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For detecting and classifying brain tumors, clinicians use Magnetic Resonance Imaging 

(MRI) data. Automated AI-powered tools accelerate the diagnostic process for clinicians. 

However, large amounts of data are needed for these models to achieve high accuracy. 

Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN) architecture 

are combined for dataset expansion. The accuracy was improved with the artificial image 

set created in all tested models. However, since the accuracy rate remained at 92,960% using 

Long Short Term Memory Algorithm, it was observed that a hybrid method was also needed, 

and hybrid Elmann Bidirectional Long Short Memory Algorithm (Elmann-BiLSTM) was 

developed. In this proposed approach based on deep learning, a Guided Bilateral Filter is 

used to separate skull from images after VAE-GAN structure. The thresholding scheme 

extracts tumour regions from the original image in parts. Edge features and major texture 

data are collected from these tumor images produced using the Improved Gabor Wavelet 

Transform. Random Forest-based feature selection algorithm will select optimal features 

that increase accuracy from extracted features. These features feed the Elmann-BiLSTM 

algorithm used as a two-step classifier. The accuracy rate was 98.897% in the one-step 

classification approach and 100% and 99.313% in the two-step classifier approach, 

respectively. 
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1. INTRODUCTION

Developments in diagnosis, with the spread of artificial 

intelligence, provide various conveniences for clinicians in 

examining long data. Especially for image data, automatic 

approaches are being developed for clinicians to determine the 

type of disease and to identify diseased areas. One of the most 

aggressive of these diseases is cancer [1]. Brain cancer is 

uncontrolled and irregular protein growth in or around the 

brain tissue. This growth pressures other brain parts, 

preventing the brain from performing its normal functions. 

These tumors formed in the brain are grouped under two 

headings: benign tumors and malignant tumors. Benign brain 

tumors are divided into different categories and named. Some 

of these can be listed as pituitary adenoma, neurofibroma, 

craniopharyngioma, schwannoma, dysembryoplastic 

neuroepithelial tumor, choroid plexus tumor, glioma, 

glioblastoma, nasopharyngeal angiofibroma. Types of 

malignant tumors are the most aggressive. In the literature, 

these malignant tumors are called brain cancer in Layman's 

terms. If the uncontrolled growth of protein tissue breaks the 

coating and covers to other part of body or tissue, it is named 

cancer [2]. Cancers can spread to different regions due to 

metastasis [3]. If a tumor occurs directly in the brain, it is 

called a primary brain tumor. If it happens in different parts of 

the body or tissue, such as liver or lung tumors and then occurs 

in the brain lobes, it is called brain metastasis [4]. Some 

clinicians refer to brain metastasis as secondary brain tumor 

[4]. The brain's tumours are classified into three classes, 

namely “pituitary, meningioma and glioma”, according to 

their formation sites. The pituitary is an endocrine gland 

weighing about 0.5 grams located in the lower layer of the 

brain [5]. Any abnormal protein growth around the pituitary is 

called a pituitary brain tumor. Meningioma develops more 

slowly than other tumors and is a benign tumor. Meningioma 

is usually located in the brain's outer covering under the skull. 

Glioma is a tumour that is more aggressive and malignant than 

the other two types. This species causes a higher mortality rate 

[6]. Gliomas can occur at different points regionally. Glioma 

tumors are usually a more difficult type of tumor to diagnose 

than other types. The main reason for this is that these tumors 

occur in the cerebral hemispheres and the supporting tissues of 

the brain [5]. It is easier to detect tumor types by looking at the 

regions where they are seen in pituitary and meningioma 

tumors than in gliomas. 

The World Health Organization (WHO) has separated brain 

tumors into three classes according to their origin in brain’s 

parts [7]. There are several tests (biomarkers, biopsies, 

imaging, and neurological examination) clinicians use for 

grade estimation and tumor diagnosis [8]. The chance of an 

early diagnosis of brain tumors is quite complex compared to 

other diseases. In the initial stages, symptoms such as 

headache and vomiting usually occur, but these symptoms are 

common symptoms of many diseases. Early diagnosis is often 
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not possible because Positron Emission Tomography (PET), 

Computed Axial Tomography (CT) or Magnetic Resonance 

Imaging (MRI) is not requested from individuals with these 

symptoms [9]. Besides these symptoms, the most prominent 

symptom is increased intracranial pressure [9]. Since 

abnormal protein growth cannot naturally change the skull 

volume, intracranial pressure will increase. Generally, 

meningiomas, pituitary and benign tumors develop more 

slowly than malignant tumors. Because of their slow 

development, typical symptoms are not seen. Different 

psychological effects were seen in individuals with 

meningioma tumor. The most important examples of these 

psychological states are psychosis, memory loss, and sudden 

personality changes [10]. Psychological symptoms delay the 

diagnosis of diseases such as tumors. Generally, psychological 

symptoms are more common in meningiomas and benign 

tumors [11]. Symptoms vary in gliomas. Typically, patients 

present with seizures, fatigue, regional edema, and psychiatric 

disorders [12]. Therefore, some researchers emphasize that 

neuroimaging techniques should be used when psychiatric 

symptoms are encountered [10]. There are situations where 

each imaging technique is superior to the other. MR images 

have lower spatial resolution and longer imaging time than CT 

images [13]. Chest and bone scans require high spatial 

resolution. Therefore, CT is generally used in this imaging. 

However, MRI is used instead of CT because higher contrast 

is required for imaging performed in soft tissues [13]. Simple 

MRI fails to differentiate between benign and malignant 

tumors. Therefore, MRI with contrast is primarily preferred 

[14]. In order to avoid these problems, Perfusion-Weighted 

Imaging (PWI) method, which can produce perfusion maps, or 

Magnetic Resonance Spectroscopic Imaging (MRSI) 

techniques, which have significant contributions in detecting 

benign or malignant tumor tissue, are used [14]. 

Contrast-enhanced MRI is an important method for 

clinicians to monitor the tumor process of people with tumors. 

It is also used by clinicians and surgeons in surgical 

intervention planning. Contrast enhancement plays a crucial 

part in imaging. If contrast enhancement does not occur on 

early postoperative MRI, it is understood that the resection is 

complete [15]. Isocitrate dehydrogenase (IDH) is the enzyme 

involved in the tricarboxylic acid cycle. Tumors with normal 

IDH genes are termed as IDH negative [16]. However, with 

contrast-enhanced MRI, clinicians can make mistakes in 

evaluating patients with IDH-negative anaplastic glioma [17]. 

IDH-negative tumors are both the most aggressive type and do 

not change the contrast on MRI [15]. For this reason, positron 

emission tomography (PET) scans have been developed to fill 

this gap. Radioactive tracers are used in PET scans to monitor 

processes. Both metabolic and molecular processes can be 

followed in PET scans. 2-18F-fluorodeoxyglucose (18F-FDG) 

is the most widely used of the radioactive tracers. 18F-FDG is 

often used in oncology to diagnose peripheral tumors [14]. 

However, the proliferation marker 18F-3'-deoxy-3'-

fluorothymidine (18F-FLT), which accumulates in cerebral 

gliomas in direct proportion to the degree of malignancy, is 

used in screening [18]. These tracers have some problems, 

such as the inability to cross the blood-brain barrier and high 

glucose metabolism levels in the brain. Therefore, PET 

scanning with radiolabeled amino acids is used as an 

alternative to contrast-enhanced MRI scanning [19]. O-(2-[18F] 

fuoroethyl)-L-tyrosine (FET) is the most commonly used 

radiolabeled amino acid in PET scans with radiolabeled amino 

acids, especially in Europe [20]. 

Although technological medical breakthroughs have 

significant results, the mortality rates in individuals with brain 

tumors are still relatively high [21]. These imaging techniques, 

which have developed with technological developments, help 

clinicians in diagnosis and classification. Artificial 

intelligence-based support systems are being developed to 

prevent possible clinician decision errors [22]. Thanks to 

computer-aided diagnostic systems, systems are being 

developed to assist neurologists and medical professionals. 

Automated artificial intelligence-based intelligent systems 

using biomedical data are prevalent today. The classification 

and diagnosis of brain tumors is also the research subject of 

artificial intelligence-based systems. Classification of brain 

tumor applications is one of the critical areas of medical 

research involving various complexities. Different machine 

learning classifiers are used for brain tumor detection [23]. 

Traditional machine learning algorithms and methods in the 

process of diagnosing and classifying brain tumors consists 

several process steps, including intensive pre-processing, 

feature extraction from MR images, and feature selection to 

select important features. Feature extraction and selection is 

one of the most critical steps affecting classification accuracy 

[24]. With the development and widespread use of deep 

learning-based algorithms and methods, the problem of 

manual feature selection in machine learning methods is 

eliminated, and high performance is shown in image-based 

studies [25-28]. In addition, deep learning algorithms and 

methods need dense and increased data to train hundreds of 

layers and millions of parameters. Different deep learning 

architectures (Stacked Autoencoders, Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Deep 

Boltzmann Machine (DBM), Long Short-Term Memory 

Networks (LSTM), Deep Belief Networks (DBN)) are used for 

image classification applications [29]. Some advanced deep 

learning models for image classification, such as DenseNet, 

and AlexNet, cause long processing times in computational 

complexity due to their extensive layers. Synthesized MRI/CT 

data are challenging and costly [30]. This problem can be 

solved with another deep learning method called Generative 

Adversarial Network (GAN). Developed by Goodfellow et al. 

in 2014, this method consists of a generator and discriminator 

[31]. These two components work in conjunction with each 

other. The generator or the generator part, in other words, uses 

the data it receives for training to produce fake data close to 

reality. On the other hand, the discriminative part categorizes 

the images produced by the generator as real or fake. While 

the image pixel is used to create pixels in the generators used 

before the GAN architecture, it performs learning on a whole 

image as input in the GAN architecture. GAN architecture is 

widely used in medical images. GAN architecture has been 

used for brain tumor segmentation [32, 33]. It is also used to 

obtain super-resolution magnetic resonance images [34]. 

Basic studies with machine learning and deep learning 

methods for brain tumor classification are frequently 

encountered in the literature. GAN architecture is commonly 

used primarily for the reproduction of image data. Different 

studies were developed using GAN due to the cost and 

difficulty of accessing medical data. However, the biggest 

problem encountered in these studies is mode collapse due to 

the small dataset. However, basic machine learning algorithms 

are discovered in the first literature studies. The number of 

studies in which deep learning-based or hybrid methods are 

used in automatic tumor classifier studies developed with 

inspiration from these studies is relatively high. In classical 
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studies, the segmentation process can usually be used. 

Although this process improves accuracy, it has pretty time-

consuming processing times [35]. Therefore, processing time 

can be considered as limiting for the designed studies. In brain 

tumor classification, complex architectures must be combined 

and operated in harmony. CNN, one of the deep learning 

architectures, is generally used for classification in the 

literature. The idea of producing synthetic data is widely used, 

primarily due to the problems experienced in collecting 

medical data. Liu et al. proved that the GAN architecture can 

be used for data augmentation by testing using CT images [36]. 

There are many datasets in the literature apart from the 

datasets used in this study. Nguyen et al. propose a combined 

DCCN-BiFPN model to increase classification accuracy using 

the dataset called classification BraTS 2020 [37]. In this way, 

it is argued that the accuracy performance is improved. In 

addition, in some studies, different datasets are combined and 

used to classify tumour type and stage. Ayadi et al. use the 

CNN architecture, combining the Figshare and Radiopaedia 

datasets, to classify tumour type and stage [38]. Zhou et al. 

[39] used CNN architecture using data obtained from different 

axial sections while classifying tumors. In similar studies, the 

performance is generally increased by combining or 

hybridizing the models. However, classical methods such as 

Random Forest, CNN, and Fourier Convolutional Neural 

Network (FCNN) were also used in most studies. In a study 

using these algorithms, Paul et al. [40] achieved the highest 

accuracy of 90.26% with the CNN architecture. Abiwinanda 

et al. [41] tested the parameters of the CNN architecture with 

seven different models and reached an accuracy of 84.19%. Ge 

et al. [42] used the CNN architecture to determine the tumor 

grade of glioma. Rahman and colleagues [43] performed 

tumor classification with MRI images using three different 

CNN-based (VGGNet, AlexNet, GoogleNet) architectures 

with overfitting reduction. 

One of the most critical operations of classification studies 

on image data is pre-processing techniques. In some studies in 

the literature, various pre-processing methods are used to 

improve classification results. For example, Tahir et al., using 

noise reduction, contrast enhancement and edge detection 

methods from these improvement studies, increased the 

classification accuracy to 86% with SVM architecture on the 

Figshare dataset [35]. 

In addition, the statistical properties of image data are a vital 

issue for artificial intelligence-based studies. There are various 

feature extraction approaches from image data. However, 

transformations such as Wavelet transform can be used in both 

2D and 3D images. In their study of Ismail, various statistical 

properties reached 91.9% accuracy by using 2D discrete 

wavelet transform and Gabor filter [44]. Ayadi et al. [38] 

extracted classical features and then applied a feature selection 

algorithm to select certain main features. When the studies in 

the literature are examined, this study is designed to eliminate 

the shortcomings of a fully comprehensive automatic classifier. 

In the proposed method, a small number of data taken as input 

is amplified. In addition, there is a feature extractor and feature 

selector architecture in its structure to determine the features 

and select the optimum features. Finally, thanks to the two-

step hybrid classifier aim to increase the accuracy percentage 

in classifying healthy individuals. 

GAN architecture can be used to solve the problem of high 

data need in deep learning algorithms. Classical generators 

generally generate new data by adding random Gaussian noise 

to the input data. Since random Gaussian noise has a lower 

disturbance than most noise types, the generator part produces 

blurred and similar image data. These blurry images created 

cannot reveal realistic features for deep learning architectures. 

Furthermore, the images produced by such generators may not 

help work on MR or PET images. To solve this problem, the 

dataset needs to be augmented. Synthetic MR and PET images 

are produced by proposing a combined method in this study to 

augment the dataset. In solving this, the Variational Automatic 

Encoder (VAE) and the Generative Adversarial Network 

(GAN) are combined. Hybrid models resulting from the 

combination of suitable models achieve higher accuracy rates. 

Therefore, a hybrid model was developed as a classifier as an 

important contribution in this study. In addition to these 

problems, a two-step classification system has been developed 

to solve the harmful effects of the increase in the number of 

classifications on success. In this developed system, first of all, 

the presence of the tumor is determined in the first hybrid 

classifier step. The test image will be transferred to the second 

classifier if the tumour is detected. The second hybrid 

classifier classifies the tumor type. The contributions of the 

proposed study to the literature are as follows: 

• The most critical need of deep learning architectures is 

training with intensive data amount. Therefore, data 

augmentation is performed with the combined VAE-GAN 

architecture. 

• The MR images used for testing the proposed hybrid model 

can sometimes be affected by various forms of noise and 

distortion. One of the most important factors that increase 

accuracy for all classification algorithms is the high quality 

of the data. Therefore, in the second part of the model, 

filtering is done to soften the images. 

• One of the critical factors affecting classification accuracy 

is that parts other than the tumor region affect accuracy. 

Therefore, to segment the tumor region from the MR image, 

it is segmented with an algorithm based on the gray level 

density. 

• The margin information of the tumor tissue contains 

essential information in determining the presence or type of 

the tumor. Therefore, a module that extracts features from 

this information is used. 

• In feature extraction, a large number of features are usually 

revealed. A machine learning-based feature selection 

algorithm is used to select the optimum features from the 

extracted features in terms of both dimensionality and 

accuracy. 

• Parameter adjustments are required to increase the accuracy 

of standard machine learning methods or deep learning 

models. Also, hybridizing suitable models often improves 

accuracy. Therefore, Elmann RNN architecture and Bi-

LSTM architecture are hybridized in this study. 

• An improved automated method is proposed to classify 

brain tumors using MRI and PET data. 

 

The rest of this article: Information about the mathematical 

approach of the proposed two-step hybrid Elmann-BiLSTM 

classifier in the second part, and in the last two parts, the test 

results of the proposed two-step hybrid Elmann-BiLSTM 

classifier are examined and discussed, and information about 

the results are shared. 

 

 

2. METHODOLOGY 

 

This section will explain the details of the proposed 
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approach that makes hybrid deep learning-based brain tumor 

detection from MR images. The algorithm is terminated in this 

two-step classification approach if the first classifier does not 

detect a tumor. If the first classifier detects a tumor, the input 

data will be transferred to the second classifier, and the tumor 

type will be detected. The proposed approach combines two 

proven successful methods: the combined VAE-GAN data 

augmentation approach and the Hybrid Elmann-BiLSTM 

classifier. First, the cerebral lobes are separated from the skull. 

In the next part, a method combining VAE and GAN 

architectures is used to augment the dataset needed by the deep 

learning architecture. This way, the intensive data need for 

deep learning architecture is met. The VAE architecture is an 

encoder-decoder network architecture. In the proposed 

method, after the VAE architecture is trained, its structure is 

updated as a decoder-encoder, and non-random noise is added 

to the image (with image manifold information). Generally, 

sampling is performed using random Gaussian noise in GAN 

architecture. However, the GAN structure is sampled in this 

proposed architecture instead of using the noise vectors 

produced by the VAE architecture. This way, mode collapse, 

frequently encountered when using fewer data in GAN 

architecture, will be prevented. If this situation could not be 

prevented, the GAN architecture would no longer be able to 

produce different images. Images detected as real images in 

Discriminator output are used as a dataset. A Guided Bilateral 

Filter (GBF) filters the noises from the MRI images in the 

augmented dataset. Before performing the segmentation, a 

threshold level should be determined by considering the gray 

levels. Improved Gabor Wavelet Transform (IGWT) is used 

for feature extraction from edge of segments. In this way, 

meaningful features will be obtained from the extracted 

segments. Feature selection will be needed to increase the 

performance of the classification algorithm from the extracted 

features. The most convenient features will be optimized for 

feature selection using a binary Random Forest-based feature 

selector algorithm. All these processes basically constitute the 

preparatory steps for the classification algorithm. A hybrid 

algorithm was designed as the classification algorithm. In this 

algorithm, Elmann-RNN architecture and Bi-LSTM 

architecture are hybridized. In this study, the hybrid model will 

be named Elmann-BiLSTM. The classification process will be 

carried out in two steps. The first classifier will decide whether 

the tumor is present or absent. The second classifier algorithm 

is the classifier that selects which tumor is the result of the first 

classifier if there is a tumor. The flow chart of the proposed 

combined VAE-GAN and hybrid Elmann-BiLSTM 

architecture is shown in Figure 1. 

 

 
 

Figure 1. Overall structural design of the proposed method 

 

 
 

Figure 2. Sample MR images from the Dataset A and 

Dataset B. a: healthy, b: glioma, c: meningioma, d: pituitary 

2.1 Dataset 

 

In this study, training and testing steps were carried out 

using the combination of two different datasets to measure the 

accuracy of the designed architecture. These datasets will be 

referred to as “Dataset A” and “Dataset B”. First, the dataset 

called Dataset A is the dataset publicly shared by Cheng et al. 

[45]. This dataset contains 3064 MRI images from 233 

subjects. In addition, there are data according to the types of 

glioma, meningioma, and pituitary, which are the subject of 

this study. Two-dimensional MR data of these three types of 

brain tumors were recorded in the axial, coronal and sagittal 

axes. However, there is no data from healthy subjects in this 

dataset. Therefore, a different dataset is needed for the disease-

healthy classification. In addition, the dataset was augmented 

for all three tumor types. Dataset B is a publicly available 

dataset on the Kaggle site [46]. Unlike Dataset A, Dataset B 

also includes MR images of healthy individuals. This way, the 
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proposed method's first classifier can classify the patient-

healthy. This dataset contains 3264 images collected from 

subjects with tumors and healthy subjects. Figure 2 contains 

sample images of these datasets. 

 

2.2 Combined variational autoencoders – Generative 

Adversarial Networks architecture 

 

The variational autoencoder (VAEs) architecture is a deep 

learning architecture that reconstructs the data it takes as input 

and produces outputs with the backpropagation principle. 

Unlike standard autoencoder architectures, Variational 

autoencoder architecture uses a probability model in deep 

networks to provide balance types. The distribution of neurons 

in the hidden layers is forced to be distributed according to the 

normal distribution. Kullback-Leibler (KL) loss was used 

during VAE training to measure the difference between the 

distribution of latent variables and the target distribution 

(usually the normal distribution). KL loss indicates how close 

the resulting distribution of latent variables is to the target 

distribution. This loss function encourages latent variables to 

be distributed close to the normal distribution. Variational 

autoencoders have three basic components in their structure: 

encoder, decoder and loss function.  

These structures allow variational autoencoder architecture 

to produce complex models using datasets. In the input layer, 

standard deviation and mean the encoder block creates vectors 

from the data ({𝑥𝑖}𝑖=1
𝑁 ) sent as input to the structure. These 

vectors are created for use in hidden layers (𝑧). The hidden 

layer generates a random new data ({�̃�𝑖}𝑖=1
𝑁 ) similar to the 

input data ({𝑥𝑖}𝑖=1
𝑁 ) in the input layer. Input 𝑥 and the �̃� data 

generated from this X input are larger in size than the hidden 

variable 𝑧 . 𝜃  and 𝜑  represent weights and biases values 

respectively. There is a distribution function for each feature 

in this hidden layer in the Variational autoencoders 

architecture. The data is produced by the directed model 

𝑃(𝑥|𝑧). The encoder learns the 𝑞(𝑥|𝑧) approach and uses it in 

the 𝑃𝜃(𝑥|𝑧)  posterior distribution. Thanks to the objective 

function shown in Eq. (1), variational autoencoders 

architecture differs from other autoencoder architectures. The 

𝔼𝑧~𝑞(𝑧|𝑥)[𝑙𝑜𝑔𝑃𝜃(𝑥|𝑧)]  expression basically represents the 

probability of reconstructing from the input data. The 

𝐷𝑘𝑙[𝑞(𝑧|𝑥)𝑃𝜃(𝑧)]  expression, on the other hand, aims to 

create a 𝑞 distribution similar to the previous 𝑃 distribution. 

 

ℒ = −𝔼𝑧~𝑞(𝑧|𝑥)[𝑙𝑜𝑔𝑃𝜃(𝑥|𝑧)] + 𝐷𝑘𝑙[𝑞(𝑧|𝑥)𝑃𝜃(𝑧)] (1) 

 

𝐹1  and 𝐹2  represent the mapping function of the encoder 

and decoder blocks. 

 

𝐹1: 𝑥𝑖 → 𝑧𝑖 , 𝑥𝑖~𝑃(𝑥), 𝑧𝑖~𝑁(0, 𝑖), 𝑖 = 1,2,3, … , 𝑁 (2) 

 

𝐹2: 𝑧𝑖 → 𝑥𝑖 , 𝑥𝑖~𝑃(𝑥|𝑧) (3) 

 

Using Eq. (1): 

 

𝐹1, 𝐹2 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹1,𝐹2
∑ 𝐷𝑘𝑙[𝑞(𝑧𝑖|𝑥𝑖)||𝑃𝜃(𝑧𝑖)] −

𝔼𝑧~𝑞(𝑧|𝑥)[𝑙𝑜𝑔𝑃𝜃(𝑥𝑖|𝑧𝑖)]  
(4) 

 

If the encoder-decoder structure in this equation is 

converted to decoder-encoder: 

 

𝐹1: 𝑧𝑖 → 𝑥𝑖 , 𝑧𝑖~𝑁(0, 𝑖), 𝑥𝑖~𝑃(𝑥|𝑧) (5) 

𝐹2: 𝑥𝑖 → 𝑧𝑖 , 𝑧𝑖~𝑁(0, 𝑖) (6) 

 

𝑧𝑖 in Eqs. (5) and (6) represents the noise distribution. The 

new noise vector will be sampled using informative noise as 

input in this reconstructed architecture. Thanks to this vector, 

new image data can be produced from the image used as input. 

However, this method falls short in augmentation medical 

imaging data. In this proposed approach, meaningful data 

reproduction is aimed by combining the GAN architecture, 

which is the most modern version of the productive 

architectures, and the VAE architecture. GAN architecture 

basically consists of two parts: generative block (G) and 

discriminative block (D). The generative block part is used to 

generate new data from the data given as input. The 

discriminative block decides that the data sent to it as input is 

training data or data produced by the generative block. Both 

discriminative and generative block use non-linear mapping 

functions. In this proposed approach, the generative block 

samples the noise vector, which is the output of the VAE 

architecture, as input data. This way, the mode collapse issue 

can be avoided. Both the generative block and the 

discriminative block are trained simultaneously. This situation 

creates an equation in which two blocks work for a common 

purpose. This expression is shown in Eq. (7). It tries to 

minimize the log(1 − 𝐷(𝐺(𝑧)))  part in the equation. The 

discriminative block minimizes the log(𝐷(𝑥))  expression. 

This situation is similar to the minimum-maximum game. 

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[logD(𝑥)] +

𝔼𝑧~𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]  
(7) 

 

If the generative and discriminative block structures in the 

GAN architecture are created with class labeled data, the GAN 

architecture can be converted to a conditional model. If Eq. (7) 

is updated in line with this method, Eq. (8) can be created. The 

expression 𝐺(𝑧|𝐶𝑙𝑎𝑏𝑒𝑙) in Eq. (8) represents the output of the 

generative block, and the expression 𝐶𝑙𝑎𝑏𝑒𝑙  represents the 

labels of the input data. 

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) =
 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[logD(𝑥|𝐶𝑙𝑎𝑏𝑒𝑙)] + 𝔼𝑧~𝑃𝑧(𝑧)[log(1 −

𝐷(𝐺(𝑧|𝐶𝑙𝑎𝑏𝑒𝑙)))]  

(8) 

 

Table 1. Parameters of the VAE part of the combined VAE-

GAN model used for data expansion 

 
Encoder 

Input Size: (256,256,3) 
Conv (F=128, K=3, P=same, Act=R, St=(2,2), P=2584) 
Conv (F=64, K=5, P=same, Act=R, St=(2,2), P=204864) 
Conv (F=32, K=5, P=same, Act=R, St=(2,2), P=51232) 
Conv (F=16, K=3, P=same, Act=R, St=(2,2), P=4624) 

Flatten 
FC Layer Output size: 4096 

Encoder Output 

Decoder 

Input Size: (4096) 

Resize data: (16,16,64) P=0 

ConvT (F=64, K=3, P=same, Act=R, St=(2,2), P=12288) 

ConvT (F=32, K=3, P=same, Act=R, St=(2,2), P=18464) 

Conv (F=32, K=3, P=same, Act=R, St=(2,2), P=9248) 

ConvT (F=32, K=3, P=same, Act=R, St=(2,2), P=9248) 

Sigmoid 

Decoder Output 
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Figure 3. Flow diagram of the combined VAE-GAN model used for data expansion 

 

Table 2. Parameters of the GAN part of the combined VAE-

GAN model used for data expansion 

 
Type of Layer Output Size  

Dense 1310720 

G
en

er
a

to
r 

B
lo

ck
 LeakyReLU 1310720 

Resize 32, 32, 1280 
Con2DT 64, 64, 1280 

LeakyReLU 64, 64, 1280 
Con2DT 128, 128, 1280 

LeakyReLU 128, 128, 1280 
Con2DT 256, 256, 1280 

LeakyReLU 256, 256, 1280 
Con2D 256, 256, 1 
Input 256, 256 

D
is

cr
im

in
a

to
r 

B
lo

ck
 

Con2D 128, 128, 128 
LeakyReLU 128, 128, 128 

Con2D 64, 64, 64 
LeakyReLU 64, 64, 64 

Con2D 32, 32, 32 
LeakyReLU 32, 32, 32 

Dropout 32, 32, 32 
Flatten 32768 

Dense None, 1 

 

Figure 3 shows the flow diagram of the proposed VAE-

GAN architecture for data replication. Tables 1 and 2 provide 

detailed information about the parameters of the VAE-GAN 

architecture. 

 

2.3 Preprocessing and segmentation 

 

After the reproduced images, some pre-processing is needed 

to obtain the images that the GBF structure can use. The first 

of these procedures is removing extra-brain tissue from the 

MRI images. In this way, it was determined that the 

classification performance was increased. The first step in 

extracting skull regions is the creation of a binary mask based 

on the gray level thresholding principle so that it can be used 

on the input image. Adaptive thresholding method was used to 

remove tumors from MR images obtained from different 

sections. Adaptive thresholding is a thresholding method that 

can adapt to local lighting changes by using different threshold 

values in different regions of the image. In this method, the 

threshold value of each pixel was determined depending on the 

region where the pixel is located. Thus, it was aimed that each 

region can adapt to local lighting changes. This adaptive 

threshold was usually determined using the average grayscale 

value of the region or similar statistical calculations. The 

binary mask obtained as a result of adaptive thresholding was 

used to separate tumor regions. This mask divided each pixel 

of the image into two categories: white for tumor regions and 

black for other regions. Using this binary image, extra-brain 

tissues are detected as false candidates. Tissue is removed by 

erosion, dilation and filling processes. In the literature bilateral 

filters are always using to filter noise and distortions from the 

input image. The edge information in the input image contains 

crucial information. Guided filters are used to preserve this 

edge information. Thanks to these filters, ready data can be 

obtained for the GBF structure that is both noise-free and edge 

information maintained [47]. Eq. (9) represents the combined 

filter structure. 

 

𝐵𝑓(𝑥) =
∑ 𝑑𝑆(||𝜙||)𝑑𝑝(𝐼(𝑥)−𝐼(𝑥+𝜙))𝐼(𝑥+𝜙)𝜙∈𝑆𝑊

∑ 𝑑𝑠(||𝜙||)𝑑𝑝(𝐼(𝑥)−𝐼(𝑥+𝜙))𝜙∈𝑆𝑊

  (9) 

 

𝑑𝑝  is the decreasing function of density, 𝑆𝑊  is a square-

sized window, 𝐼  is the image data used as input, 𝑑𝑠  is a 
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symmetric decreasing function at a distance 𝜙 of the square 

window. The bilateral filter should be developed using the cost 

function. Eqs. (10) and (11) represent the cost function and the 

general equation of the GBF. 𝑞 = 𝑑𝑠𝑑𝛿 expression measures 

the relationship between the new MRI data generated after the 

pre-processing step and the input MRI data pixels. The 

expression 𝑑𝛿  represents the guide weight and is a weight used 

to construct the GBF structure. Ф represents the photometric 

noise function. The shrinking 𝐵𝑓(𝑥) expression is obtained by 

the robust mean of the 𝐼(𝑥 + 𝜙) expression. As a result of 

these processes, the noise-free MRI images with preserved 

edge information are ready for segmentation of the tumor 

region. 

 

∑ 𝑑𝑠(||𝜙||)Ф((𝐵𝑓(𝑥) − 𝐼(𝑥 + 𝜙))2)𝜙∈𝑆𝑊
  (10) 

 

∑ 𝑑𝑠(||𝜙||)𝑑𝛿(𝛿(𝑥) − 𝛿(𝑥 + 𝜙))Ф((𝐵𝑓(𝑥) −𝜙∈𝑆𝑊

𝐼(𝑥 + 𝜙))2)  
(11) 

 

In general, segmentation of tumor regions in image 

processing architectures is important to improve accuracy 

performance. The threshold-based segmentation technique is 

used to increase the contrast and background brightness [48]. 

Eq. (12) represents the process of improving the overall 

resolution. Here, depending on the H offset, 𝐼𝑝
𝑞
 represents the 

original image 𝐽𝑝
𝑞

 contrast and brightness enhancement 

process. The 𝐸𝑝
𝑞

 expression represents the enhanced image 

obtained after the processes applied to the original image. 

 

𝐸𝑝
𝑞

=
𝐼𝑝

𝑞
−𝐽𝑝

𝑞

[𝐻]𝑝
𝑞   (12) 

 

After the image data enhancement is performed, the tumor 

regions are segmented with different gray levels determined 

for segmentation. The gray level-based thresholding technique 

is representing in Eq. (13). The 𝛤  expression indicates the 

determined threshold value. The 𝑝 and 𝑞 parameters represent 

the threshold coordinates studied. The pixel density value of 

the foreground and background object to be separated in the 

image plays an important role here. 𝑟(𝑝, 𝑞)  and 𝑠(𝑝, 𝑞) 

represent the pixel values according to the intensity of the 

histogram values at two different levels. 𝛤 plays a critical role 

in determining the foreground and background thresholds. The 

relationship between 𝛤  and foreground and background is 

shown in Eqs. (14) and (15). In these equations, 𝐺𝑓  and 𝐺𝑏 

represent foreground and background intensities. The 

segmentation process automatically removes the tumor region 

thanks to this designed approach. Histogram information is 

needed to segment. The peaks on the histogram graphs are an 

essential parameter in determining the threshold value. 

Although this threshold range automatically changes 

according to the dataset, the threshold value for the augmented 

dataset used in this study was determined between 87 and 99. 

Although these values do not remain constant, they vary for 

each MRI image. 

 

𝛤= 𝛤(𝑝, 𝑞, 𝑟(𝑝, 𝑞), 𝑠(𝑝, 𝑞)) (13) 

 

𝐸𝑝
𝑞

= 𝐺𝑓 = 𝐼𝑝
𝑞

≥ 𝛤 (14) 

 

𝐸𝑝
𝑞

= 𝐺𝑏 = 𝐼𝑝
𝑞

< 𝛤 (15) 

 

2.4 Feature extraction with improved Gabor wavelet 

transform and binary random forest-based feature 

selection architecture 

 

Feature extraction is a process that generally improves 

performance for image processing-based classification 

algorithms. This section tries to increase the classification 

success by producing meaningful data from the data. This 

proposed approach extracts features using the IGWT method 

developed based on the Gabor filter. In accordance with the 

uncertainty principle, the optimum solution is obtained by 

using the Gaussian function-based Gabor filter. If the feature 

extraction process, which is generally applied to MRI data, is 

performed as a result of segmentation, it allows reaching 

higher accuracies than other methods. Gabor wavelet 

transform (GWT) is a method applicable to any image data. 

Therefore, this method, which is selected as one of the most 

suitable models, is used in this study. Although the GWT 

method for each image data also has some problems. The most 

important of these problems is that the GWT method requires 

long processing time while extracting features. In addition, the 

high number of created features is one of the disadvantages of 

the GWT method. The IGWT structure developed to overcome 

these disadvantages includes both GWT architecture and 

discrete cosine transform (DCT) architecture. According to the 

expression in Eqs. (16)-(19), DCT is applied to the images and 

compresses the image segments. Then, features are extracted 

with GWT on these compressed images. In these equations, 

the expression 𝑓(𝑝, 𝑞) is a space matrix that can be moved 

according to the pixel positions of (𝑝, 𝑞) . The expression 

𝐹(𝑢, 𝑣) represents the transformation coefficient matrix in the 

DCT structure. 

 

𝐹(0,0) =
1

𝑍
∑ ∑ 𝑓(𝑝, 𝑞)𝑍−1

𝑞=0
𝑍−1
𝑝=0   (16) 

 

𝐹(0, 𝑣) =
√2

𝑍
∑ ∑ 𝑓(𝑝, 𝑞) cos

(2𝑝+1)𝑣𝜋

2𝑍

𝑍−1
𝑞=0

𝑍−1
𝑝=0   (17) 

 

𝐹(𝑢, 0) =
√2

𝑍
∑ ∑ 𝑓(𝑝, 𝑞) cos

(2𝑞+1)𝑣𝜋

2𝑍

𝑍−1
𝑞=0

𝑍−1
𝑝=0   (18) 

 

𝐹(𝑢, 𝑣) =
√2

𝑍
∑ ∑ 𝑓(𝑝, 𝑞)𝑍−1

𝑞=0 cos
(2𝑝+1)𝑣𝜋

2𝑍
cos

(2𝑞+1)𝑣𝜋

2𝑍

𝑍−1
𝑝=0   

(19) 

 

To express the Gabor wavelet transform mathematically: 

 

𝐺𝑤(𝑝, 𝑞) = [
1

2𝜋𝜎𝑝𝜎𝑞
] 𝑒𝑥𝑝 [−

1

2
(

𝑝2

𝜎𝑝
2 +

𝑞2

𝜎𝑞
2) + 2𝜋𝑗𝑤𝑝]  (20) 

 

When Eq. (20) is examined, 𝑤 represents the modulation 

frequency. Despite the improvements made, the feature vector 

obtained from this section is quite large. To deal with this 

problem, extracted attributes are used in an attribute selector 

structure. 

In the feature selection part, the importance coefficient 

calculation part of Random Forest machine learning was used. 

The selection of the most important and most significant 

features in the classifier algorithms affects both the processing 

time and the accuracy rate. This architecture, which is 

developed from the Decision Tree algorithm, which is one of 

the supervised learning methods, plays a vital role in obtaining 

the highest accuracy as more tree combinations are created. 

The algorithm can be used in both classification and regression 

studies. There is a direct relationship between the number of 
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trees in the forest model and the overall accuracy performance. 

Another positive aspect of the Decision Tree architecture is 

that the trees created are random, which solves the overfitting 

problem. Therefore, the importance rate is an essential 

parameter in creating trees. It removes the randomness of the 

branching and determines the one with the highest importance 

rate as the root node. In this architecture developed by 

Breiman, there are two different approaches when calculating 

the importance rate: Gini index and entropy-based approach 

[49]. Binary random forest feature selection architecture will 

be used to select the features extracted with IGWT. The Gini 

index will be used for importance rate calculation in this 

feature selector architecture. In this way, a qualitative analysis 

of each feature has been made and the features can be made 

more meaningful. Eq. (21) shows the Gini index. s is the 

sample set on each node. m is the number of categories. p is 

the ratio of observations in the class [50]. 

 

𝐺𝑖𝑛𝑖(𝑠) = ∑ 𝑝𝑖(1 − 𝑝𝑖)𝑚
𝑖=1 = 1 − ∑ 𝑝𝑖

2𝑚
𝑖=1   (21) 

 

Table 3. Pseudo code of binary RF-based feature selection 

 
Algorithm 1. Pseudo Code of Binary Random Forest-based 

Feature Selection 
Function posmax = RFFeatureSelection(features, F, Accuracy1, 

key, posmin, posmax, position) 

       posmid = position + (posmax - position) / 2 

       Accuracy1 = AccuracyCalculator(features, F, posmin, posmid) 

       if Accuracy2 > Accuracy1 then 

              Accuracy1 = Accuracy2 

       end if 

       if AbsoluteValue(Accuracy1 - Accuracy2) ≤ key then 

              if posmax = posmid + 1 then 

                     return 

              end if 

              posmax = posmid 

              posmax = RFFeatureSelection(features, F, Accuracy1, key, 

posmin, posmax, position) 

       else 

              while posmax > posmid + 1 do 

                     position = posmax 

                     posmid = posmid + (posmax - posmid) / 2 

                     Accuracy2 = AccuracyCalculator(features, F, posmin, 

posmid) 

                     if Accuracy2 > Accuracy1 then 

                            Accuracy1 = Accuracy2 

                     end if 

                     if AbsoluteValue(Accuracy1 - Accuracy2) ≤ key then 

                            posmax = RFFeatureSelection(features, F, 

Accuracy1, key, posmin, posmax, position) 

                     end if 

              end while 

       end if 

end Function 

 

Thanks to the Gini index, the features produced by IGWT 

for the classification architecture can be ranked in order of 

importance and features with high importance can be selected. 

In Algorithm 1 (Table 3), pseudocode of binary random 

forests-based feature selector architecture is shared. The main 

goal is to reduce the Gini index. Therefore, an importance rate 

is obtained from each feature. This rate basically gives 

information about how much it can reduce the Gini index. In 

this way, ineffective features created by the IGWT method are 

removed. The algorithm can extract features with values below 

the determined threshold value (T). In this way, the screened 

form (F) of low Gini index data containing a certain number 

of features (M) is obtained [49]. Iterations are run as many as 

the number of features requested as output. The “posmid” 

parameter determines the right and left trees. 

According to the rules determined during the creation of the 

algorithm architecture, firstly, the accuracy is calculated by 

using the left tree. If the accuracy calculated in that step is 

better than the previous calculated tree accuracy, the accuracy 

value is updated. A check should be made between tree 

accuracy and node accuracy [49]. If the difference between the 

two truth values is less than or equal to the specified threshold, 

the recursive loop is run to search for the node. If the condition 

is false, it is passed to the right tree and the same operations 

are performed for this tree. 

 

2.5 Hybrid Elman recurrent neural networks and 

bidirectional long short term memory algorithm 

architecture 

 

In the framework of brain tumor classification proposed in 

this study, there are classifier blocks as the last step. The 

proposed framework has a two-step classifier. In the 

classification architecture, both classifiers consist of a hybrid 

algorithm. The hybridized algorithms are Elmann-RNN and 

Bi-LSTM architectures. The features extracted from the 

previous steps are labeled according to the tumor types. The 

labeled data is then used as both training and test data for the 

hybrid classifier. Attributes and tags extracted in the hybrid 

approach enter the Bi-LSTM architecture and the Elmann-

RNN architecture. As a result of this hybrid structure, the 

appropriate label and the input data are matched and the result 

is presented to the user. Unlike the classical LSTM 

architecture, BiLSTM architecture is transmitted between 

cells in both forward and reverse directions to learn features. 

In the Elmann-RNN structure, there is a context layer. 

BiLSTM architecture has a different structure from LSTM. 

However, this difference is not usually realized within cells. 

Two LSTM cells are joined in different directions to create 

both forward and reverse relationship. The BiLSTM 

architecture basically consists of two layers: the forward 

directed LSTM layer and the reverse directed LSTM layer. In 

the forward directed LSTM layer, the LSTM block uses the 

features or input data in the forward direction. Similarly, in the 

reverse directed LSTM layer, the LSTM block uses the 

Features or input data reverse direction. In the structure of each 

LSTM cell, there are input gate (𝜂𝑡), hidden gate (𝜉𝑡), forget 

gate (𝜁𝑡), output gate (�⃗�𝑡), hidden state (ℎ⃗⃗𝑡) and cell state (�⃗⃗�𝑡). 

Operations of the forward LSTM cell: 

 

𝜁𝑡 = 𝜎(�⃗⃗⃗�𝜁 [ℎ⃗⃗𝑡−1, �⃗�𝑡] + 𝛽𝜁) (22) 

 

𝜂𝑡 = 𝜎(�⃗⃗⃗�𝜂 [ℎ⃗⃗𝑡−1, �⃗�𝑡] + 𝛽𝜂) (23) 

 

�⃗�𝑡 = 𝜎(�⃗⃗⃗�𝑜 [ℎ⃗⃗𝑡−1, �⃗�𝑡] + 𝛽𝑜) (24) 

 

𝜉𝑡 = 𝑡𝑎𝑛ℎ(�⃗⃗⃗�𝜉 [ℎ⃗⃗𝑡−1, �⃗�𝑡] + 𝛽𝜉) (25) 

 

�⃗⃗�𝑡 =  𝜁𝑡 ⊗ �⃗⃗�𝑡−1 ⊗ 𝜂𝑡 ⊗ 𝜉𝑡  (26) 

 

ℎ⃗⃗𝑡 = �⃗�𝑡 ⊗ tanh(�⃗⃗�𝑡) (27) 

 

Here 𝜎  represents the sigmoid activation function, 𝑥𝑡 

represents the input data, 𝑤  represents the weights and 𝛽 
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represents bias vectors. These defined equations represent the 

steps that take place in forward transmission. Calculations are 

also made in the backward direction in the BiLSTM 

architecture. The hidden state equation of the backward LSTM 

block: 

 

ℎ⃖⃗𝑡 = 𝑓(𝑥𝑡 , ℎ𝑡−1, 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (28) 

 

In the proposed hybrid model, the properties of the outputs 

in the BiLSTM layers are transmitted to the Elmann-RNN 

architecture to be labeled with higher accuracy. There are 

several layers in the Elmann-RNN architecture structure: 

feature extractor block, input layers, hidden layers, and output 

layer. The input layer includes the outputs of the BiLSTM 

architecture as input into the Elmann-RNN structure. Then, 

features are extracted from the input data by means of hidden 

layers. Generally, combined hybrid models aim to increase the 

quality of distinguishing features in the transition of extracted 

features from the first architecture to the second. In this way, 

the Elmann-RNN architecture detects the most distinctive of 

the features. The hidden layer of the Elmann-RNN architecture 

is represented in Eq. (28). The 𝜆𝑡 expression in the equation 

represents the output of the hidden layer. The parameters used 

while generating the output of the hidden layer are: bias vector 

(𝛽𝜆), activation function (𝑓𝜆), Elmann-RNN architecture input 

(𝑥𝑡), weight matrices (𝑤𝜆, 𝑣𝜆). 

 

𝜆𝑡 = 𝑓𝜆(𝑤𝜆𝑥𝑡 + 𝑣𝜆𝜆𝑡−1 + 𝛽𝜆) (29) 

 

As in RNN architectures, Elmann-RNN architecture also 

has a link to store important past entries. This structure is 

called the context layer. Eq. (29) shows the relationship 

between the context layer (𝑐𝑡−1
𝑙 ) and hidden layer (𝜆𝑡

𝑗
) . 

 

𝑐𝑡−1
𝑙 = 𝜆𝑡

𝑗
 (30) 

 

The final result is now revealed in the output layer, which is 

the last layer of the Elmann-RNN architecture. Eq. (30) shows 

the relationship of output layer (𝑂𝑡) with activation function 

(𝑓𝑂), hidden layer (𝜆𝑡), bias vector (𝛽𝑂), weight matrix (𝑤𝑂). 

 

𝑂𝑡 = 𝑓𝑂(𝑤𝑂[𝜆𝑡] + 𝛽𝑂) (31) 

 

At the output of Elmann RNN architecture, there is two 

layer. First layer is Fully Connected Layer (FCL) that 

combines the output weights and deviation vectors from the 

appropriate points to the input features obtained from the data 

sent as input. In addition, there is a softmax layer structure that 

shows which class will be determined according to the 

possibilities at the architectural output. At the exit of the first 

classifier block, it is classified into two different classes as 

healthy or tumor. If the detected class is healthy, the algorithm 

is terminated. However, if the class detected by the first 

classifier is tumor, the hybrid Elmann-BiLSTM architecture 

works, which classifies three different classes: glioma, 

meningioma and pituitary. The second classifier block directly 

uses the input of the first classifier block as its input data. 

 

 

3. RESULTS AND DISCUSSION 

 

In this section, the results of the tests will be detailed in 

comparison with previous studies and the results of popular 

algorithms in the literature. The first part of the proposed 

method consists of a combined VAE-GAN architecture 

designed to generate artificial MR images. Thanks to this 

approach, synthetic medical data can be produced to be used 

in studies with limited data. Tests were also conducted using 

some basic data augmentation techniques (rotation and scaling) 

to test the effect of data augmentation.  

In this study, two different public MRI datasets were 

combined and used to show the performance of the proposed 

VAE-GAN algorithm and Hybrid Elmann-BiLSTM 

architecture against the studies in the literature. All of the 

images in the datasets consist of MRI images. These datasets 

are called Dataset-A and Dataset-B. The images in these 

datasets are two-dimensional. In addition, MRI images in each 

dataset were recorded in different planes (axial, coronal, and 

sagittal). Datasets and data quantities are summarized in Table 

4. The column shown in total in the table shows the data 

produced by the VAE-GAN architecture and the amount of 

data in the datasets. Only one extra synthetic image was 

created from each input data so that the data does not deviate 

from the real images. However, due to the small number of 

data from healthy subjects, two extra images were produced 

from each MR image of healthy subjects. The “Data” column 

indicates the original data size, the “Total” column indicates 

the augmented data size, the “Training Set” column indicates 

the data size to be used for the train, the “Validation Set” the 

data size to be used for validation, and the “Test Set” the data 

size to be used for the test.  

In this proposed method, various performance measures are 

used to compare with other literature studies and popular 

algorithms using the same data. Performance metrics used: 

Precision, F-score, accuracy, recall. In addition to these 

classical metrics, the inception score value, one of the metrics 

frequently used in GAN architecture, is also used as a 

performance metric. The inception score is a metric that 

reveals the relationship between two probability distributions 

[47]. Basically, it uses the Kullback-Leibler divergence 

method when detecting this difference. GAN and DeliGAN 

architectures were also used to compare the results of the 

proposed combined VAE-GAN method [31, 49]. Table 5 

shows the inception score metrics of different data 

augmentation algorithms used for data augmentation. 

The classifier architecture in this study has a hybrid deep 

learning architecture that is more advanced than standard 

algorithms. Over-fitting is a critical problem related to data 

size for deep learning architectures. This problem can be 

solved with VAE-GAN. The main purpose is to solve the 

issues such as over-fitting, which occurs due to the data 

boundary, with the combined VAE-GAN structure, and to 

reach the highest accuracy of the classification results. The 

basic GAN architecture can easily generate the skull shape 

while generating new MRI data. However, it is complicated to 

reproduce the fine details inside the skull. Example images of 

different synthetic data obtained as a result of various 

iterations of the proposed VAE-GAN architecture are shown 

in Figure 4. In determining the number of iterations, the 

Average Inception Score was determined by comparing it with 

the studies in the literature. Although silhouettes resembling 

real images are formed in 15000 iterations, there is a sharpness 

problem. When the number of iterations was increased by trial 

and error, the sharpness problem began to disappear in the 

synthetic images obtained in approximately 20000 iterations. 

In this proposed approach, a two-layer classifier 

architecture is implemented. The first classifier layer divides 
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the data into two classes, and the second classifier layer 

divides the data into three classes. The classification process 

is more complex in the second classification. Some tests were 

performed on different combinations of parameters while 

setting the hyperparameter. 

 

Table 4. Data count information before and after using the combined VAE-GAN model used for data expansion 

 
 

Tumor 
Data Size Training Set 

60% 

Validation Set 

20% 

Test Set 

20%  Axis Data Total 

Dataset A 

Glioma 

Sagittal 495 990 594 198 198 

Coronal 437 874 526 174 174 

Axial 494 988 594 197 197 

Meningioma 

Sagittal 231 462 278 92 92 

Coronal 268 536 319 107 107 

Axial 209 418 252 83 83 

Pituitary 

Sagittal 320 640 384 128 128 

Coronal 319 638 384 127 127 

Axial 291 582 350 116 116 

Dataset B 

Glioma 

Sagittal 307 614 370 122 122 

Coronal 300 600 360 120 120 

Axial 331 662 398 132 132 

Meningioma 

Sagittal 291 582 350 116 116 

Coronal 285 570 342 114 114 

Axial 361 722 434 144 144 

Pituitary 

Sagittal 310 620 372 124 124 

Coronal 324 648 390 129 129 

Axial 267 534 322 106 106 

Healthy 

Sagittal 97 291 175 58 58 

Coronal 43 129 79 25 25 

Axial 360 1080 648 216 216 

 

Table 5. Inception scores of deep learning-based data augmentation algorithms. A higher inception score is a favourable situation 

for the algorithm. This metric gives information about how different the architecture can create images 

 
Data Augmentation Methods Average Inception Score 

GAN Algorithm [31] 1.789 ± 0.009 

DeLiGAN Algorithm [51] 2.352 ± 0.075 

Combined VAE-GAN Algorithm (Proposed) 2.758 ± 0.026 

 

 
 

Figure 4. Examples of data generated by the combined VAE-

GAN model used for data expansion (The images in each 

row from top to bottom were generated after 100, 500, 1000, 

15000 and 20000 iterations, respectively) 

Table 6. Accuracy variation of hybrid Elmann-BiLSTM 

classifier with different optimizers according to different 

learning rates (LR) 

 
LR SGD Adagrad Adam RMSprop 

1 57.137% 64.628% 70.274% 60.274% 

0.5 63.267% 73.481% 82.510% 69.962% 

0.1 73.495% 81.625% 87.397% 76.583% 

0.01 79.382% 84.371% 91.572% 81.349% 

0.001 84.260% 86.921% 92.186% 85.264% 

0.0001 81.628% 85.594% 89.152% 87.735% 

 

First, since the first classifier's structure is more 

straightforward, hyperparameter determination tests were 

performed on the second classifier structure instead of this 

classifier. Firstly, the number of epochs for the classifier was 

determined as 30. Then, according to this epoch's value, it is 

aimed to select the optimizer and determine the learning rates 

of the optimizer. Therefore, various trainings and tests were 

carried out using different types of optimizers, the various 

learning rates of these optimizers, and the data of the VAE-

GAN architecture before the data augmentation. The results of 

these tests are shown in Table 6. According to the highest 

accuracy value, Adam optimizer structure will be used with a 

learning rate of 0.001. The dropout parameter is a parameter 

that takes a value between 0 and 1, and it is usually set as 0.5 

in the literature. However, this ratio should vary according to 

the study. Therefore, tests were conducted with different 

dropout rates for 30 epochs by using Adam optimizer (0.001 
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learning rate) in the second classifier architecture. Table 7 

shows the results of the tests performed using the dataset not 

amplified with the VAE-GAN architecture. As a result of these 

tests, the dropout parameter was determined as 0.3. Along with 

these parameters, the mini-batch size parameter used in the 

classifier is set to 10. 

 

Table 7. Accuracy variation of hybrid Elmann-BiLSTM 

classifier according to different dropout rates 

 
Dropout 

Rates 
0.1 0.2 0.3 0.4 0.5 

Accuracy % 92.186 94.274 98.897 98.761 96.816 

Dropout 

Rates 
0.6 0.7 0.75 0.8 0.9 

Accuracy % 92.452 81.293 76.639 70.102 56.295 

 

In deep learning studies, data imbalance creates significant 

problems in classification. The balance of the data numbers of 

the classes in the dataset directly affects the classifier's 

performance. Therefore, classical data augmentation 

techniques (rotation and scaling) are used, apart from the 

unified VAE-GAN architecture, to solve the class imbalance 

problem and improve the accuracy performance. The skull 

region is then subtracted from the MRI image. A filter was 

used to prevent sharp color transitions in the resulting image. 

In addition, the tumor regions were extracted. The grey density 

difference between the regions is taken into account when 

segmentation. Segmentation of the tumor region plays a 

significant role, especially in detecting healthy patients. 

Because of the absence of hyperintense regions in MRI images 

in healthy individuals, density differences cannot be found. In 

this way, very high accuracy values are achieved in the patient-

healthy individual classification. Features were extracted from 

the edges of the removed tumor regions with the IGWT 

algorithm. The classification architecture reaches the highest 

accuracy value by using a random forest-based feature 

selection algorithm on the obtained features. The features 

determined by the feature selector algorithm are sent to the 

classifier. The first of the classifiers is the patient-healthy 

classification. If the input data is classified as healthy, the 

program is terminated. If the input is classified as a patient, the 

second classifier will continue to operate, responsible for 

classifying the tumor type using the same input. Table 7 shows 

the results of the tests with different data combinations. 

Generally, only the accuracy value is used to determine the 

classification performance. But this is not enough to observe 

the performance of the classifier. Especially in the case of 

unbalanced data, it is necessary to know how accurately the 

classification algorithm classifies which class. Therefore, 

besides the accuracy metric, the recall, precision, and F-score 

metrics are also shown in Table 8. 

Thanks to the hidden layers in each classifier, features are 

extracted, and these extracted features are learned. The 

neurons in the output layer end the algorithm by labelling 

using the texture and edge features from the data sent to the 

classifier as input. While the first classifier contains two tag 

information, the second contains three. A comprehensive 

comparative analysis of the model against standard algorithms 

is shown in Table 9. A comparison of the method proposed in 

this article against existing models is made using different 

metrics. The proposed hybrid Elmann-BiLSTM model 

achieves better accuracy, precision, recall, and F-score than 

other classical machine and deep learning approaches. The 

first classifier makes the diseased-healthy classification. 

Remarkably, the tumour region's segmentation directly affects 

this classification's accuracy. Long Short Term Memory 

Algorithm (LSTM), k-Nearest Neighbor Algorithm (kNN), 

Support Vector Machine Algorithm (SVM), Random Forest 

Algorithm (RF), Multi-layer Perceptron Algorithm (MLP), 

Decision Tree Algorithm (DT), and Gradient Boost Classifier 

Algorithm (GBC) tests were carried out using the data 

amplified by the VAE-GAN architecture combined using 

methods. Accuracy values of 92.960%, 86.606%, 88.242%, 

91.095%, 93.569%, 92.656%, and 89.649% were reached, 

respectively. The proposed hybrid Elmann-BiLSTM 

architecture classifies 5.937%, 12.291%, 10.655%, 7.802%, 

5.328%, 6.241%, and 9.248% higher accuracy than these 

algorithms, respectively. 

Figure 5 shows the confusion matrix of the algorithms in 

Table 9. When the matrices are examined in detail, it is seen 

that the proposed hybrid Elmann-BiLSTM model is a better 

classifier model. In general, all models classify data of healthy 

subjects with high accuracy. The most important reason is the 

absence of hyperintense regions in MRI images. The proposed 

method has considerably higher accuracy in classifying each 

tumor in both the first and second classifier blocks than other 

classical methods used for testing. The most important feature 

of the proposed method is that it correctly separates the input 

features of the model. However, the BiLSTM architecture is 

capable of both forward and reverse trains. In this way, the 

architecture is superior to the classical LSTM. 

 

Table 8. Performance metrics of the two steps hybrid Elmann-BiLSTM model with different data combinations 

 
  First Step Elmann-BiLSTM Classifier Second Step Elmann-BiLSTM Classifier 

 Metrics Healthy Tumor Accuracy Glioma Meningioma Pituitary Accuracy 

A 

Recall 85.000% 97.686% 

96.685% 

91.737% 89.058% 87.158% 

89.546% Precision 75.893% 98.701% 92.128% 86.431% 88.611% 

F-Score 80.189% 98.191% 91.932% 87.725% 87.879% 

B 

Recall 90.000% 98.372% 

97.711% 

95.551% 93.617% 93.169% 

94.259% Precision 82.569% 99.136% 95.754% 92.492% 93.939% 

F-Score 86.125% 98.753% 95.652% 93.051% 93.552% 

C 

Recall 100% 100% 

100% 

97.879% 97.104% 97.617% 

97.596% Precision 100% 100% 98.611% 97.104% 96.744% 

F-Score 100% 100% 98.244% 97.104% 97.178% 

D 

Recall 100% 100% 

100% 

99.576% 98.933% 99.315% 

99.313% Precision 100% 100% 99.576% 99.540% 98.774% 

F-Score 100% 100% 99.576% 99.236% 99.044% 
A: data augmentation techniques are not used, B: only classical data augmentation technique is used, C: only developed combined VAE-GAN data augmentation 

technique is used, D: both classical data augmentation technique and unified VAE-GAN data augmentation technique are used 
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Table 9. Comparison of the data produced by the proposed data expansion method VAE-GAN architecture and the performance 

of the proposed hybrid Elmann-BiLSTM classifier against different algorithms using different metrics 

 
Algorithm Precision F-Score Recall Accuracy 

MLP 93.567% 93.568% 93.569% 93.569% 

SVM 88.407% 88.303% 88.242% 88.242% 

kNN 86.810% 86.685% 86.606% 86.606% 

RF 91.084% 91.088% 91.095% 91.095% 

DT 92.666% 92.657% 92.656% 92.656% 

GBC 89.687% 89.661% 89.649% 89.649% 

LSTM 93.009% 92.970% 92.960% 92.960% 

Proposed 98.897% 98.897% 98.897% 98.897% 

 

 
(a)    (b)     (c) 

 

 
(d)    (e)                     (f) 

 

 
(g) 

 

Figure 5. Confusion matrices of algorithms used for comparison. a: MLP, b: SVM, c: kNN, d: RF, e: DT, f: GBC, g: LSTM 

 

The matrix in which metrics such as precision and recall, 

frequently used in classification algorithms, are obtained is 

called the confusion matrix. The confusion matrix gives 

information about how accurately the classifier classifies 

which class. It also gives us clues about situations that cause 

confusion between classes. Figure 6 shows the complexity 

matrices of the proposed method. The algorithm has been 

tested both as a two-step classifier, as suggested and as a one-

step classifier. 

Figure 6(a) and 6(b) show the complexity matrix of the first 

and second classifier of the two-step classifier, respectively. 

When the complexity matrix of the first classifier is examined, 

it correctly predicts all 299 healthy data and 2329 tumor data. 

The second classifier uses data that the first classifier classifies 

as tumorous. Therefore, it uses a total of 2329 data for testing. 

The second classifier correctly predicted 939 of the 943 glioma 

images from these test data. He misclassified 1 data as 

meningioma and 3 data as pituitary. The second classifier 

correctly predicted 649 of the 656 meningioma images from 

these test data. He misclassified 1 data as glioma and 6 data as 

pituitary. The second classifier correctly predicted 725 of 730 

pituitary images from these test data. Misclassified 2 data as 
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meningioma and 3 data as glioma. Figure 6(c) is shown to 

examine the prediction performance that would be performed 

if the proposed model was a one-step classifier. In this test, the 

same data with the two-step classifier were used for the test. 

The one-step classifier correctly predicted 935 of the 943 

glioma images from these test data. He misclassified 5 data as 

meningioma and 3 data as pituitary. The one-step classifier 

correctly predicted 647 of 656 meningioma images from these 

test data. He misclassified 2 data as glioma and 7 data as 

pituitary. The one-step classifier correctly predicted 718 of the 

730 pituitary images from these test data. He misclassified 7 

data as meningioma and 5 data as glioma. The one-step 

classifier also predicts all 299 healthy person data correctly. 

The main reason why both models accurately predict the data 

of healthy people is that the skull is stripped from the images, 

and the density difference is used in the segmentation process. 

However, due to the increase in the number of classes in the 

one-step classifier, the overall accuracy rate was 98.897%. It 

is also seen from the test results that using a two-step classifier 

increases the accuracy rate. 

 

Table 10. Comparison of proposed methodology results for previous research studies 

 
# Year Dataset Method Overall Accuracy 

[52] 2018 [45] 
It proposes to use the KE-CNN algorithm for brain tumor classification without 

applying any segmentation process. 
Acc.: 93.68% 

[44] 2018 [45] 
For brain tumor classification, the specialist performs segmentation (ROI-based). It 

also applies feature selection using 2D-DWT and 2D-Gabor filters. 
Acc.: 91.9% 

[39] 2018 
989 

images 

Feature extraction was done using the CNN algorithm. Extracted features are used in 

DenseNet-LSTM architecture. 
Acc.: 92.13% 

[53] 2018 Radiopedia 
It proposes a segmentation method on MR images using K-Means and Fuzzy C-Means 

methods. 
Acc.: 91.94% 

[54] 2019 [45] 
After segmentation using Boundary Box, MR images were classified using Capsule 

Network architecture. 
Acc.: 90.89% 

[35] 2019 [45] 
After noise reduction, contrast enhancement and edge detection pre-processing, MR 

images were classified by SVM algorithm. 
Acc.: 86.0% 

[55] 2019 [45] 
After training the GAN architecture, it uses it as a classifier. In addition, 5-Fold cross-

validation is used. 
Acc.: 95.6% 

[56] 2019 
BRATS 

2015 

After skull stripping, morphological operation, and normalization processes, 

classification was made using Enhanced CNN + BAT Algorithms. 

Prec: 87.0% 

Recall: 90.0% 

Acc.: 92.0% 

[57] 2020 [45] 
Bayesian CapsNet architecture, a different approach for classification, is recommended 

for classification. 
Acc.: 73.9% 

[38] 2020 [45] 

In the study, classification by SVM method is advocated after the steps of 

normalization, dense speeded-up robust features, and histogram of gradient approaches 

to ameliorate MRI quality and generate a discriminative feature set. 

Acc.: 94.7% 

[58] 2021 [45] 
Classifying MR images with CapsNet architecture is recommended by applying 5-fold 

cross-validation. 
Acc.: 94.74% 

[59] 2021 [45] 
It classifies MR images with EfficientNet-B0 architecture by applying Bounding Box 

and 5-fold cross-validation. 
Acc.: 98.04% 

[60] 2022 [45] 
Classification of MR images with the EfficientNet-B0 and ResNet50 architectures is 

advocated by applying Bounding Box and 5-fold cross-validation. 
Acc.: 98.95% 

 2022 
Proposed 

Method 

In this proposed approach, tumor classification with the Hybrid Elmann-BiLSTM 

algorithm is proposed using synthetic MR images produced with the combined VAE-

GAN architecture. 

Single Step: 

Acc.: 98.897% 

2-Step: 

Acc. 1: 100% 

Acc. 2: 99.313% 
Acc.: Accuracy, Prec.: Precision 

 

 
(a)                    (b)    (c) 

 

Figure 6. Confusion matrices of the hybrid Elmann-BiLSTM algorithm using data generated with the proposed unified VAE-

GAN architecture 

(a: confusion matrix of first step hybrid classifier, b: confusion matrix of second step hybrid classifier, c: confusion matrix of 

single step hybrid classifier) 
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(a)                    (b) 

 
(c)                    (d) 

 

Figure 7. Validation-accuracy and validation-loss graphs according to test results 

(a: Validation-Accuracy graph of first step hybrid classifier, b: Validation-Loss graph of first step hybrid classifier, c: Validation-

Accuracy graph of second step hybrid classifier, d: Validation-Loss graph of second step hybrid classifier) 

 

Figure 7 shows the validation-accuracy and validation-loss 

graphs. According to iterations, the accuracy is almost 100%. 

When Figure 7(a) is examined, the precision value becomes 

almost 100% after a point. The highest precision value reached 

during the test phase is 100%, and the lowest is 96.744%. The 

validation-loss chart is shown in Figure 7(b). When the graph 

is examined, it is seen that the loss value is almost zero after a 

certain point. Figure 7(c) and 7(d) graphs are validation-

accuracy and validation-loss graphs of the second 

classification block. A graph similar to the first classifier is 

obtained. In general, it is seen that the proposed Elmann-

BiLSTM and combined VAE-GAN architecture achieves high 

accuracy both in data augmentation, segmentation and 

classification. Since most of the studies in Table 10 did not 

apply a data augmentation strategy, the overall accuracy rates 

are lower. It produces very successful results in data 

replication of VAE-GAN architecture. In addition, a solution 

has been created for the over-fitting problem of the model. It 

is also seen that the segmentation and feature extraction 

process against different types of tumors directly increases the 

accuracy. The effect of the density of the MRI images used in 

the segmentation process is eliminated with this proposed 

approach, and the model performs a more efficient 

segmentation process. 

Tumor segmentation improves classification accuracy and 

reveals information about tumor size for radiotherapy and 

tumor surgery clinicians. In this way, an appropriate treatment 

plan can be made. A machine learning-based feature selection 

algorithm was used to eliminate the dimensionality problem of 

the features extracted with IGWT after segmentation, 

increasing the efficiency of both training and testing time. This 

reduces the computation time. The feature selection algorithm 

improves accuracy along with efficiency. In addition, the 

hybridization of the classification model also increases 

classification accuracy. The limited accuracy problem 

encountered in multiple classification studies was somewhat 

overcome with the hybrid approach. The BiLSTM architecture 

combined with the Elmann RNN architecture trains both 

forward and backward, thus improving the ability to 

distinguish features. In the studies encountered in the literature, 

a single-layer multi-classifier is generally used. This affects 

overall success. Therefore, this study proposes a two-layered 

classifier approach, achieving 100% accuracy in patient-

healthy classification. In tumor classification, the accuracy is 

99.313%. When the hybrid Elmann-BiLSTM model combined 

with the proposed VAE-GAN is compared with the studies 

carried out in the last five years in the literature (Table 10), it 

is seen that the accuracy performance of the model is relatively 

high. In the proposed approach, both the VAE-GAN data 

augmentation approach and the classifying Elmann-BiLSTM 

architecture increase the accuracy rate together. 

 

 

4. CONCLUSION 

 

This article proposes a framework that performs two-step 

classification with hybrid Elmann-BiLSTM architecture after 

dataset augmentation with unified VAE-GAN architecture. 

The algorithm is terminated if there is no tumor in the input 

data. If there is a tumor, the tumors are divided into three 

classes as glioma, meningioma and pituitary. Thanks to the 

proposed approach, a system that supports the decision-

making of deep learning-based clinicians is designed with high 

accuracy. The dataset was augmented by combining decoder-
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encoder network and GAN architecture to solve the difficulty 

of obtaining medical images. The mode collapse problem 

encountered in the GAN architecture has been resolved with 

the VAE structure. The features were extracted with the IGWT 

method. However, the use of all features has an effect that will 

both reduce performance and prolong the processing time. A 

Binary Random Forest-based feature selection algorithm is 

used to prevent this and reduce dimensionality problems. A 

two-step classification is performed. The model created by 

hybridizing Elmann RNN architecture and BiLSTM 

architecture is used in both classifier blocks. The first classifier 

classifies only sick and healthy. If the classifier's result is 

healthy, it is concluded before the second classifier starts. The 

data is moved to the second classifier if the classifier's result 

is unhealthy. This classifier performs classification according 

to tumor type. The result of this classification is glioma, 

meningioma and pituitary. 

Two publicly available datasets were used to evaluate the 

proposed model. As a result of the tests, the accuracy of the 

LSTM architecture, which is one of the classical approaches, 

is 92.960%. The accuracy of this proposed framework is 

98.897% for the one-step classifier and 100% and 99.313% for 

the two-step classifier, respectively. It has been proven that 

this framework, proposed in line with the results obtained 

through the tests, can be used as a clinical decision support 

system for clinicians and neurologists. Results were compared 

with studies performed using the same dataset. In addition, the 

framework designed for future studies can be trained for 

different datasets and used to detect various diseases. In 

addition, tumor stage determination can be made using data 

with tumor stages information. 
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