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With the rapid development of computer vision, the applications of image texture 

recognition and classification are increasingly prevalent across various domains, particularly 

in medical imaging, industrial inspection, and remote sensing image analysis, these 

applications hold significant practical importance. Traditional texture recognition 

techniques often rely on manually designed feature extraction methods, which tend to 

perform poorly in complex environments, are sensitive to noise and lighting variations, and 

are limited when dealing with non-uniform or multiscale textures. To address these 

shortcomings, this paper introduces two novel texture analysis methods that enhance the 

robustness of texture features and improve classification accuracy. The first part of the study 

presents the contourlet-kernel spectral regression (KSR) image texture feature extraction 

technique, which, by integrating Contourlet transform with Krawtchouk polynomials, 

effectively enhances the descriptive power and adaptability of features. The second part 

explores a texture image classification method based on domain-multiresolution co-

occurrence matrices (MCM), which significantly improves the accuracy and robustness of 

the classification process by analyzing the co-occurrence characteristics of images at 

multiple resolutions. The introduction of these methods not only optimizes texture 

recognition performance but also advances the application of image processing technologies 

in complex scenarios. 
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1. INTRODUCTION

With the rapid development of computer vision technology, 

image texture recognition and classification has become an 

important research direction in the field of image processing 

[1-4]. Image texture contains rich structural information about 

the scene, making it one of the key elements in understanding 

image content. Traditional methods of texture recognition 

often rely on manually designed feature extraction techniques, 

which are usually limited to specific texture types and 

complexities [5, 6]. To address challenges in various practical 

application scenarios, researchers are increasingly inclined to 

develop intelligent analysis algorithms that can adapt to 

multiscale and diverse textures [7, 8]. 

The study of texture recognition and classification is not 

only of significant importance for scientific research but also 

has a profound impact on the applications in fields such as 

industrial automation, medical image analysis, and remote 

sensing image processing [9-13]. For example, accurate 

texture recognition in medical image analysis can help doctors 

better diagnose diseases; in the field of remote sensing, 

effective texture classification can improve the accuracy of 

identifying land cover types. Therefore, exploring more 

effective methods for texture recognition and classification 

can enhance the analytical capabilities of image data in these 

fields, thereby promoting the advancement and application of 

related technologies. 

However, existing methods of texture analysis have some 

shortcomings. Firstly, many traditional texture feature 

extraction methods are sensitive to noise and lighting changes, 

easily affected by environmental factors, which impacts the 

accuracy of classification [14-17]. Secondly, these methods 

often perform poorly when dealing with highly non-uniform 

or multiscale textures, failing to adequately capture the details 

and layers within complex textures [18-20]. Therefore, 

developing new algorithms to improve the robustness of 

texture features and the efficiency of classification has 

significant practical importance for the advancement of texture 

analysis technology. 

This paper addresses the limitations of existing technologies 

by proposing two new methods of texture analysis. The first 

part introduces the Contourlet-KSR image texture feature 

extraction technique, which combines the multiscale and 

multidirectional advantages of the Contourlet transform with 

the spectral response characteristics of Krawtchouk 

polynomials, effectively enhancing the descriptive power and 

interference resistance of features. The second part discusses 

a texture image classification method based on domain MCM, 

which further improves the accuracy and robustness of 

classification by analyzing the co-occurrence characteristics of 

images at multiple resolutions. Through the application of 

these two methods, this paper not only demonstrates 
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effectiveness in diverse texture environments but also provides 

new research directions and an experimental basis for the 

future development of image texture recognition and 

classification technologies. 

 

 

2. CONTOURLET-KSR IMAGE TEXTURE FEATURE 

EXTRACTION 

 

Compared to traditional wavelet transform methods, 

although wavelet transforms can perform multiscale 

decomposition, their ability for directional decomposition is 

limited and often insufficient to capture complex texture 

directions in images. Therefore, this study introduces the 

Contourlet transform to optimize the image texture feature 

extraction process. Compared to wavelet transforms, the 

Contourlet transform not only retains the characteristics of 

multiscale decomposition but also provides richer directional 

information, which is crucial for revealing the subtle texture 

structures in images. This high directional sensitivity is 

especially important in complex image texture analysis, such 

as vegetation cover in natural scenes or pathological tissues in 

medical images, significantly enhancing the discriminability 

and efficiency of texture features. 

 

 
 

Figure 1. Principle of the discrete Contourlet transform filter 

bank decomposition 

 

The discrete Contourlet transform, also known as the 

pyramidal directional filter bank (DFB), is a composite filter 

structure consisting of a Laplacian pyramid (LP) and a DFB. 

This transform is particularly important in the application of 

image texture feature extraction because it can effectively 

capture the texture information and local details in images. In 

the implementation of the Contourlet transform filter bank 

decomposition, the LP is used to decompose the original 

image into approximate low-frequency components and high-

frequency detail components. This decomposition helps reveal 

the basic structures and singularities in the image, such as 

texture edges and breakpoints. By recursively decomposing 

the approximate component further with LP, the system can 

extract the texture and structural information of the image at 

multiple scales, which is crucial for complex texture analysis. 

Figure 1 shows the principle of the discrete Contourlet 

transform filter bank decomposition. 

The implementation process of the Contourlet transform 

filter bank decomposition involves using the DFB to perform 

multi-directional decomposition on the high-frequency detail 

components obtained after LP decomposition. At this stage, 

singularities located in the same direction are merged into 

single coefficients, forming the Contourlet transform 

coefficients. As the scale increases, the number of directions 

in the Contourlet transform also increases, allowing the 

transform to capture finer texture details at various scales and 

directions. The coefficients in each direction have a gear-

shaped support base, which is very suitable for capturing lines 

and curves in the image, such as texture stripes, thus 

effectively depicting the texture contours of the image. This 

method is particularly suitable for dealing with complex 

texture features in images, such as natural landscape tree 

textures or fabric detail textures. 

Once the Contourlet transform is completed in the discrete 

domain, this transform can be extended to the square-

integrable space of continuous functions, allowing for more 

detailed image analysis in the continuous domain. This process, 

through iterative filter bank operations, decomposes the image 

space into a sequence of multiscale and multidirectional 

subspaces, allowing for exhaustive extraction of texture 

features across various directions and scales. This 

decomposition method is particularly suitable for texture 

recognition and classification, as it captures the directionality 

and scale variations of textures, which is crucial for analyzing 

complex texture patterns in natural scenes such as trees, water 

ripple textures, or artificial environments such as fabrics and 

materials. Moreover, the multiscale and multidirectional 

processing capability of the Contourlet transform ensures that 

texture details from coarse to fine are effectively captured and 

described, greatly enhancing the effectiveness and application 

scope of image texture feature extraction. The orthogonal 

operation is denoted by ⨁, and the approximation component 

at the lowest level is denoted by N0, while the detail component 

at scale 2mk-1 is denoted by Qmk
k,j, then there is: 
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If the scale, direction, and position parameters are 

represented by k, j, and v respectively, the continuous domain 

Contourlet function is denoted by {ϑmk
k,j,v(s)}, which gives the 

expression:  
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Assuming the low-pass analysis filter is represented by hmk
j, 

the framework defined in the low-dimensional space R2 is 

denoted by ωk,l(s), and the oversampling matrix is represented 

by tmk
j, the following definitions apply:  
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In the application of image texture feature extraction, the 

high dimensionality of features typically leads to a high model 
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complexity, thereby affecting learning efficiency. To 

effectively address this challenge, this paper employs the 

Contourlet-KSR method, which is a technique that combines 

the Contourlet transform with the KSR. The Contourlet 

transform, with its capability for multiscale and 

multidirectional decomposition, can extract rich image texture 

information; while KSR, as a nonlinear dimensionality 

reduction technique, not only reduces redundant features but 

also preserves the local geometric structure of the data, i.e., the 

inherent manifold structure of image texture features. This 

method is particularly suitable for image texture feature 

extraction because it not only optimizes the representativeness 

and classification performance of the features but also 

simplifies the computational process through dimensionality 

reduction, enhancing processing speed. Compared to other 

application scenarios, image texture feature extraction places 

a greater emphasis on capturing and describing subtle texture 

differences within images, which is crucial for enhancing the 

accuracy and efficiency of image analysis. 

In the process of image texture feature extraction, the first 

step of applying the KSR algorithm involves constructing a 

neighborhood graph H, which models the low-dimensional 

manifold structure of image data in high-dimensional space. In 

this process, the graph H contains v vertices, each representing 

an image sample au. If two samples au and ak belong to the 

same texture category, they are connected by an edge in the 

neighborhood graph. Such a connection strategy is based on 

the assumption that samples of the same category have similar 

texture properties and therefore should remain close in the 

low-dimensional space. The construction of this neighborhood 

graph ensures that samples which are close to each other in the 

original high-dimensional space remain close when mapped to 

the low-dimensional space, effectively reflecting the intrinsic 

structure and texture patterns of the original data. 

The second step involves determining the weight Q of the 

edges in the neighborhood graph. In graph H, if there is an 

edge connection between vertices u and k, the weight quk is set 

to 1/ mj, where mj is the number of samples belonging to the 

same category j, with z representing the total number of 

categories. This weighting design aims to balance the 

influence of each category's samples in the graph, preventing 

bias in the overall dimensionality reduction results due to a 

larger number of samples in certain categories. If there is no 

edge connection between vertices u and k, the corresponding 

weight quk is 0. This weighting helps maintain the cohesion of 

samples within the same category during the dimensionality 

reduction process while allowing samples from different 

categories to be appropriately separated in the low-

dimensional space, thus enhancing the classifier's performance 

and accuracy in handling image texture features. 

The third step of the KSR algorithm involves calculating the 

response vector b, which is central to the dimensionality 

reduction process. Initially, imagine projecting the 

neighborhood graph H onto a one-dimensional space, resulting 

in the response vector y=[y1,y2....yN]T. 
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To achieve this goal, we first construct a diagonal matrix F, 

where the diagonal element Fuu equals the weighted degree fu 

of vertex u, with fu being the sum of the weights quk between 

vertex u and all other vertices. Next, we define the Laplacian 

matrix M as M=F-Q, where Q is the weight matrix. This 

equation is obtained through a linear transformation:  
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The Laplacian matrix crucially reflects the topological 

structure of the graph and is used to find a low-dimensional 

representation that preserves the local structure of the original 

data as much as possible. Solving the generalized eigenvalue 

problem of this matrix yields the first z largest generalized 

eigenvectors b1, b2, ..., bz, which define the new coordinate 

axes mapped to the low-dimensional space. In the application 

of image texture feature extraction, these vectors help us 

capture the most representative texture features and maintain 

the relative positions and distances between samples in the 

original high-dimensional space, effectively revealing the 

internal texture structure and changes in the image. The 

corresponding generalized eigenvalue problem is:  

 

bQ Fb=  (6) 

 

The fourth step involves the implementation of regularized 

kernel least squares, which is used to optimize and precisely 

calculate the features expressed after dimensionality reduction. 

In this step, we construct a linear function bu=d(au)=βSau, 

where β is a coefficient vector obtained by solving a 

regularized least squares problem. xj is the solution to the 

following regularized least squares problem:  
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In practice, this optimization problem is converted into 

solving a set of linear equations, which are expressed in a 

kernelized form, transforming the original problem into a 

regularized kernel least squares problem:  

 

( )T

j jaa U x ab− =  (8) 

 

The kernel method, by introducing a kernel function J(a,au), 

allows us to perform linear learning in a high-dimensional 

feature space while the actual calculations are still performed 

in the original dimensions.  

 

( ) j jJ U x b+ =  (9) 

 

Thus, the final function d(a) is expressed as 

d(a)=Σv
u=1xj

uJ(a,au), where ak
i is the solution to the regularized 

kernel least squares problem.  
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The fifth step involves using the eigenvectors obtained in 

previous steps to construct the projection matrix Φ=[x1,x2....,xz-

1]∈Rv×z-1, which is obtained by solving the least squares 

problem. This step is critical in the entire dimensionality 

reduction process, mapping the high-dimensional image data 
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to a z-1 dimensional subspace: 

 

a→c=ΦSJ(:,a) (11) 

 

This projection matrix Φ not only simplifies the 

dimensionality of the data but also preserves the important 

structural features of the original data, ensuring that the 

dimensionality-reduced data still retains key information 

about image texture. In this way, the sample data is embedded 

into a lower-dimensional space, effectively extracting the most 

critical features for classification recognition, while reducing 

computational complexity and enhancing processing 

efficiency. 

In the application of the Contourlet-KSR feature extraction 

method to image texture feature extraction, parameter settings 

should be carefully considered to ensure the method can 

effectively process and analyze various texture types. First, for 

the setting of Contourlet transform parameters, adjustments 

need to be made based on the complexity and diversity of 

different image textures to optimize the performance of 

multiscale and multidirectional decomposition, thereby 

capturing more detailed and distinctive texture features. 

Second, in the implementation of the KSR algorithm, the 

construction of the neighborhood graph uses Euclidean 

distance to measure the distance between sample points, as 

Euclidean distance provides an intuitive and practical measure 

of similarity in most texture analysis scenarios. The weights of 

the edges are set using the heat kernel, with the kernel 

parameter set to 3, which helps to strengthen the connections 

within local neighborhoods, ensuring local continuity of 

texture structure and overall class cohesion in the image. 

Finally, a support vector machine (SVM) is used for the 

final classification, where the SVM's kernel parameter is 

selected within a range from 0 to 4 in steps of 0.01. Such fine-

tuning helps find the optimal model complexity, balancing the 

risks of overfitting and underfitting, while the penalty factor C 

remains default, providing a standard level of regularization. 

These parameter settings work together, aiming to maximize 

the recognition capability and classification accuracy of 

texture features extracted from complex image data while 

maintaining manageable computation. 

In the experimental steps of applying the Contourlet-KSR 

feature extraction method for image texture feature 

recognition, the process can proceed as follows, as detailed in 

Figure 2:  

(1) Perform a Contourlet transform on each image, 

decomposing it using multiscale and multidirectional methods 

to obtain several directional subbands and a low-pass subband.  

(2) Calculate the mean and variance of each subband image 

and integrate these statistics into a one-dimensional long 

vector, see Figure 3 for the process. 

(3) Vertically concatenate the statistical feature row vectors 

of all images to form a Contourlet feature matrix.  

(4) Normalize the feature matrix and divide the samples into 

a training set and a test set, typically using even-numbered 

samples for training and odd-numbered samples for testing. 

 

 
 

Figure 2. Flowchart of image texture feature recognition process 

 

 
 

Figure 3. Flowchart of the process for acquiring a one-dimensional long vector 
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(5) Apply the KSR algorithm to perform dimensionality 

reduction on the feature matrix of the training set, and use the 

obtained projection matrix to perform the same reduction on 

the feature matrix of the test set.  

(6) Normalize the feature matrices of the dimensionally 

reduced training and test sets to standardize the data input 

format, enhancing the performance of the classification 

algorithm.  

(7) Finally, input the normalized features and their 

corresponding category labels into a SVM for final 

classification, with its efficient boundary decision function, 

SVM can accurately distinguish between different texture 

categories. 

 

 

3. TEXTURE IMAGE CLASSIFICATION BASED ON 

DOMAIN MCM 

 

In the application scenario of image texture classification, 

to overcome the limitations of traditional spatial domain gray-

level co-occurrence matrices in describing texture features, 

this paper introduces a new feature extraction method—MCM. 

The core of this method lies in the use of non-subsampled 

wavelet transforms to maintain image translational invariance 

and ensure that the size of the processed subbands matches the 

original image size, which is crucial for maintaining the 

stability of statistical features of the image. Non-subsampled 

wavelet transforms allow the capture of texture information at 

different resolution levels, not only enhancing sensitivity to 

image texture details but also maintaining consistency of 

texture features across various scales. Compared to other 

feature analysis methods, MCM is particularly suited for 

texture image classification because it allows for a more 

comprehensive depiction of an image's texture structure and 

patterns by analyzing texture features at multiple resolution 

levels, thus improving classification accuracy and robustness. 

 

 
 

Figure 4. Schematic of non-subsampled wavelet 

decomposition 

 

During the calculation process of MCM, the target image is 

first subjected to M-level non-subsampled wavelet 

transformation. This transformation strategy is particularly 

suitable for texture analysis because it maintains image 

translational invariance without losing any image information, 

and generates 3×M+1 subbands of the same size as the original 

image. Figure 4 provides a schematic of non-subsampled 

wavelet decomposition. This type of transformation allows us 

to analyze the image at different scales, thereby capturing 

more detailed texture features. Subsequently, a co-occurrence 

matrix is calculated for each subband, involving the setting of 

specific parameters such as direction, pixel distance, and 

quantization order. The choices of these parameters directly 

impact the sensitivity and descriptive power of the co-

occurrence matrix. Ultimately, three key statistical measures 

are extracted from each co-occurrence matrix: contrast (CON), 

entropy (ENT), and correlation (COR). These metrics are 

selected as multiresolution co-occurrence features because 

they describe various aspects of texture roughness, complexity, 

and pattern similarity. 

In the transformation domain co-occurrence matrices aimed 

at texture image classification, the choice of specific 

parameters is critical for accurately capturing and describing 

texture features. Below is a detailed analysis of three main 

issues to consider for transformation domain co-occurrence 

matrices: 

(1) Choice of direction parameters: The non-subsampled 

wavelet transform produces horizontal, vertical, and diagonal 

subbands at each scale, which capture texture information in 

different directions of the image. Based on the physical 

meaning of the co-occurrence matrix, particularly the 

definition of correlation (COR), it is reasonable to choose 

direction parameter values consistent with the subband 

directions. For example, for a horizontal direction subband, a 

direction parameter of 0° is appropriate as it best describes the 

texture features in that direction; a vertical direction subband 

should select a direction parameter of 90°, and a diagonal 

direction subband should select a direction parameter of 45°. 

Such parameter matching ensures that the co-occurrence 

matrices can effectively reflect the texture details and 

structural differences in each direction. 

(2) Determination of the distance parameter: The distance 

parameter t reflects the spatial interval of pixel pairs in the 

computation of the co-occurrence matrix, directly related to 

the frequency periodicity of the texture. Research indicates 

that setting t to 1 effectively substitutes for the high-frequency 

components in wavelet features, describing the fine structure 

of the image. In the context of non-subsampled wavelet 

transformation, this choice helps to effectively combine spatial 

features with transformation domain features, enhancing the 

expressive power of texture features while simplifying the 

feature extraction process, making the features extracted from 

the image more reflective of actual texture patterns.  

 

2 , 1,2, ,mt m M= =  (12) 

 

(3) Application of quantization strategies: In co-occurrence 

matrix analysis, traditional methods require uniform 

quantization of gray levels within the range of 0 to 255, 

typically selecting 16 or 32 as the quantization order. However, 

the distribution of subband coefficients after wavelet 

transformation does not follow a uniform distribution, 

especially in the detail subbands, which are characterized by 

"high peaks, long tails, and zero mean", in contrast to the 

nearly uniform distribution of approximation subbands within 

the range of 0 to 1024. Therefore, the choice of quantization 

strategy needs to consider these distribution characteristics to 

more accurately capture and describe the texture information 

in each subband, avoiding the loss of important texture details 

due to inappropriate quantization. Assuming the quantization 

order for the m-th scale detail subband is represented by Δm, 

the formula is as follows: 
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In the research of image texture classification, effective 

feature selection is key to improving classification accuracy 
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and reducing computational resource consumption. Faced 

with a large number of extracted features, such as those 

generated by MCM, direct feature extraction and reduction of 

feature redundancy through spatial transformations like K-L 

transformation or Principal Component Analysis are common 

strategies. Although these transformation methods can reduce 

feature dimensions by eliminating correlations among features, 

they typically sacrifice the interpretability of the features, 

which is undesirable in pattern recognition because features 

with strong interpretability are crucial for understanding the 

decision process and effectiveness of classifiers. To address 

this issue, a new feature selection method is proposed that aims 

to select features from MCMs, gray-level co-occurrence 

matrices, and wavelet energy features that are both physically 

meaningful and complementary. This method considers the 

redundancy and complementarity among features, optimizing 

the feature set by analyzing their correlations, ensuring that the 

selected features are not only statistically effective but also 

directly related to the physical properties of textures. Such a 

strategy not only maintains or even enhances classification 

accuracy but also provides a more intuitive understanding, 

aiding further analysis and interpretation of pattern recognition 

results. This feature selection method is particularly important 

in image texture feature analysis because texture features often 

have high complexity and subtle differences, requiring careful 

handling to ensure effective classification. 

When using MCM for feature extraction in image texture 

classification, the feature selection strategy is crucial for 

effective classification. The statistical measures analyzed by 

MCM include contrast (CON), entropy (ENT), and correlation 

(COR), each with specific physical significance that aids in 

understanding different properties of image textures. CON 

mainly describes the smoothness and clarity of the image, 

while ENT reflects the complexity of the texture. Although 

CON and ENT show high correlation in different directional 

subbands at the same scale, COR exhibits lower correlation 

and can independently reflect the dominant direction of the 

texture. Therefore, in selecting features for texture 

classification, COR from each scale and direction is essential, 

while choosing one direction of CON and ENT per scale is 

sufficient. This strategy not only optimizes based on the 

physical significance of the measures and their correlations but 

also significantly reduces the feature dimensions, thus 

enhancing processing efficiency and classification 

performance. Specifically, by carefully selecting features, the 

dimensionality of multiresolution co-occurrence features can 

be reduced to about half of the original, which is particularly 

important when dealing with large data sets and complex 

image textures. This feature selection method not only 

considers the complementarity and redundancy of features but 

also fully utilizes the independent information of each feature, 

ensuring that the final feature set used for model training and 

classification is both compact and effective. 

In applications aimed at texture image classification, the 

combined use of MCM and wavelet energy features can more 

effectively improve classification accuracy, although this 

method increases the dimensionality of features. Wavelet 

energy features, composed of the energy of wavelet transform 

subbands, are widely used in the field of image analysis due to 

their simplicity and effectiveness. Specifically for texture 

analysis, the energy and entropy (ENT) of wavelet detail 

subbands have some redundancy, as ENT, in describing the 

complexity of the texture, correlates with the energy of 

wavelet detail subbands; the more complex the texture in the 

image, the higher the energy typically is in the detail subbands. 

However, as the approximation subbands represent the low-

frequency components of the image, their energy reflects the 

overall brightness rather than the complexity of details, thus 

the energy of approximation subbands, with generally lower 

entropy values, displays different characteristics, making the 

energy of approximation subbands irreplaceable in texture 

description. This combination of MCM and wavelet energy 

features, making full use of the multiscale and multidirectional 

capabilities of wavelet analysis and the statistical analysis 

advantages of co-occurrence matrices, effectively captures 

both global and local characteristics of images. In texture 

classification, this feature combination not only provides a 

deeper understanding of texture structure but also, through 

complementary properties, reduces the potential for 

information omission by single features, ensuring the 

robustness and accuracy of classifiers when handling various 

complex textures. This demonstrates that in designing texture 

classification systems, the physical significance of features 

and their effectiveness in specific tasks should be 

comprehensively considered, thereby selecting the feature set 

that best represents the image texture attributes. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In comparing the experimental results of different image 

texture feature extraction methods, we can observe that each 

technique performs variably in terms of feature dimension, 

time consumed, recognition rate, and recognition rate after 

KSR dimension reduction (see Table 1). Wavelet 

transformation, with a feature dimension of 31 and a time 

consumption of 28, achieved a recognition rate of 92.31%, 

which increased to 93.45% after KSR dimension reduction. 

Local Binary Patterns (LBP) had a higher feature dimension 

(245) and a time consumption of 31, with an original 

recognition rate of 81.2%, which improved to 87.56% after 

KSR reduction. Gabor filters showed the best time efficiency 

(21) and reached a recognition rate of 91.25% with a feature 

dimension of 241, slightly improving to 92.31% after KSR 

reduction. Dual-Tree Complex Wavelet Transform (DT-

CWT), with the lowest feature dimension (25) and a slightly 

higher time consumption (33), achieved a recognition rate of 

93.54%, which increased further to 95% after KSR reduction. 

The method discussed in this paper, although slightly higher 

in time consumption and feature dimension (51), approached 

the optimal recognition rate at 93.5%, reaching 95.69% after 

KSR reduction, showing excellent performance. From the data 

analysis, it is evident that the Contourlet-KSR image texture 

feature extraction technique effectively combines the 

multiscale and multidirectional properties of the Contourlet 

transform with the spectral response characteristics of 

Krawtchouk polynomials, significantly enhancing the feature's 

descriptive ability and interference resistance. Despite higher 

feature dimension and time consumption, the use of KSR 

dimension reduction technology maintained a high recognition 

rate and even improved it to 95.69%, surpassing other 

traditional methods in performance. 

Table 2 displays the experimental results of the Contourlet-

KSR image texture feature extraction method under different 

configurations of decomposition levels and direction numbers. 

The data shows that with the increase in decomposition levels 

and changes in direction numbers, feature dimension, feature 

extraction time, and classification time all increase, but the 
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corresponding recognition rates also improve. With three 

decomposition levels and a direction number configuration of 

(8,8,8), the feature dimension was 51, feature extraction time 

was 62 milliseconds, classification time without dimension 

reduction was 152 milliseconds, and the recognition rate was 

92.56%, which significantly increased to 96.82% after using 

KSR dimension reduction. In four decomposition levels, using 

a direction number configuration of (4,8,8,16), the feature 

extraction time reached 81 milliseconds, classification time 

without dimension reduction was 178 milliseconds, and the 

recognition rate was 93.68%, stabilizing at 96.87% after KSR 

reduction. These data suggest that by increasing 

decomposition levels and adjusting direction numbers, 

classification accuracy can be significantly improved at the 

expense of some computational efficiency. From these 

experimental results, it can be concluded that the application 

of Contourlet-KSR technology is very effective in image 

texture feature extraction. Although feature extraction and 

classification time slightly increase with the addition of 

decomposition levels and direction numbers, the significant 

improvement in recognition rates demonstrates the advantage 

of this method in enhancing image texture recognition 

accuracy. Particularly, the use of KSR dimension reduction 

technology not only substantially reduces the feature 

dimension but also maintains a lower classification time while 

achieving a very high recognition rate. 

 

Table 1. Experimental results of different image texture feature extraction methods 

 

Method 
Feature 

Dimension 

Time 

Consumed 

Recognition 

Rate 

Recognition Rate After KSR Dimension 

Reduction 

wavelet 31 28 92.31% 93.45% 

LBP 245 31 81.2% 87.56% 

Gabor 241 21 91.25% 92.31% 

DT-CWT 25 33 93.54% 95% 

The proposed 

method 
51 51 93.5% 95.69% 

 

Table 2. Experimental results of the contourlet-KSR image texture feature extraction method 

 

Decomposition 

Level 

Direction 

Numbers 

Feature 

Dimension 

Feature 

Extraction 

Time 

No Dimension Reduction KSR Dimension Reduction 

Classification 

Time (ms) 

Recognition 

Rate (%) 

Number of 

Features 

after 

Dimension 

Reduction 

Classification 

Time (ms) 

Recognition 

Rate (%) 

3 

(4,4,4) 25 41 88 92.15 8 35 96.32 

(2,4,8) 31 43 114 91.32 8 36 96.54 

(8,8,8) 51 62 152 92.56 8 37 96.82 

(4,8,16) 57 66 171 91.87 8 35 96.21 

4 

(4,4,4,4) 33 45 121 93.21 8 35 96.87 

(2,4,4,8) 37 48 136 93.15 8 37 96.25 

(4,8,8,16) 73 81 178 93.68 8 36 96.87 

 

Figure 5 shows the result distribution after processing the 

test set data using the Contourlet-KSR feature extraction 

method, which is a visualization representing features 

projected onto a two-dimensional plane. In this figure, 

different colors represent different image texture categories. 

Observations show that the data points of smooth textures are 

highly concentrated, exhibiting the least intra-class dispersion, 

indicating that images of smooth textures have high similarity 

and consistency in feature space. Granular textures are slightly 

more dispersed but still concentrated. In contrast, line textures 

show the greatest intra-class dispersion, indicating significant 

variability in feature expression for this category. Despite this, 

the inter-class dispersion among the three texture categories is 

similar, indicating that although each texture type varies in 

intra-class similarity, they are distinctly distinguishable from 

each other in feature space. These observations validate the 

effectiveness of the Contourlet-KSR feature extraction 

technique in the task of image texture classification. This 

method not only clearly distinguishes between different 

categories of textures but also reveals the continuous 

variations within similar textures. Therefore, the multiscale 

and multidirectional characteristics of the Contourlet-KSR 

technique, combined with the spectral response characteristics 

of Krawtchouk polynomials, successfully enhance the 

descriptive power of texture features and strengthen the 

robustness of the classification model. 

 

 
 

Figure 5. Data distribution after KSR dimension reduction 

 

Table 3 details the image texture classification results using 

the texture image classification method based on domain 

MCM proposed in this paper. These data display the specific 

recognition effects of different texture types at an overall 

recognition rate of up to 97.8%. From the table, it is evident 

that the recognition rates for line and irregular textures reached 
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100%, demonstrating that the method is highly effective for 

these distinctly characterized texture types. The recognition 

rate for wave textures is also very high, at 98.58%. Although 

the recognition rates for smooth and regular textures are 

slightly lower, at 92.31%, they still perform well overall. Other 

texture types such as rough and mesh textures also showed 

high recognition rates exceeding 96%. These results indicate 

that the method maintains high accuracy even in complex 

texture classification scenarios. Analysis of the data in Table 

3 allows us to conclude that the texture image classification 

method based on domain MCM performs with high precision 

and robustness in practical applications. This method 

effectively utilizes the multiresolution co-occurrence 

characteristics of images to improve classification accuracy, 

especially when dealing with images with complex texture 

features. Additionally, the high recognition rates and low 

misclassification rates demonstrated when processing various 

texture types confirm the practicality and reliability of this 

method in texture classification tasks. 

Table 4 provides the correlation matrix data between non-

subsampled wavelet subband energy and MCM features 

(entropy, contrast, and correlation), reflecting the degree of 

association between these features across different wavelet 

subbands. The data show that wavelet energy maintains high 

correlation with entropy across all subbands, especially in the 

HH1 and HH2 subbands, where the correlation coefficients are 

0.9654 and 0.9574, respectively, indicating a very strong 

positive correlation. Although the overall correlation with 

contrast features is slightly lower, it also reaches 0.9321 and 

0.9236 in the HH1 and HH2 subbands, respectively, indicating 

a strong association with energy features. In contrast, the 

correlation coefficients between wavelet energy and 

correlation are lower across all subbands, particularly lowest 

in the HH1 subband at only 0.3569. These data reveal the close 

relationship between wavelet energy and entropy and contrast 

in texture analysis, while the low correlation with correlation 

may point to the diversity and complementarity of feature 

extraction. 

 

Table 3. Image texture classification results when recognition rate is 97.8% 

 
Type of 

Texture 
Smooth Rough Line Regular Irregular Granular Mesh Stripe Wave Correct Total 

Recognition 

Rate 

Smooth 38 0 0 0 1 0 1 1 0 38 41 92.31% 

Rough 0 132 0 0 2 0 0 0 0 132 131 97.58% 

Line 0 0 14 0 0 0 0 0 0 16 14 100% 

Regular 1 0 0 12 0 0 0 0 0 14 13 92.31% 

Irregular 0 0 0 0 52 0 0 0 0 52 52 100% 

Granular 0 0 1 0 0 12 0 0 0 12 12 91.25% 

Mesh 3 0 0 0 0 0 95 0 0 95 98 96.35% 

Stripe 1 0 0 0 0 0 1 38 1 38 41 92.45% 

Wave 0 0 1 0 0 0 0 0 232 232 225 98.58% 

 

Table 4. Correlation matrix between non-subsampled wavelet subband energy and multiresolution co-occurrence features 

 

Subband 
First Scale Second Scale Approximation Subband 

LH1 HL1 HH1 LH2 HL2 HH2 LL2 

Wavelet Energy-Entropy 0.8546 0.8234 0.9654 0.8851 0.8245 0.9574 0.5124 

Wavelet Energy-Contrast 0.7458 0.7345 0.9321 0.7321 0.6896 0.9236 0.4326 

Wavelet Energy-Correlation 0.4563 0.4265 0.3569 0.4356 0.4478 0.3269 0.5487 

 

 
 

Figure 6. Image texture classification results before and after 

KSR dimension reduction 

 

These experimental results emphasize the effectiveness of 

the non-subsampled wavelet transform in extracting image 

texture features, particularly its high correlation with entropy 

and contrast, providing a powerful tool for texture analysis. 

The high correlation of wavelet energy with entropy and 

contrast supports their capability to capture the complexity and 

clarity of image textures, which are key factors for effective 

texture classification. The texture image classification method 

based on domain MCM, by combining these strongly 

correlated features, can more accurately distinguish different 

texture types, enhancing classification precision and 

robustness. 

Figure 6 details the recognition rates on the training and test 

sets in image texture classification tasks under different kernel 

parameter settings, before and after optimization. Before 

optimization, the recognition rate on the training set 

continually increased with the kernel parameter, eventually 

stabilizing at a high level of 99%. The test set also showed a 

similar trend, initially at 82% and gradually increasing to a 

peak of 100%. This indicates that as the kernel parameter is 

adjusted, the model becomes more precisely adapted to and 

predictive of different texture types. However, post-

optimization data showed a different trend, with a slight 

decrease in the training set's recognition rate, mostly 

stabilizing around 96.8%, while the test set's recognition rate 

significantly dropped from an initial 93.8% to a low of 88.6%. 

This suggests that the optimization process may have led to 

overfitting, where the model is overly tuned to the training data, 

reducing its generalization ability on unknown data. These 
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experimental results suggest that while the model's 

performance on the training set may slightly improve under 

some parameter settings after optimization, its performance on 

the test set indicates that the optimization strategies may not 

have effectively improved the model's generalization 

capability. This phenomenon emphasizes the need for careful 

handling of overfitting issues in model training and 

optimization in image texture classification tasks, especially 

when dealing with multiple parameters and high-dimensional 

feature spaces. The Contourlet-KSR technique and the method 

based on domain MCM, intended to enhance the descriptive 

power of features and robustness of classification, suggest that 

more detailed parameter adjustments and model validation 

processes might be necessary to ensure the practicality and 

effectiveness of the developed models. 

 

Table 5. Comparison of texture image classification accuracy rates for various features 

 

Feature Type 
Spatial Gray-Level Co-

occurrence Features 

Wavelet 

Energy 

Spatial Gray-Level Co-

occurrence Features + 

Wavelet Energy 

MCM 

Uniform 

Quantization 

MCM Non-

uniform 

Quantization 

Wavelet 

Energy 

+ MCM 

Accuracy rate (%) 74.23 91.25 91.24 85.34 92.34 93.27 

Standard 

deviation (%) 
2.14 1.56 1.62 0.68 1.14 1.08 

 

Table 5 compares the accuracy rates of various features in 

texture image classification tasks, including individual spatial 

gray-level co-occurrence features, wavelet energy features, 

their combinations, and MCM with uniform and non-uniform 

quantization. The data reveal that using spatial gray-level co-

occurrence features alone resulted in the lowest accuracy rate 

of 74.23% with a standard deviation of 2.14%, indicating that 

while this method has a baseline effectiveness, it does not 

perform particularly well with complex texture images. Using 

wavelet energy features alone significantly improved the 

accuracy to 91.25%, showing a higher effectiveness. 

Combining spatial gray-level co-occurrence features with 

wavelet energy yielded an accuracy rate almost the same as 

using wavelet energy alone, indicating that adding spatial 

gray-level co-occurrence features did not bring additional 

improvements. The accuracy rates for MCM uniform 

quantization and non-uniform quantization were 85.34% and 

92.34%, respectively, with non-uniform quantization 

performing better, showcasing the potential of this technology. 

The highest accuracy came from the combination of wavelet 

energy and MCM features, reaching 93.27%, also with a low 

standard deviation of 1.08%, indicating optimal stability and 

efficiency. 

These experimental results highlight the effectiveness and 

superiority of the texture image classification method based on 

domain MCM proposed in this paper. In particular, the 

combination of wavelet energy and MCM features not only 

increased the classification accuracy but also ensured the 

stability of results, suggesting that integrating these two 

technologies can more effectively capture and utilize texture 

information for precise classification. Moreover, the 

performance of non-uniform quantization of MCM features 

being better than uniform quantization further proves the 

importance of considering non-uniform strategies in texture 

feature extraction and classification. 

 

 

5. CONCLUSION 

 

This paper successfully proposed and experimentally 

validated two innovative methods for texture analysis, 

designed to overcome the limitations of existing technologies 

and significantly enhance the accuracy and robustness of 

texture image classification. The first method, the Contourlet-

KSR image texture feature extraction technique, effectively 

utilizes the multiscale and multidirectional characteristics of 

the Contourlet transform, along with the spectral response of 

Krawtchouk polynomials, to enhance the descriptive power of 

features and their resistance to interference. The second 

method, a texture image classification technique based on 

domain MCM, refines feature expression by analyzing the 

multiresolution co-occurrence characteristics of images, 

thereby improving the precision and efficiency of the 

classification process. 

Experimental results demonstrated that various image 

texture feature extraction and classification methods display 

distinct advantages and limitations in different testing 

scenarios. In particular, the Contourlet-KSR method excels in 

feature dimension and computational efficiency, showing 

better classification accuracy and stability compared to 

traditional methods. The KSR dimension reduction technique 

further optimizes data distribution, enhancing processing 

efficiency and classification accuracy. Additionally, the high 

correlation coefficients between non-subsampled wavelet 

subband energy and MCM features validate the effectiveness 

of these features in capturing texture information. A 

comprehensive comparison of various features also confirms 

that combining wavelet energy with MCM features achieves 

the optimal accuracy rate for texture image classification. 

Despite significant achievements in this study, there are still 

some limitations. For example, the current methods may still 

require further adjustments and optimizations for highly non-

uniform texture images. Moreover, although the results 

indicate that the optimized methods might exhibit overfitting 

in some cases, affecting the model's generalization capability, 

this highlights the need for future research to focus more on 

the generalizability and practicality of models. Future research 

directions could include further exploration and development 

of new feature extraction and classification algorithms to 

address more complex texture classification challenges. 

Additionally, researching more effective dimension reduction 

techniques and noise resistance strategies will also be crucial 

for ensuring reliable and robust classification results in 

practical applications. By continuously optimizing and 

refining these technologies, we can anticipate broader 

applications in the field of image processing and machine 

vision in the future. 
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