent measurement is that the entire information content 

of the signal of interest is obtained by adding together all the 

bits of information that are provided by each measurement. 

In the DOA estimation problem, sparsity is assured in the 
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transformed angular domain, while incoherency can be 

achieved if the restricted isometric property (RIP) is obeyed 

[25-27], (1 − 𝛿𝑘)‖𝑥‖2
2 ≤ ‖𝚽𝑥‖2

2 ≤ (1 + 𝛿𝑘)‖𝑥‖2
2 , where 

𝛿𝑘 ∈ [0, 1], and Φ is the sensing (or observation) matrix. The 

symbol ‖. ‖2 symbolizes the ℓ2 − 𝑛𝑜𝑟𝑚. 

Other than properly incorporating the orthogonal sparsity 

basis matrix Ψ, CS requires two more characteristics for 

effective performance, viz., (1) the design of the stable sensing 

(or observation) matrix Φ, and (2) proper optimization of the 

reconstruction algorithm. 

The construction of the sensing (or observation) matrix is 

an important objective of CS, and it mostly depends on 

whether the characteristics of the impinging signals are known 

in advance. The components of Φ can be constructed using 

unstructured random distributions such as Bernoulli, uniform, 

or Gaussian if the features of impinging signals are unknown 

a priori [37]. The number of array elements, computational 

complexity, and other factors become significantly better 

when random distributions are used, but the impact of SNR 

becomes more prominent on the DOA estimation. This 

considerably reduces the resolution at low SNR values. 

Another significant drawback of employing random 

distributions is the need for large storage capacities. A 

deterministic sensing matrix may be exploited, provided the 

characteristics of the impinging signal are known a priori. 

Typically, it can be an identity matrix whose columns and 

rows are generated based on the number of array elements. 

 

 
 

Figure 3. A linear co-prime array structure for DOA 

estimation 

 

Figure 3 depicts the structure of a co-prime array in 1-D, 

where P and Q are co-prime numbers. It is created from two 

dense ULAs, with the number of components in each array as 

P and Q, respectively, and inter-element spacings as 𝑑 = 𝜆
2⁄ . 

In the far-field area of a dense ULA and a co-prime array, 

let us say that the signal sources (or reflected signals) of targets 

and jammers hit each other as parallel narrowband waveforms. 

In the single snapshot instance, the received signal vector x[i] 

of the array (dense ULA or co-prime) is given as in Eq. (2): 

 

𝒙[𝑖] = 𝑨(𝜃)𝒔[𝑖] + 𝒏[𝑖] (7) 

 

where, the symbols and vectors are as described in Eq. (2), 

page-4 for the ULA. The array steering matrix of the co-prime 

array configuration is described as: 

 

𝑨(𝜃) = [𝒂(𝜃1), 𝒂(𝜃2), … … … . 𝒂(𝜃𝐾)] ∈ ℂ(𝑃+𝑄−1)×𝐷 (8) 

 

In the CS domain, the received signal vector x[i] from Eq. 

(7) is compressed to obtain: 

 

𝒚[𝑖] = 𝚽𝒙[𝑖] = 𝚽(𝑨(𝜃)𝑠[𝑖] + 𝒏[𝑖]) (9) 

 

where, Φ is the sensing (or observation) matrix of dimension 

for a dense ULA of elements. For a co-prime array, the 

dimension of Φ is M×(N+M-1), where M is the random 

number of selections or number of measurements of the 

observation vector y[i]. 

If the number of sources is known beforehand, then a 

probable sparse non-convex optimization solution of Eq. (9) is 

given by: 

 

𝑚𝑖𝑛
𝒚[𝑖] ∈ ℂ𝑀

‖𝒚‖0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒚[𝑖] = 𝚽𝒙[𝑖] (10) 

 

The family of matching pursuit reconstruction algorithms, 

reasonably based on ℓ0 −  norm, provides the best possible 

solution to Eq. (10). 

 

 

5. DOA ESTIMATION AND MITIGATION OF 

JAMMING SIGNALS BY MT-LSCMA: PROPOSED 

METHODOLOGY 

 
5.1 Signal model of LSCM algorithm 

 

 
 

Figure 4. Blind adaptive beamforming method. Example: 

CMA and its variants like LSCMA and MT-LSCMA 

 

Figure 4 shows a schematic of an adaptive weight updating 

beamformer with a blind algorithm that generates the error 

function without the requirement of the desired signal. Blind 

adaptive spatial filtering is the mathematical basis for the 

family of CMA and the LSCMA [14, 42]. The cost function of 

LSCMA using non-linear Gauss’s method is given as [14, 23, 

24]: 

 

𝐽(𝒘) = ∑||𝑦(𝑘)| − |𝛼||
2

𝐾

𝑘=1

 (11) 

 

where, α is the array output amplitude. A cost function is an 

optimizing criterion or performance surface defined based on 

requirements. In the family of CMA, the minimization of the 

weighted-sum-of-error-squares criterion is adhered to as an 

optimizing requirement [23]. The J(w) in Eq. (11) is also 

known as the dispersion function. This dispersion function (or 

cost function) can be minimized iteratively by associating the 

slope of the function with zero. Assuming the narrowband 

impinging signals (SOI and jammers) are of constant 

amplitude, Eq. (11) can be re-written as: 

 

𝐽(𝒘) = ∑||𝑦(𝑘)| − 1|
2

= ||𝑔𝑘(𝒘)||
2

2
= ||𝑔(𝒘)||

2
𝐾

𝑘=1

 (12) 
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where, |gk(w)| is the non-linear function of the kth signal and 
|. |2 is the ℓ2 norm. In vector form, |gk(w)| can be expressed as 

𝒈(𝒘) = [𝑔1(𝑤) 𝑔2(𝑤) … … 𝑔𝐾(𝑤)]𝑇. Using the offset vector 

δ, the cost function of Eq. (11) can be expanded by Taylor 

series as 𝐽(𝒘 + 𝜹) = ‖𝑔(𝒘) + 𝑫𝐻(𝒘)𝜹‖2
2 , where 𝑫(𝒘) =

𝛁𝑔𝑘(𝒘) = [∇(𝑔1(𝒘)) ∇(𝑔2(𝒘)) … … ∇(𝑔𝑘(𝒘)]. Taking the 

gradient of the expanded cost function and equating it to zero 

(to achieve the global minima of the error surface), we get: 

 

𝜹 = −[𝑫(𝒘)𝑫𝐻(𝒘)]−1. 𝑫(𝒘)𝒈(𝒘) (13) 

 

If n denotes the iteration number, then the updated weight 

vector w(n+1) can be generated from Eq. (9) as: 

 

𝒘(𝑛 + 1)

= 𝒘(𝑛) − 𝑫(𝒘(𝑛))𝑫𝐻(𝒘(𝑛))
−1

𝑫(𝒘(𝑛))𝒈(𝒘(𝑛)) 

⇒  𝒘(𝑛) − (𝒁𝒁𝐻)−1𝒁𝒁𝐻𝒘(𝑛) − (𝒁𝒁𝐻)−1𝒁𝑟∗(𝑛) 

⇒ (𝒁𝒁𝐻)−1𝒁𝑟∗(𝑛) 

(14) 

 

where,  

 

𝒁 = [𝑧(1) 𝑧(2) … … 𝑧(𝐾)]𝑇 (15) 

 

and r(n) indicates a hard limiter for the operation of y, such 

that: 

 

𝑦(𝑛) = [𝒘(𝑛)𝐻𝒁]𝑇 (16) 

 

and 

 

𝒓(𝑛) = [
𝑦(1)

|𝑦(1)|
 

𝑦(2)

|𝑦(2)|
… …

𝑦(𝐾)

|𝑦(𝐾)|
]

𝑇

= 𝑳(𝑦) (17) 

 

The LSCM algorithm is represented by the weight update 

Eq. (14) and Eqs. (15)-(17). It uses the data block Z(K), and 

iteration is performed within the block of data to estimate the 

updated weight vector w(n+1). From the new r(n+1) value, the 

output 𝑦 is then calculated. The iteration continues until the 

weight vector converges. 

 

5.2 MT-LSCM algorithm for location identification and 

beam-forming 

 

One of the major drawbacks of conventional CMA in 

direction finding is that their convergence characteristics are 

highly dependent on the initial values of the weight vector [22, 

23, 42]. Thus, there remains a high possibility of convergence 

at the local minima rather than the true minima point if the 

initial weight vectors are not chosen appropriately. 

Consequently, achieving proper minima and convergence 

criteria is highly sensitive to the initial values of the weight 

vector. 

Also, as the number of array elements or sensors is higher 

than the number of sources to be detected, it gives rise to 

different independent beam-forming vectors for an identical 

output signal [22, 23]. Hence, it is not sufficient to necessitate 

the independence of the weight vector w. A solution, as 

proposed [44, 45], supplements the cost function with a term 

exhibiting independence, but in concurrence with a slower and 

unpredictable convergence rate [45]. 

To separate the jamming signal direction from the SOI, the 

proposed MT-LSCMA resolves two sets of adaptive weights, 

consequently to null-steer by producing nulls towards the 

interfering signals and beam-steer the main lobe in the 

direction of the SOI. The null-steering weights are optimized 

by MT-LSCMA by argmin
𝒘

‖𝒘∗𝒙(𝑘) − 𝒔(𝑘)‖𝐹 . 

From Eq. (1), beam-forming solutions are desirable for 

known values of either A(θ) or s(k). If A(θ) is known, then the 

weight vector is set as 𝒘∗ = 𝑨(𝜃)ϯ , and thus si(k)=w*.x(k). 

Now, considering that if si(k) is known by apriori, then we set 

w*=si(k).x(k), with 𝑨(𝜃) = (𝒘∗)ϯ, where ϯ denotes the Moore-

Penrose pseudo inverse. As w*.A(θ)=I attained in both the 

above cases, the achieved beam-forming exactly cancels all 

interference. 

Now, in the presence of AWGN, the formulation of two sets 

of linear least-squares minimization models can be put 

forward. The problems can be either based on minimizing the 

output error, as: 

 

min
𝒘,𝒔

‖𝒘∗𝒙(𝑘) − 𝒔(𝑘)‖𝐹
2  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 (𝒘, 𝒔(𝑘)) 
(18) 

 

or based on minimizing the modelling error, as: 

 
min

𝑨,𝒔
‖𝒙(𝑘) − 𝑨(𝜃)𝒔(𝑘)‖𝐹

2  

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑛(𝑨(𝜃), 𝒔(𝑘)) 
(19) 

 

For the blind beamforming problem, the signature of the 

impinging signal is |sij|=1, the constant modulus (CM) 

condition. Now considering instantanous solution for x(k) in 

Eq. (2), 𝒙(𝑘) = 𝑨(𝜃). 𝒔(𝑘) + 𝒏(𝑘), the minimization solution 

of Eq. (15) can be formulated as (if s(k) is known): 

 

�̂�(𝜃) = argmin
   𝑨

‖�̃�(𝑘) − 𝑨(𝜃)𝒔(𝑘)‖𝐹
2

= �̃�(𝑘)𝒔(𝑘)ϯ 
(20) 

 

For known values of A(θ), s(k) can be estimated as: 

 

𝒔(𝑘) = argmin
𝒔

‖�̂�(𝑘) − 𝑨(𝜃)𝒔(𝑘)‖𝑭
𝟐 (21) 

 

with the corresponding beam-forming weights as 𝒘 =
𝑨(𝜃)ϯ. 𝒙(𝑘) . Estimated �̂�(𝜃)  tends to converge to actual 

values of A(θ) for noise vector independent of the sources and 

having zero mean value. The optimization problem of Eq. (14) 

minimizes the difference of the output signals as: 

 

𝒘∗ = argmin
𝒘

‖𝒘∗�̃�(𝑘) − 𝒔(𝑘)‖𝐹
2 = 𝒔(𝑘)�̃�(𝑘) (22) 

 

Using the identity, �̃�ϯ = �̃�∗(�̃��̃�∗)−1, we get: 
 

𝒘∗ =
1

𝑛
𝒔(𝑘)�̃�(𝑘)∗ [

1

𝑛
�̃�(𝑘)�̃�(𝑘)∗]

−1

= �̃�𝑥𝑥
−1. �̃�𝑠𝑥

∗  (23) 

 

where, �̃�𝑥𝑥 =
1

𝑛
�̃�(𝑘)�̃�(𝑘)∗  is the array correlation matrix 

and �̃�𝑠𝑥 =
1

𝑛
𝒔(𝑘)�̃�(𝑘)∗  source-array cross correlation 

matrix. 

Hence, 

 

𝒘 ≈ �̃�𝑥𝑥
−1. 𝑨(𝜃) (24) 

 

Eq. (20) above provides the null-steering weight update 

solution for MT-LSCMA. With similar considerations, the 
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beam-steering weight update result is derived in the literature 

[42] as: 

 

𝒘 ≈ 𝑿ϯ(𝜽). 𝑺(𝜃) (25) 

 

Using Eqs. (22), (23) and (24), the block iterative 

optimization for null-steering capability of MT-LSCMA can 

be formulated as: 

 

𝑆(𝑘)′ = 𝐴(𝑘)ϯ�̃� 

𝑆(𝑘 + 1) = 𝒓𝑛(𝑆(𝑘)′) 

𝐴(𝑘 + 1) = �̃�𝑆(𝑘 + 1)ϯ 
(26) 

 

which can be simplified to, 

 

𝑆(𝑘)′ = 𝑤(𝑘)∗�̃� 

𝑆(𝑘 + 1) = 𝒓𝑛(𝑆(𝑘)′) 

𝑤(𝑘 + 1)∗ = 𝑠(𝑘 + 1)�̃�ϯ 

(27) 

 

with suitable initial values of 𝐴(0) and 𝑤 (0), Eqs. (24), (26) 

and (27), converge to Wiener solution with descent 

computational complexity.  

In most practical cases, the total number of jammers or 

interferers to be estimated is less than the number of sensors 

in the array (N). This leads to a rank deficiency in X=AS. Hence, 

the beam-forming solution would not be unique. To ensure 

that the solution would lie in the column span of A, a 

dimension-reducing prefiltering is performed such that span (F) 

=span (A), where F is any N×D matrix. Then in the column 

span of A, all the beam-forming matrices are given by 

W=FTD×D, where TD×D is a non-singular square matrix for 

linearly independent beamformers. The noisy pre-filtered data 

matrix is given by: 

 

�̃� = 𝐹∗�̃� (28) 

 

where, �̃� = 𝐴𝑆 + 𝑁 , 𝐴 = 𝐹∗𝐴, and 𝑁 = 𝐹∗𝑁 . The 

underscored terms denote the pre-filtered variables. Figure 5 

depicts a schematic of the MT-LSCMA pre-filtering structure. 

Prefiltering is an extension of collaborative filtering, which 

aims at dimensional reduction. The first block, 𝑅𝑥
−1 performs 

the whitening of the input coloured noise, and then carry on 

with the process for the white noise instance. The 

dimensionality reduction is generally realized by projecting 

the predictor onto a low-dimensional subspace. The subspace 

estimator, together with the subspace filter blocks, 

accomplishes the projection. Finally, blind signal separation 

with interference is carried out by the proposed method. 

Commonly, the subspace filter and estimator represent the 

prefiltering stage. 

 

 
 

Figure 5. MT-LSCMA beamforming pre-filtering structure 

 

Table 1 provides a summary of the proposed null-steering 

based on MT-LSCMA method, as below: 

 

Table 1. Proposed method of jammer direction identification 

 
1. Receiving xi(k) as output of each array element from the 

combined impinging signals, where k denotes the number of 

snapshots. 

2. Formation of a block of impinging data X=[x(1), x(2), …., x(N)]. 

3. Determination of the weight update vectors for jammer 

direction location of MT-LSCMA using Eqs. (20), (22) and (23). 

4. Estimation of the array null-steering matrix A=[a(θ1) a(θ2)……. 

a(θN)]. 

5. Estimation of θk from every column vector a(θk) of 𝐴, based on 

the minima of the plot. The null-steering angle is expressed as: 

�̂�𝒌 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝜽

�̂�𝒌.𝒂(𝜽)

‖𝒂(𝜽)‖
. 

 

 

6. SIMULATION RESULTS  

 

6.1 Parameters used for performance evaluation 

 

The DOA estimation of jammer location and corresponding 

null-steering capabilities by the proposed MT-LSCMA 

method are simulated and studied on an experimental testbed 

using MATLABTM. The effectivity of the proposed 

methodology is determined and compared with the 

conventional MUSIC algorithm [9], the newly proposed M-

MUSIC algorithm [43], as well as CS framework-based 

estimation for dense ULA antennas [26, 27, 29, 30] and co-

prime array structures [36, 37] for single snapshot 

circumstances. For all instances, the estimation and 

reconstruction error or mismatch is calculated by measuring 

the RMSE at various values of SNR using the Monte Carlo 

simulation. The measured RMSE for the number MC of Monte 

Carlo trials is given by [12], which is expressed as the 

difference between the actual angle θk and the estimated angle 

of arrival �̂�𝑘: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀𝐶

∑(�̂�𝑘 − 𝜃𝑘)
2

𝑀𝐶

𝑘=1

 (29) 

 

The probability of resolution between two jammer targets is 

defined as [12]: 

 

𝑃𝑟𝑒𝑠 = 𝑃𝑟𝑜𝑏 {|�̂�𝑘 − 𝜃𝑘| ≤
Δ𝜃

2
} , 𝑘 = 1 … . . 𝑚 (30) 

 

where, Δ𝜃 = 𝑚𝑖𝑛{|𝜃𝑘1 − 𝜃𝑘2|, 1 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑚}. 

Comparisons in terms of computational complexity, 

probability of detection with respect to SNR, and failure rate 

are also accomplished in this section. 

 

6.2 Simulation setup  

 

A MATLABTM based testbed is designed, first for a dense 

ULA and then for a co-prime array, to simulate and test the 

effectiveness of the suggested methodology with the recently 

established and conventional models for jammer direction 

identification and null-steering capabilities.  

Far-field narrowband signals are generated (or reflected) 

from targets (both SOI and jammers) with the center frequency 
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fixed at 3 GHz. These narrowband signals travel as plane 

waves through a homogenous, non-dispersive medium and 

impinge on a dense ULA from different directions. The 

elements of the ULA are assumed to be isotropic in nature and 

have element spacings of d=λ⁄2=0.05 m, so as to optimize 

between the mutual coupling effect and spatial aliasing. 

Estimating the DOA of the narrowband impinging signals and 

subsequent null-steering is performed for jamming signals 

with the proposed MT-LSCMA algorithm at SNR=0 dB. For 

performance comparison, the same ULA is used for observing 

the null-steering capabilities of the MUSIC and M-MUSIC 

algorithms. The SNR values are varied to compute the RMSE, 

probability of error (Pres), probability of detection, and failure 

rate. 

In the CS paradigm, the number of impinging signals are to 

be known a priori (D). Assuming all the impinging signals are 

generated (or reflected) from jamming sources, grid angles are 

implemented to discretize the observation area, with a 1° 

spacing between each grid. It is supposed that the impinging 

signals fall at the assigned grid (or off-grid) angles only. In this 

configuration, the approximate sensor elements for sampling 

are randomly selected from the dense ULA by CS. An 

independent, identically distributed Gaussian distribution with 

zero mean and variance 1⁄((N-1)) is used to construct the 

sensing matrix Φ, where N is the total number of array 

elements in the dense ULA. 

Now, a co-prime array structure is formed (Figure 3), and 

the DOA of the jamming signals is estimated in the CS 

framework. In this case, the sensor elements are not chosen 

randomly but by the co-prime array structure concept. The 

sensing matrix is generated as 𝚽 = ℂ𝐷×𝑁 , where D is the 

number of impinging signals on the array. The broadside angle 

(θ) for DOA is assumed to be in the range ±180°. 

 

 

6.3 Simulation results 

 

Figure 6 depicts the simulation result of the null-steering 

capability of the MT-LSCMA for three jammers located in the 

far-field region, whose reflected signals impinge on a ULA of 

13 (N) isotropic elements. The SNR is fixed at 0 dB. The 

resolution characteristic of the proposed method can be well 

observed in Figure 7, where three jammer target locations that 

are closely spaced are null-steered. In Figure 8, multiple 

jammer locations are identified and null-steered, including 

targets closely spaced by 1°. In all these simulations, the 

number of targets (or jammers) is not known a priori. Figure 9 

depicts the polar plot of the simulation of identifying and null-

steering multiple jammer locations (Figure 8). 

In the second group of simulations, the SNR is varied 

between ±25 dB (by steps of 5 dB) by keeping the signal power 

fixed at 0 dB and changing the noise power level. The 

probability of detection and null-steering towards targets 

(jammers) in the far-field region is measured and compared 

with the standard MUSIC, the recently proposed M-MUSIC, 

and algorithms developed in the CS paradigm (random with 

ULA and co-prime structure). In the CS paradigm, the number 

of targets (or jammers) is assumed to be known apriori (D=3). 

Also, the results are simulated for a single snapshot instance. 

The probability of detection gives a measure of the ratio 

between the actual number of detected targets and all possible 

targets on the deck in a given direction or angular range [13]. 

Figure 10 shows the comparison result of the detection 

probability of jammers in the far-field region by varying the 

SNR values by the proposed MT-LSCMA method, MUSIC, 

M-MUSIC, CS-based random selection, and CS-based co-

prime structure. It is evident from the plot that the proposed 

method exhibits better detection probability, not only at higher 

SNR levels but also at lower SNR values. 

 
 

Figure 6. Plot of beam pattern with angle of arrival for locating jammer directions at -45°, 0° and 90° 

 

 
 

Figure 7. Three narrowly located jammers at 35°, 40° and 43° 
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Figure 8. Location identification of multiple jammers 

 

 
 

Figure 9. Polar plot pf Figure 8 

 

 
 

Figure 10. Variation of detection probability with SNR (dB) 

 

 
 

Figure 11. Variation of root mean square error (RMSE) with SNR (dB) 
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Figure 12. Variation of probability of resolution with SNR (dB) 

 

 
 

Figure 13. Variation of failure rate with SNR (dB) 

 

In the third set of simulations, the SNR values are varied 

between ±20 dB (by similar mode of second group of 

simulations) and the RMSE eventualized (Eq. (29)) and 

probability of resolution (Eq. (30)) between the proposed and 

other methods are compared. The number of Monte Carlo 

simulations is considered as MC=1000. In CS framework 

simulations, there is: assumed that D=3 number of targets (or 

jammers) are known aprioiri and simulations are performed in 

single snapshot instance. 

Figure 11 shows the variation of RMSE with SNR levels, 

including the plot of Cramer-Rao-Lower-Bound (CRLB). 

Figure 12 displays the variation of resolution probability with 

SNR values. Both the simulation outcome confirms the 

robustness of the proposed methodology in terms of null-

steering capabilities.  

Figure 13 shows the simulated failure rate comparison with 

SNR variation with the proposed and other methods. The 

percentage of unsuccessful trials relative to the total number 

of trials for the DOA estimation is defined as the failure rate 

[29]. In this simulation, 1000 number of Monte Carlo trials are 

considered. In line with the previous configuration, the SNR 

values were adjusted in steps of 5 dB, ranging from ±20 dB. 

The simulation results plotted in Figure 13. It is observed that 

at lower SNR values, the proposed methodology achieves 

almost 15% less failure index as compared to CS based 

methods. 

 

6.4 Computational complexity analysis 

 

The complexity of computation is evaluated for the 

proposed methodology in terms of estimation and null-

steering capabilities and compared with the other methods in 

consideration. As the proposed MT-LSCMA method, together 

with MUSIC and M-MUSIC, needs to invert the array 

correlation matrix, the computational involvement tends to be 

higher than the methods in the CS paradigm.  

While the array correlation matrix is a 𝑁 × 𝑁 square matrix, 

the computational measurement becomes highly dependent on 

the structure and number of array elements. For DOA 

estimation in the CS framework, this dependency is reduced 

significantly, as the array elements are sparse and either 

chosen randomly or by co-prime structure. In this set of 

simulations, the computational measurements are calculated in 

terms of the number of complex arithmetic operations, i.e., 

additions and multiplications. Figures 14 (a) and 14 (b) depict 

the simulation results of the dependency of arithmetical 

complexity with the number of filter coefficients, or the 

number of elements in the array structure. The results and the 

plots clearly show that the complexity of computation is 

distinctly dependent on the number of array elements, N, 

particularly for higher numbers. In contrast, methods in the CS 

paradigm show substantially lower dependency on N, for 

computational requirements. In terms of matrix inversion 

methods, the proposed MT-LSCMA approach shows better 

complexity performance with respect to MUSIC and M-

MUSIC algorithms. 

 

6.5 Discussion 

 

Figures 10, 11, and 12 depict the performance comparison 

of variations in detection probability, RMSE, and probability 

of resolution with SNR values for the proposed method and 

other popular standard techniques. In Figure 11, the RMSE 

values with SNR variation show a promising outcome of the 

proposed method at SNR values above. Simulation results 

indicate that the error committed in parametric angular 
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estimation at higher SNR values is comparable with the 

theoretical bound (Cramér-Rao Lower Bound, or CRLB) of 

variance (Figure 11). The comparison of detection probability 

(Figure 10) and resolution probability (Figure 12) parameters 

shows the better estimation capability of the proposed method 

even at lower SNR values. Figure 13 depicts that at low SNR 

values, the proposed method has a 40% lesser failure chance 

for estimation as compared to other methods. 

However, the proposed method requires more additions and 

multiplications, which makes it more difficult to code than CS 

methods. This is because correlation matrix inversion is not 

needed to find the adaptive weights. For large arrays, the 

computational hazard becomes too complex, as is evident from 

Figures 14 (a) and 14 (b). 

 

 
 

Figure 14 (a). Complexity in terms of Additions vs. the length of the array 

 

 
 

Figure 14 (b). Complexity in terms of Multiplications vs. the length of the array 

 

 

7. CONCLUSIONS 

 

A new blind adaptive beamforming method is suggested in 

this paper. It guesses the direction and null-steers towards 

intentional interferers or jammers in the far-field region. The 

proposed MT-LSCMA is more noteworthy than its earlier 

family variants (CMA and others) as it is a block iterative 

adaptation method and resolves two sets of weights: one for 

beamforming towards the SOI and the other for null-steering 

towards the signal-not-of-interest (SNOI) or jammer 

directions. The null-steering is achieved by optimizing the 

CMA least squares equation, and the weight update solution is 

determined by pseudo-inverting the 𝑁 × 𝑁 array correlation 

matrix. Comparing with conventional and popular DOA 

estimation methods, including the CS paradigm, the proposed 

method shows more promising results in terms of RMSE, 

probability of resolution, detection probability, and failure rate, 

even at lower SNR levels. Higher computational complexity 

as compared to CS methods is unavoidable due to the 

requirement of inverting the array correlation matrix. DOA 

estimation in a CS framework has some clear advantages, such 

as increased DOFs, single snapshot instances, lower 

computational complexity, etc. But at lower SNR values, 

resolution becomes a predominant issue. Simulation results 

clearly depict that the proposed method works well in terms of 

probability of resolution, detection probability, failure rate, 

and RMSE at reduced SNR values as well. 

However, all the methods discussed in this paper (proposed 

MT-LSCMA, conventional MUSIC, M-MUSIC, and CS 

framework-based) tend to depend highly on the number of 

array elements while measuring the complexity of 

computation. The deep learning approach for DOA estimation 

seems to reduce computational complexity (as the algorithm 

performance is independent of the physical array structure and 

array aperture length), which is much lower than the CS 

paradigm methods but shows inferior resolution at low SNR 

levels. 

The proposed method would find applicability in modern 

battlefield scenarios, where the noise power is very high, in 

identifying intentional interferers or jammers in the far-field 

region with moderate computational complexity. Further, the 

proposed method can be extended to estimate two-dimensional 

(2D) DOA estimations of jammer locations comprising both 

elevation and azimuthal angles. A two-dimensional or planar 
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array would be required for precise estimation of the angle of 

arrival [31-33]. 

 

 

ADDENDUM 

 

The simulations are run on a PC with an Intel (R) Core (TM) 

i7-1165G7 CPU @ 4.6 GHz and 16 GB DDR4 SDRAM using 

MATLAB R2022b (The MathWorks, Inc., Natick, MA, USA). 

The operating system is Microsoft Windows 10 Enterprise 

edition 64-bit. 
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