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In electrical systems, diverse power quality disturbances (PQDs) often contain varying 

levels of noise, presenting significant challenges in their analysis and classification. This 

study proposes an innovative approach, employing a convolutional neural network (CNN) 

optimized in conjunction with wavelet synchrosqueezed transform (WSST) for the efficient 

detection and classification (D&C) of PQDs. A comprehensive dataset, encompassing 21 

hybrid noisy-class instances comprising both singular and multiple PQDs under various 

noise intensities, was meticulously assembled. These datasets, encompassing time-series 

signals, were subjected to training and testing on a high-performance workstation using the 

CNN model, notably without the prerequisite of pre-processing, a deviation from 

conventional methodologies. The outcomes of this research highlight the substantial efficacy 

of the optimized CNN model. In environments characterized by a Signal-to-Noise Ratio 

(SNR) between 20 to 60 dB, the model achieved a peak accuracy of 99.93%. Remarkably, 

in scenarios with SNR equal to or exceeding 50 dB, the model demonstrated a perfect 

accuracy rate of 100%. This underscores the robustness of the proposed WSST-enhanced 

CNN framework, particularly in scenarios plagued with intense noise and diverse PQD 

classes. The optimization of the CNN model was achieved through an exhaustive 

exploration of the hyperparameter space within the WSST-based datasets. This 

methodological approach not only affords high accuracy but also significantly reduces 

computational load. 
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1. INTRODUCTION

Power systems are supposed to perform under certain 

system frequencies and amplitudes, but these items are 

variable in the field. This situation affects the health, security, 

and efficiency of the power systems negatively. For this reason, 

monitoring and assessment of power quality momentarily 

have great importance. Some standardizations, like IEEE 1159, 

1459, etc., propose the detailed properties of these effects and 

models [1-5]. The disturbances affecting negatively the power 

systems emerge alone or together in a window as flicker, 

harmonics, notch, sag, interruption, swell, etc. These occur in 

the range of a half-cycle to two hours in any interval and 

magnitude [1, 5]. Fourier transform (FT) is a basic signal 

processing method to analyze PQD, but it has some problems, 

like spectral leakage. For this reason, it is recommended to 

work with windows of 0.2 seconds in the standard of the 

Electrotechnical Commission, the IEC-61000-4-7 [3]. Thus, 

minimizing the spectral leakage in Fast Fourier Transform 

(FFT) for power systems with a fundamental system frequency 

of 50 Hz allows for working with a frequency resolution of 5 

Hz and N = 64 (26) samples per cycle. For this reason, as in 

some studies in studies [6-11], the sampling frequency is 

chosen as 3200 Hz in this study, too. The selection of machine 

learning algorithms’ (MLA) parameters seriously affects the 

performance of PQD D&C, and then the algorithm's accuracy 

with the optimum hyperparameters is increased [12]. 

Measurement of the fundamental frequency, which is 

sensitive to sag and harmonics, is essential and is estimated 

with a comb filter-based hybrid system [13]. The presence of 

interharmonics shows that subharmonics seriously damage the 

detection, measurement, and analysis of the harmonics [14]. 

Similarly, the measurement of the flicker is affected by not 

only low-frequency interharmonics (0.5–35 Hz) but also the 

subharmonics created by the interactions of these 

interharmonics with each other [8]. The standard IEC 

flickermeter cannot detect the flicker effects of high-frequency 

components that are present in the field. For this reason, the 

IEC flickermeter ought to be revised for the frequency range 

of 35 Hz and higher frequencies (from 450 Hz to a few KHz) 

[15]. The high-frequency interharmonics near the fundamental 

frequency also have a visible flicker effect but are not 

detectable by the standard flickermeter of IEC-61000-4-15. 

This problem was solved with a new flickermeter based on 

voltage peak detection and a curve compatible with this 

flickermeter at intervals of 5-95 Hz [6]. Those for only high 

frequency and the whole frequency, respectively, can be 

analyzed up to 950 Hz, too [7, 9]. Transient stability can be 

analyzed with the transient stability boundary, which separates 

the region as a secure and an unsecured one, by a sparse 
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logistic classifier method. This method is better in comparison 

with other methods such as k-Nearest Neighbors (kNN), 

Support Vector Machines, and Linear Logistic Classifiers [16]. 

The envelope estimation, essential for all the features of the 

whole disturbance, can be analyzed with the signal geometric 

properties as well as FFT [17]. A comparative study with 

different MLAs based on feature selection showed that 

Random Forest with low-number features has more significant 

performance than the other MLAs [18]. This study also 

revealed a time-varying grid-noise effect on the signal of the 

experimental setup. Adaptive Process Noise Covariance 

Kalman A filter-based sag disturbance detection method can 

define the times of start and stop of a sag event and phase jump 

with the help of the estimated process noise [19]. A method 

for the detection and characterization of interruption and swell 

was introduced by using a dataset generated on MATLAB or 

Simulink [20]. Another signal processing method used for the 

detection of PQDs is wavelet transform (WT). Although this 

technique contains some filter banks that make it more robust 

than FFT, its enhanced versions are now available to increase 

its precision rate. For neighbor disturbances like sag and 

interruption, a detection method converting waveforms of PQ 

into 2D-binary vectors, Deep Learning (DL), and Maximal 

Overlap Discrete Wavelet Transform (MODWT), has been 

achieved robustly for a noisy field [21]. So far, the entire study 

is about analyzing each disturbance in detail. While all this 

process is applied to each disturbance focally and distinctly, 

that brings the computational load together. Instead of this 

long process, there are three-level processes such as detection, 

classification, and quantification. Detection and classification 

processes, which are important but time-consuming and hard, 

have motivated researchers recently. 

The single and multiple power measurement parameters are 

calculated by using the Hilbert transform (HT) and the 

undecimated wavelet packet transform under the standard 

IEEE 1459-2010 [22]. This method is also used to evaluate 

transient and interharmonic disturbances [23]. A hybrid PQD-

DC method of Rule-Based Decision Tree and Stockwell 

Transform (ST) is effective for low-number classes [24]. The 

improved version of ST, the Discrete Orthogonal ST method, 

is more capable than the others like the discrete wavelet 

transform (DWT), short-time Fourier transform (STFT), and 

ST [25]. A time-frequency-Scale transform method, a Hann 

window that can operate scaling and shifting, provides noise-

immunity classification with a high accuracy rate and a 0.2-

sec window length [26]. A method based on the fractional 

Fourier transform is somewhat better than the ST method for 

the classification of PQDs [27]. A hybrid method combining 

the features of ST and HT is effective for complex PQDs [28]. 

The Volterra series with the Type-2 Fuzzy Logic System with 

MLAs performs well for PQDs [29]. Another method using 

dual strong tracking filters and the rule-based Extreme 

Learning Machine achieves higher performance than other 

similar methods [30]. The best result of the space comprising 

some different pairs of signal processing algorithms and 

MLAs was obtained for kNN+HHT (Hilbert Huang Transform) 

[31]. The hybrid method of Kalman filter and fuzzy expert 

system has been studied in limited noisy environments and 

classes [32]. In a two-level method, Kalman filter-based 

generalized PQD recognition, fundamental frequency, and 

amplitudes of the harmonic measurement are made at the first 

level. In the second one, instantaneous total harmonic 

distortions and related statistical rates are obtained [33]. The 

method composed of sparse signal decomposition and 

decision trees classifies noiseless synthetic high-number 

classes with relatively low accuracy [34]. The hybrid model, 

including Multi-Objective Grey Wolf Optimizer, 2D-Riesz 

Transform, and kNN, has performed higher than the other 

similar MLA-based hybrid models [35]. The novel method 

using the reformation of Euler’s rotation hypothesis detailed 

the PQDs as 3D problems, and this has provided more 

achievement [36]. The Simple Gated Recurrent Network-

based PQD algorithm has higher speed, accuracy, and lower 

complexity in comparison with the others [37]. Time-

Dependent Spectral Featured and Adaptive kNN with 

Excluding Outliers-based PQD D&C method were proposed 

in study [38]. The hybrid method of classification of time-

series features and the significant zero crossings of derivatives 

has competitive results on different popular datasets when 

compared to the widely used MLAs [39]. In most studies, the 

advantages of some time- and frequency-domain signal 

processing transform techniques and similar techniques 

compatible with MLAs were used for the detection and 

classification of PQDs. An evolving Gaussian fuzzy 

classification-based model is effective for low-number classes 

[40]. Another two-level hybrid model, including Variational 

Mode Decomposition and Detrended Fluctuation Analysis, is 

more robust than the compared techniques in the study [41]. It 

is underlined that real-time analysis of the PQD is hard and in 

a premature stage [33, 42]. 

In addition to the above, there are some studies based on 

wavelet transform and CNN for PQDs, as follows: A DWT-

based effective feature extraction method for PQD was 

examined in study [43] in a noise-free environment. Optimum 

hybrid models, including base-wavelets and MLAs, were 

searched under noisy cases. It was understood that each MLA 

should pair a different base wavelet under different cases to 

gain maximum performance [44]. A 1D and 2D CNN-based 

hybrid method was performed for synthetic noise in study [45] 

and found to have more performance but nearly the same 

complexity when compared with the others. A hybrid model 

consisting of a temporal convolutional network and a CNN has 

been performed for different cases in study [46] under 

noiseless conditions. MODWT and the DL-based hybrid 

method have been proposed to detect differences between the 

sag and interruption. A spectrogram- and DL-based PQD 

D&C method was achieved in study [47] with a low-number 

class and narrow-range noise. Labeling methods based on DL 

are proposed, and the results of these studies are promising for 

low-number classes [48, 49]. An image-based deep learning 

study was carried out on a synthetic dataset with high accuracy 

[50]. The bagging LSTM method in study [51] performed with 

high accuracy for a synthetic high-number-classes dataset. In 

the study in study [52], a method using a CNN has a high 

accuracy rate for a noise-free synthetic dataset. Also, this study 

reveals that the Adam optimizer is more usable than the other 

optimizers for PQD classification. A hybrid method based on 

deep learning and 2D scalograms has high accuracy for a 

synthetic dataset generated in MATLAB or Simulink 

Simscape due to the IEEE 5 bus [51]. 

A comprehensive study states the requirement of time-

frequency analysis to analyze non-stationary signals in real life. 

That study comparing time-frequency signal processing 

methods on biomedical signals shows that the most successful 

algorithm is Synchrosqueezed Transform (SST) + CNN 

among all considered methods like FFT, WT, HHT, etc. [53]. 

This method is declared to be enhanced and applied to other 

variational signals in different fields for future applications 
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[53]. Power Quality Analysis needs robust time-frequency-

based methods like SST and CNN since PQDs have similar 

characteristics to biomedical ones in terms of time variability, 

noisiness, and diversity, which require high robustness. For 

these reasons, an enhanced version of this algorithm, WSST 

and CNN, is selected to generate time-frequency images from 

PQD signals in the time domain, and then these images will be 

utilized to detect and classify them. 

As can be seen, the algorithms for the detection and 

classification of PQDs have been carried out restrictedly with 

a synthetic dataset, low-number classes, a noiseless 

environment, pre-processing by data degradation leading to 

measurement error, etc. For all these boundaries, this paper 

proposes a PQD D&C method that is robust to noise, effective 

for high PQD classes, and reduces the process carried out with 

the optimization of a CNN and WSST. As a result, all of the 

requirements mentioned earlier will be met. Moreover, 

according to the best knowledge of the author and as 

mentioned above, although WSST and CNN are well-known 

methods, no study has been conducted to obtain the best 

parameters from the hybrid model created by these methods 

for the detection and classification of PQDs. 

Objective 

The primary objective of this research is to develop a hybrid 

methodology that facilitates rapid and highly accurate 

detection of PQDs within noisy and dynamically fluctuating 

power system signals. This approach leverages the combined 

strengths of CNN and WSST to achieve superior accuracy and 

robustness in PQD detection. 

Contributions 

This study makes several significant contributions to the 

field of power quality analysis: 

(1) Data Generation and Preparation: 

-Data for this research will be generated entirely at random, 

adhering to the IEEE 1149 standard. 

-The dataset will incorporate noise variably added across a 

broad spectrum, ranging from 20 to 60 dB. 

-A total of 21 distinct PQD classes will be delineated and 

analyzed. 

(2) Innovative Approach: 

-This study is pioneering in its use of WSST for the 

detection of power quality issues. 

-It also marks the first instance of a hybrid PQD detection 

and classification (D&C) method that synergizes the 

optimization capabilities of both CNN and WSST. 

Structure 

Section 1 delineates the various PQD classes, elucidated 

through detailed equations and figures. Sections 2 and 3 

provide an in-depth exploration of the WSST technique and 

CNN algorithms, including an examination of the relevant 

hyperparameters. In Section 5, the proposed PQD D&C 

method, which focuses on the Optimization of CNN with 

WSST, is defined and elaborated upon, incorporating models 

and block diagrams for clarity. Section 6 presents the 

numerical results of the study, featuring comparative analyses 

via figures and tables. Section 7 describes the experimental 

setup and the process flowchart employed to gather the dataset. 

Finally, Section 8 discusses the findings of the study and 

explores potential avenues for future research in this area. 
 

 

2. POWER QUALITY DISTURBANCES 
 

In the IEEE 1159 standard, all models of power quality 

disturbances and their limitations are given in detail. These 

models and limitations are characterized by different times, 

frequencies, and amplitudes. These disturbances, such as 

interruption, sag, swell, harmonics, flicker, transients, spikes, 

and notches, emerge single or multiple. 

Each PQD labeled in the range from C1 to C21 was defined 

in Table 1. All the parameters of the classes are generated in a 

noisy environment in a range of 20 dB to 60 dB randomly 

according to given standard intervals. 

The variable parameters in Table 1, i.e., amplitude, 

frequency, and time matrices, are given in the following Eqs. 

(1)-(3). Moreover, the elements of these matrices have also 

been constructed randomly in the range of intervals given in 

Table 1 and then waveform datasets prepared accordingly. 

 

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

=
[𝛼𝑠𝑎𝑔 , 𝛼𝑠𝑤𝑒𝑙𝑙 , 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 , 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟  , 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ,

𝛼3, 𝛼5, 𝛼7, 𝛼𝑛𝑜𝑡𝑐ℎ , 𝛼𝑠𝑝𝑖𝑘𝑒
] 

(1) 

 

𝑡𝑖𝑚𝑒 = [𝑡1, 𝑡2, 𝑡3, 𝑡4 , 𝑡5, 𝑡6, 𝜏] (2) 

 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = [𝑓0, 𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟 , 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡] (3) 

 

For minimizing spectral leakage, the Electrotechnical 

Commission in IEC-61000-4-7 recommends working with 

windows of 0.2 seconds, which provides a 5 Hz resolution for 

analysis with a 3.2 kHz sampling frequency [3]. For this 

reason, as in some studies [6-11], this sampling frequency is 

chosen for this study, too. The other phenomenon, the number 

of signals, is defined by a relationship among the number of 

classes (21), the number of noise ranges (9- for 20: 5: 60 dB), 

and the number of flicker curve frequencies, which is 35 in 

IEC 61000-4-15 (35). Namely, the sampling frequency, 

window length, and number of signals are selected as 3.2 kHz, 

0.2 s (10 cycles), and 6615 (corresponding to 21x9x35) based 

on IEC 61000-4-7, 4-15, and IEEE 1459 standards, 

respectively. 

In this study, all time-series PQD signals are generated as 

models in Table 1. Then the noises are loaded onto these 

signals in different ranges randomly, too. Owing to the fact 

that the IEC flicker meter standard has proposed a flicker 

curve consisting of 35 different frequencies versus amplitudes, 

this number has been selected as a reference for the research. 

Similarly, 35 different time-series signals between 20 dB and 

60 dB for each class are generated, and thus, a total of 6615 

different signals have been made out. Before the CNN training, 

these signals were transformed by WSST, and so the dataset 

was converted from 1D to 2D. 

All waveform figures except for pure signal C1 are 

presented for a 60-dB noisy environment in Figure 1. These 

figures are prepared with reference to Table 1, and the 

parameters like amplitude, time, and frequency are entirely 

randomly selected in the given range. 
 

 

3. WAVELET SYNCHROSQUEEZED TRANSFORM 
 

A precise analysis is important for power systems. The 

widely used method is FFT for analysis. It ensures some 

information on only the frequency domain for one window 

domain with instability due to noise and variations. Also, this 

method has some disadvantages, like Gibbs's effect and 

spectral leakage. A more powerful method used with sliding 

windows and FFT is STFT. This provides in-phase 

information about time and frequency. However, STFT also 

has similar disadvantages since it is based on FFT. Methods 
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based on WSST have the most powerful performance, 

according to the study [53]. Another method, continuous 

wavelet transform (CWT), is better than the ones mentioned in 

noisy and variational fields. WSST emerges with the 

enhancement of CWT by squeezing the wavelet-transformed 

signals [54, 55]. Also, WSST provides more robustness to 

noise and variations in the signal frequency. For that reason, it 

is preferred to transform the PQD signals. 

The WSST method is useful for AM (amplitude modulation) 

and FM (frequency modulation). Modulated signals have 

different types of components, like those in PQs. In the real 

world, these PQs are available in multiples and AM or FM 

modulated with different values of parameters. For instance, a 

pure signal can be considered to make WSST. First of all, 

CWT is applied to this signal as in Eq. (4). In this equation, 𝜓: 

wavelet window,  �̅�: conjugate of 𝜓, b is time-shifting and a 

is the coefficient of scaling with the help of Plancherel’s 

theorem, FFT, and the time-shifting and scaling properties of 

FFT, the equation can be reconstructed (5). 

 

𝑊𝑠(𝑎, 𝑏) = ∫ 𝑣(𝑡)𝑎−1 2⁄ 𝜓(
𝑡 − 𝑏

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑡 (4) 

 

Table 1. Mathematically models and related parameters of power quality disturbances 

 
Class Type Model Equation Parameter 

C1 Pure 𝑣(𝑡) = sin(2𝜋𝑓0𝑡) 𝑓0 = 50 𝐻𝑧 

C2 Sag 𝑣1(𝑡) = [1 − 𝛼𝑠𝑎𝑔(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin (2𝜋𝑓0𝑡) 

0.1 ≤ 𝛼𝑠𝑎𝑔 ≤ 0.9 

𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

𝑇0 = 1 𝑓0⁄        

𝑢: 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

C3 Swell 𝑣2(𝑡) = [1 + 𝛼𝑠𝑤𝑒𝑙𝑙(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin (2𝜋𝑓0𝑡) 
0.1 ≤ 𝛼𝑠𝑤𝑒𝑙𝑙 ≤ 0.8        

𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

C4 Interruption 𝑣3(𝑡) = [1 − 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin (2𝜋𝑓0𝑡) 
0.9 ≤ 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 ≤ 1       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

C5 Flicker 𝑣4(𝑡) = [1 + 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟sin (2𝜋𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟𝑡)] sin (2𝜋𝑓0𝑡) 
0.05 ≤ 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 0.2794       

1 𝐻𝑧 ≤ 𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 25 𝐻𝑧 

C6 Transient 𝑣5(𝑡) = sin(2𝜋𝑓0𝑡) + 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3) − 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.1 ≤ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 0.8        

0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

C7 Harmonic 𝑣6(𝑡) = sin(2𝜋𝑓0𝑡) + 𝛼3 sin(2𝜋3𝑓0𝑡) + 𝛼5 sin(2𝜋5𝑓0𝑡) + 𝛼7 sin(2𝜋7𝑓0𝑡) 0.05 ≤ 𝛼3, 𝛼5, 𝛼7 ≤ 0.5 

C8 Notch 

𝑣7(𝑡) = sin(2𝜋𝑓0𝑡)

− 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑛𝑜𝑡𝑐ℎ

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} 

0.2 ≤ 𝛼𝑛𝑜𝑡𝑐ℎ ≤ 0.4        

0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0       

𝑠𝑖𝑔𝑛: signum 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

C9 Spike 

𝑣8(𝑡) = sin(2𝜋𝑓0𝑡)

+ 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑠𝑝𝑖𝑘𝑒

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} 

0.2 ≤ 𝛼𝑠𝑝𝑖𝑘𝑒 ≤ 0.4       

 0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0 

C10 
Sag + 

Harmonic 
𝑣9(𝑡) = [1 − 𝛼𝑠𝑎𝑔(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑣6(𝑡) 

0.1 ≤ 𝛼𝑠𝑎𝑔 ≤ 0,9       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0       𝑇0 = 1 𝑓0⁄  

C11 
Swell +  

Harmonic 
𝑣10(𝑡) = [1 + 𝛼𝑠𝑤𝑒𝑙𝑙(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑣6(𝑡) 

0.1 ≤ 𝛼𝑠𝑤𝑒𝑙𝑙 ≤ 0.8        

𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

C12 

Interruption 

+  

Harmonic 

𝑣11(𝑡) = [1 − 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑣6(𝑡) 
0.9 ≤ 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 ≤ 1       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

C13 
Flicker + 

Harmonic 

𝑣12(𝑡) = [1 + 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟 sin(2𝜋𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟𝑡)] sin(2𝜋𝑓0𝑡) + 𝛼3 sin(2𝜋3𝑓0𝑡)

+ 𝛼5 sin(2𝜋5𝑓0𝑡) + 𝛼7 sin(2𝜋7𝑓0𝑡) 

0.05 ≤ 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 0.2794       

1 𝐻𝑧 ≤ 𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 25 𝐻𝑧 

0.05 ≤ 𝛼3, 𝛼5, 𝛼7 ≤ 0.5 

C14 
Sag + 

Transient 

𝑣13(𝑡) = [1 − 𝛼𝑠𝑎𝑔(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin(2𝜋𝑓0𝑡)

+ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3) − 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.1 ≤ 𝛼𝑠𝑎𝑔 ≤ 0.9       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0        

0.1 ≤ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 0.8        

0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

C15 
Swell + 

Transient 

𝑣14(𝑡) = [1 + 𝛼𝑠𝑤𝑒𝑙𝑙(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin(2𝜋𝑓0𝑡)

+ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3) − 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.1 ≤ 𝛼𝑠𝑤𝑒𝑙𝑙 ≤ 0.8       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

0.1 ≤ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 0.8      

  0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 
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C16 
Spike + 

Transient 

𝑣15(𝑡) = sin(2𝜋𝑓0𝑡)

+ 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑠𝑝𝑖𝑘𝑒

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} + 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3)

− 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.2 ≤ 𝛼𝑠𝑝𝑖𝑘𝑒 ≤ 0.4       

 0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0       

0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

C17 
Notch + 

Transient 

𝑣16(𝑡) = sin(2𝜋𝑓0𝑡)

− 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑛𝑜𝑡𝑐ℎ

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} + 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3)

− 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.2 ≤ 𝛼𝑛𝑜𝑡𝑐ℎ ≤ 0.4      

  0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0       

0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

C18 
Flicker + 

Transient 
𝑣17(𝑡) = [1 + 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟sin (2𝜋𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟𝑡)] sin (2𝜋𝑓0𝑡) + 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−

(𝑡−𝑡3)
𝜏 (𝑢(𝑡 − 𝑡3)

− 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.05 ≤ 𝛼𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 0.2794       

1 𝐻𝑧 ≤ 𝑓𝑓𝑙𝑖𝑐𝑘𝑒𝑟 ≤ 25 𝐻𝑧 

0.1 ≤ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 0.8        

0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

C19 
Swell + 

Spike 

𝑣18(𝑡) = [1 + 𝛼𝑠𝑤𝑒𝑙𝑙(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin(2𝜋𝑓0𝑡)

+ 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑠𝑝𝑖𝑘𝑒

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} 

0.1 ≤ 𝛼𝑠𝑤𝑒𝑙𝑙 ≤ 0.8       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

0.2 ≤ 𝛼𝑠𝑝𝑖𝑘𝑒 ≤ 0.4       

  0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0 

C20 
Sag + 

Notch 

𝑣19(𝑡) = [1 − 𝛼𝑠𝑎𝑔(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin(2𝜋𝑓0𝑡)

− 𝑠𝑖𝑔𝑛(sin(2𝜋𝑓0𝑡)) {∑ 𝛼𝑛𝑜𝑡𝑐ℎ

9

𝑛=0

[𝑢(𝑡 − (𝑡5 + 0,02𝑛))

− 𝑢(𝑡 − (𝑡6 + 0,02𝑛))]} 

0.1 ≤ 𝛼𝑠𝑎𝑔 ≤ 0.9       

 𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

0.2 ≤ 𝛼𝑛𝑜𝑡𝑐ℎ ≤ 0.4      

  0 ≤ 𝑡5, 𝑡6 ≤ 0.5𝑇0 

0.01𝑇0 ≤ 𝑡6 − 𝑡5 ≤ 0.05𝑇0 

C21 

Interruption 

+ 

Transient 

𝑣20(𝑡) = [1 − 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] sin (2𝜋𝑓0𝑡)

+ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑒−
(𝑡−𝑡3)

𝜏 (𝑢(𝑡 − 𝑡3) − 𝑢(𝑡 − 𝑡4)) sin(2𝜋𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡𝑡) 

0.9 ≤ 𝛼𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 ≤ 1      

  𝑇0 ≤ 𝑡2 − 𝑡1 ≤ 9𝑇0 

0.1 ≤ 𝛼𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 0.8       

 0.5𝑇0 ≤ 𝑡4 − 𝑡3 ≤ 3𝑇0 

300 𝐻𝑧 ≤ 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 ≤ 900 𝐻𝑧       

8 𝑚𝑠 ≤ 𝜏 ≤ 40 𝑚𝑠 

 

 
 

Figure 1. PQD time-series waveform 
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(a) Time-series signal                                                                     (b) WSST scheme 

 

Figure 2. WSST scheme with the time-series signal of C12 

 

 
 

Figure 3. WSST schemes of time-series PQDs 

 

𝑊𝑠(𝑎, 𝑏) =
1

2𝜋
∫ �̂�(𝜉)𝑎1 2⁄ �̂�(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉𝑑𝜉 

𝑊𝑠(𝑎, 𝑏) =
1

𝑖4𝜋
∫[𝛿(𝜉 − 𝑤)

− 𝛿(𝜉 + 𝑤)]𝑎1 2⁄ �̂�(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝜉𝑑𝜉 

(5) 

 

Wavelet 𝜓  is concentrated in positive frequency and so, 

FFT of, �̂�(𝜉) = 0 for 𝜉 < 0. 

 

𝑊𝑠(𝑎, 𝑏) =
1

𝑖4𝜋
𝑎1 2⁄ �̂�(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅ 𝑒𝑖𝑏𝑤 (6) 

 

When �̂�(𝑎𝜉)̅̅ ̅̅ ̅̅ ̅̅  is concentrated around 𝜉 = 𝑤0, 𝑊𝑠(𝑎, 𝑏) will 

be condensed around 𝑎 = 𝑤0 𝑤⁄ . By differentiating 𝑊𝑠(𝑎, 𝑏) 

with respect to b, the instantaneous frequency 𝑤𝑖𝑛𝑠𝑡(𝑎, 𝑏) =
2𝜋𝑓𝑖𝑛𝑠𝑡 is obtained as: 

𝑤𝑖𝑛𝑠𝑡(𝑎, 𝑏) =

𝜕𝑊𝑠(𝑎, 𝑏)
𝜕𝑏

𝑊𝑠(𝑎, 𝑏)
 (7) 

 

It is supposed for a pure signal that 𝑤𝑖𝑛𝑠𝑡(𝑎, 𝑏) = 𝑤(𝑎, 𝑏) =
𝑤. The time-scale plane is transferred to the time-frequency 

plane according to (𝑎, 𝑏) → (𝑏, 𝑤𝑖𝑛𝑠𝑡(𝑎, 𝑏) ). For all the 

frequencies, concentrated CWT meaning WSST is obtained by 

the scaling with coefficient a and the shifting with the 

instantaneous frequency, 𝑤𝑖𝑛𝑠𝑡 , for 𝑊𝑠(𝑎, 𝑏) which is given 

for the continuous time by Eq. (8) 

 

𝑇𝑖𝑛𝑠𝑡(𝑤, 𝑏) = ∫ 𝑊𝑠(𝑎, 𝑏)𝑎−3 2⁄  𝛿(𝑤𝑖𝑛𝑠𝑡(𝑎, 𝑏)

− 𝑤)𝑑𝑎 

(8) 

 

In this equation, the exponent of a can be changed to -1/2. 
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From 1D to the 2D conversion of the signal, i.e. from the 

time domain to the time-frequency domain, by using WSST 

for C12, one of the most complex problems, is shown with the 

time-series signal in Figure 2.  

In this scheme, while harmonics are available in all 

timelines, sag emerges at 0.1 sec. and stops at 0.17 sec. While 

Figure 2(a). indicates the time domain information of the 

signal, Figure 2(b) shows frequency information as well as 

time. Hence, the time and frequency details of the signal can 

be analyzed easily. The WSST schemes of all PQDs excluding 

the C1 class of pure signal are given in Figure 3. In these 

schemes, light-colored lines with a heavy blue background are 

seen. From C6 to 21, intervals of disturbances can be seen 

explicitly because of the presence of variable character 

disturbances. The other disturbances, C2 to C5, have a 

smoother characteristic in which differences are observed 

when zoomed in. Although this situation seems like a 

disadvantage, both the amplitudes of the components leading 

to PQDs are condensed in a narrow band, and the unnecessary 

noise components are filtered. With these features, this method 

is more satisfactory than the classical methods like FFT, STFT, 

CWT, etc., as given in study [53]. For that reason, in this study, 

this method is selected to achieve higher classification 

performance. 

The Eqs. (4) to (8) and Figure 2 show that the suggested 

WSST-based method is a good one that has a lot of potential. 

It is accurate, has a high level of resolution, and is robust when 

you look at the range of noise and the number of classes. 

Nevertheless, due to the nonlinear characteristics of the 

wavelets, the direct response of the WSST output is not 

available for each integer multiple of the frequency. Moreover, 

being a wavelet-based and 2D transformation method leads to 

computational load. In addition, this dataset is transmitted to 

CNN, which consists of a high-order matrix network. For all 

these reasons, one needs a higher-capacity computer or 

workstation than the other time- and time-frequency domain 

transformer-based hybrid models require. 

 

 

4. CONVOLUTIONAL NEURAL NETWORK 

 

CNN is a human-brain-inspired neural network architecture. 

CNN is widely used in image recognition, segmentation, and 

classification fields due to its good performance. In CNN 

architecture, image recognition and classification, convolution, 

and pooling have an important role. Convolution and pooling 

are used for feature inference, size decrease, and the emphasis 

on important values, respectively. A basic CNN architecture 

consists of layers of convolution, pooling, and fully connected, 

which are shown in Figure 4. 

 

 
 

Figure 4. A basic CNN structure 

 

Convolutional Layer and Kernel 

The convolutional layer is located at the core of the 

convolutional neural network, and convolutional operations 

are applied in this layer. The convolution operation is an 

operation that involves multiplying the input with a set of 

weights. A filter called the kernel is applied to the image to 

reduce its size by focusing on important locations in the image. 

In this layer, a filter with particular sizes is applied over the 

image, and the sum of the original pixel values is calculated 

by multiplying the weights specified in the filter. A convolved 

feature and its size are calculated by Eq. (9) based on the size 

of the input image and 𝑓ℎ × 𝑓𝑤 × 𝑑 sized Kernel as shown in 

Figure 5. 

 

(ℎ − 𝑓ℎ + 1) × (𝑤 − 𝑓𝑤 + 1) (9) 

 

Padding 

In CNNs, the presence of multiple convolution layers can 

result in the gradual shrinking of the original image, an 

undesirable outcome. Furthermore, the middle layer of the 

image undergoes more passes of the kernel compared to the 

edge layers, resulting in overlap. To address these issues, 

padding is introduced as an additional layer that can be 

appended to the image borders, preserving the original image's 

size. An application of padding to a (3×3) image with a kernel 

is illustrated in Figure 6. The size of the output image is 

obtained by Eq. (10) where p states the size of padding. 

 

(ℎ − 𝑓ℎ + 2p + 1)x(𝑤 − 𝑓𝑤 + 2p + 1) (10) 

 

 
 

Figure 5. Usage of kernel and obtaining convolved feature 

 

 
 

Figure 6. Application of padding to (3×3) image 

 

Strides 

When the array is created, the pixels are shifted over to the 

input matrix. The number of pixels turning to the input matrix 

is known as the strides. When the number of strides is 2, the 

filters are carried to 2 pixels, as shown in Figure 7. Strides are 

responsible for regulating the features that could be missed 

while flattening the image. The size of an output image is 

calculated by Eq. (11). 
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Figure 7. Striding (2) with (3×3) filters on (7×7 image) 

 

(
ℎ − 𝑓ℎ + 2𝑝

𝑠
+ 1)x (

𝑤 − 𝑓𝑤 + 2p

𝑠
+ 1) (11) 

 

Pooling 

The pooling layers are generally seen between two 

convolution layers in CNN models. Pooling layers are used to 

decrease the size of the outputs from the convolution layer. 

Spatial pooling, also known as downsampling or subsampling, 

reduces the dimensionality of each map, the number of 

parameters, and computations in the network but retains the 

essential features, controlling overfitting by decreasing the 

size of the network. There are three types of spatial pooling: 

max, average, and sum pooling. The most commonly used one, 

max pooling, is a procedure that involves selecting the 

maximum value from a specified region, aiding in the 

extraction of the most vital features from an image, as 

illustrated in Figure 8. This process is sample-based and 

transforms continuous functions into discrete counterparts by 

downsizing the input. 

 

 
 

Figure 8. Max pooling 

The alternative pooling methods employed are analogous in 

approach but differ in their computational mechanisms; 

specifically, they calculate the average and sum of the values 

within the corresponding regions, respectively. 

 

Flattening Layer 

The task of this layer is simply to prepare the data at the 

input of the Fully Connected Layer. In general, neural 

networks receive input data from a one-dimensional array. The 

data in this neural network is the matrix coming from the 

convolutional and pooling layers converted into a one-

dimensional array (𝑛 × 𝑛 → 𝑛2 × 1), as shown in Figure 9. 

 

 
 

Figure 9. Flattening layer conversion 

 

Fully-Connected Layer 

The fully connected layer is the last and most important 

layer for CNN. It gets output from the last convolutional or 

pooling layer, which is flattened, gives the possibilities of each 

class, and performs the learning process. A scheme of the fully 

connected layer is given in Figure 10. 

 

 
 

Figure 10. Fully-connected layer 

 

 
 

Figure 11. AlexNet architecture 
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For instance, one of the most known nets for image 

recognition is AlexNet. This is a CNN consisting of 8 layers, 

incorporating filters, stacked convolutional layers, max 

pooling, dropout, data augmentation, ReLU, and SGD, as 

shown in Figure 11 [56]. All resizements at each step were 

introduced in this figure. It comprises 5 convolution layers and 

3 fully connected layers, totalling around 60 million 

parameters. However, a notable drawback of AlexNet is its 

reliance on a large number of hyperparameters. 

Instead of a complex and time-consuming method, an 

efficient WSST-input CNN model is studied in this paper in 

order to detect and classify PQDs by researching in a 

narrowband hyperparameter space in the following section. 

 

 

5. PROPOSED METHOD BASED ON WSST & 

OPTIMIZATION OF A CNN FOR PQDs 

 

Comprehensive research for the proposed WSST and 

optimization of a CNN-based method for PQDs was done with 

a widespread space of CNN in this paper. All the processes 

carried out in this study are given as a scheme in Figure 12. In 

the beginning, the signal data is generated, and then the 

appointment of the zero-crossing points is carried out for the 

windowing process [8]. Later, 0.2-second (640-FFT)-windows 

are acquired with the help of these points. After these 

windowed signals are transformed with WSST, we obtain 2D 

signal packets. The best model of CNN with the related 

hyperparameters is selected on a workstation (with GPU: 

Nvidia Quadro P4000, CPU: Intel Xeon W-2223). At last, this 

model with the hyperparameters is able to detect and classify 

the PQDs. A similar zero-crossing process is performed to test 

the data. The best model and the related hyperparameters are 

processed to detect and classify PQD. 

CNN models have been widely used in different 

engineering fields and, in recent years, have started to be used 

in power quality issues. CNN algorithms are preferred for 

classification data. The CNN model is used for classification 

purposes since the subject we discussed in this study is to 

describe the status and type of disturbances in power quality. 

The data consists of 21 different classes. This data set has 

been processed with the WSST method, which has started to 

gain popularity today. The output of the data processing with 

the WSST method is taken as a 2D picture. These images were 

processed as RGB. The data are given as input data for the 

CNN model prepared after preprocessing. 

The hyperparameter search space of the CNN model and the 

best CNN model obtained using this search space are delivered 

in Table 2. 

As can be seen from the table, the research space is too large 

to calculate with the existing circumstances. For these reasons, 

a sketch CNN model as shown in Figure 13 without specific 

features and sizes of layers is exploited to obtain related 

hyperparameters. And then, the research space is restricted 

from general to private, considering the rules below. 

• "Relu," "sigmoid,” and “linear” functions are highly 

commonly used as activation functions. These are 

compared in terms of activation functions. 

• “Adam” and “SGD” are well-known and have higher 

accuracy rates than the others in similar studies. So, these 

are selected and compared. Also, as mentioned before, a 

study [52] reveals that the Adam optimizer is more usable 

than the other optimizers for PQD classification. 

• 35 main samples for each class. So, 10–20 are taken into 

consideration. 

• The epoch is in the range of 75 and 125 to ensure 

convergence. 

• Learning rates are selected as 0.01 and 0.001 to compare 

to prevent memorization. 

• The most important detail is the definition of the layers to 

reduce the size of CNN and the number of 

hyperparameters. Convolutions are applied in order to 

extract features. Then max polling rules are applied to 

detect white tones from the WSST images. Then, the 

densities are applied to classify 21 classes. 

All these rules narrow the research space, and research is 

applied. Then, the model with the highest accuracy rate is 

selected, as shown in Table 2. 

The selected model is important in terms of accuracy and its 

low-number convolutional layers, despite high-size images 

such as 875×656. For the evaluation of performance, the 

accuracy rates of each research model are calculated and 

compared with each other. 

 

 
 

Figure 12. Scheme of PQD detection and classification based on WSST & optimization of a CNN 
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Figure 13. Proposed CNN structure for PQD classification 

 

Table 2. Hyperparameter space of CNN and best CNN model 

 

Hyperparameters Search Space 

Activations Functions ['relu', 'sigmoid', 'selu', 'softplus', 'softsign', 'LeakyReLU', 'tanh', 'elu', 'exponential'] 

Optimizer ['Adam', 'SGD', 'Adamax', 'Adadelta', 'Nesterov', 'Adagrad', 'RMSprop', 'Nadam', 'Ftrl'] 

Batch Size [10, 20, 32, 64, 128, 256, 512, 1024] 

Epoch [50,75,100,125,150,200] 

Learning Rate [0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06] 

Layers [convolutional layer, dropout, pooling layer, dense, fully connected layer] 

Best CNN Model 

Activations Functions ['linear', 'sigmoid'] 

Optimizer ['Adam'] 

Batch Size [10] 

Epoch [100] 

Learning Rate [0.01] 

Layers 
['conv2d', 'max_pooling2d', 'conv2d_1', 'max_pooling2d_1', 'conv2d_2', 'max_pooling2d_2', 'flatten', 'dense', 

'dense_1', 'dense_2'] 

Filters [48] 

Pool Size [3] 

Kernel Size [3] 

 

In this study, Tensorflow and Keras were used. TensorFlow 

is a library widely used for artificial intelligence tasks. In 

addition, Keras, an open-source library running on 

TensorFlow, was used. Keras was chosen for its overall ease 

of use, extensibility, and modularity. 

6615 pre-processed images were given with a size of 

875×656 in the type of RGB as input data to the selected CNN 

model. A total of 3 convolutions, 3 max-pooling, dense, and 

flattening layers are used in the model. 

Figure 13 shows the summary of the proposed CNN 

structure. In the pooling process, max-pooling was chosen in 

the CNN model. Since the bright pixels in the WSST outputs 

are important in terms of frequency and location of the 

distortion, max-pooling was chosen to highlight these 

distinctive features in the picture. After the convolution and 

pooling processes, flattening was applied, and a dense layer 

was added. In the first and second of the last applied dense 

layers, the activation function was chosen as "linear." In the 

last layer, the sigmoid was applied as an activation function. 

Since there are 21 classes in the last layer, the last dense 

parameter is chosen as 21. 

 

 

6. COMPARATIVE RESULTS OF THE PROPOSED 

PQD D&C METHOD 

 

As stated before, primarily all time-series PQ datasets were 

converted to 2D by WSST. Then these 2D images have been 

run on a workstation to have the best CNN hyperparameters to 

use for the PQD classification. The numbers of training and 

validation are 1323 and 5282, with rationales of 20% and 80%, 

respectively. Also, test samples have the same ratio as 

validation samples. Figure 14 shows the training and 

validation accuracy versus the epoch of the model for 100 

epochs. While train accuracy attains 0.9993 (converging to 1), 

validation accuracy converges to 0.9625. From the 

classification accuracy curves, there is a small difference 

between the test and validation samples. It can be indicated 
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that the proposed model has good stability. In the proposed 

model, RGB figures are not resized as in the other studies, and 

with a high number of classes with noise and a low number of 

datasets, that’s why such a difference emerges between train 

and validation accuracy [35, 45, 57]. The confusion matrix in 

Figure 15 provides the results on the classification 

performance of PQD signals with the test dataset. The last 

rows and columns give the accuracy percent of actual and 

predicted values. The mean value of these accuracies is given 

as 96.25. The Figure 14 reveals that multiple disturbances have 

somewhat lower performance than singular disturbances 

because of their complex characteristics or the components of 

the multiple classes. Another notable thing is that singular or 

multiple disturbances with an oscillatory transient, C6, have 

some failings while others don’t. This is because the 

oscillatory transient is similar to the noise, too. Another 

erroneous detection belongs to singular or multiple 

disturbances for flicker because of a small frequency variation 

with this disturbance. 

Table 3 shows the model accuracy rate of the proposed 

method in different SNR cases. As supposed, the accuracy rate 

increases with the SNR rate. But the results at the interval of 

99.773% to 100% and the mean value of 99.93% In another 

way, the test accuracy results vary from 90.4% to 100% for 20 

dB to 60 dB noise, and the mean value of the test results is 

96.15%. These results are promising for PQDs when 

considering the number of classes, the noise range, and the 

low-number dataset. 

 

 
 

Figure 14. Training and validation accuracies of the 

proposed model (achieved 0.9993 and 0.9625 respectively) 

 

 
 

Figure 15. Confusion matrix 
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Table 3. The model accuracy rate for different SNRs 

 

SNR Training Accuracy Rate Test Accuracy Rate 

20 99.773% 90.476% 

30 99.924% 93.936% 

40 99.924% 97.070% 

50 100% 99.244% 

60 100% 100% 

Mean Value 99.93% 96.15% 

 
Comparative results are given in Figure 16 for CWT-CNN 

and the proposed method in terms of the accuracy curve. As 

can be seen, WSST has better performance than CWT, which 

is one of the most commonly used and effective methods in 

signal processing. 

The proposed CNN-WSST-supported PQD D&C method is 

comparatively analyzed with similar methods under similar 

accuracy rates; the results are given in Table 4. This table 

indicates that when it accounted for all subparameters of the 

results, the proposed method had higher accuracy than the 

others, except for 1D-2D CNN [45] and Integrated Deep 

Learning [49], with an accuracy of 99.97% and 99.96%, 

respectively. Unlike the studies in Table 4, this study 

diversified the data with a high number of classes and a wide 

noise range, and thus the trained CNN model worked robustly. 

21 classes were used in this study. In the data set, the noise 

range is set to 20-60 dB. This table indicates that, accounting 

for all subparameters of the results, the proposed method is 

more prosperous than the other methods, except for 1D-2D 

CNN [45] and IDL [49], with accuracies of 99.97% and 

99.96%, respectively. Noticeably from Table 4, this study is 

one of the studies with the highest number of PQD classes and 

entirely randomly noisy data. The study performed in Sparse 

Signal Decomposition and Decision Tree [34] has better 

performance than this study with more PQD class variety but 

with a lesser noise range. Though the study performed in study 

[45] has more achievement than the proposed method in a 

wide noise range, it should be noticed that that study includes 

a smaller number of PQD classes. As compared with the 

studies in Table 4, in terms of accuracy, it is seen that only the 

study [45] has higher accuracy. But the proposed method is 

more comprehensive in terms of the number of PQD classes 

and the size of the noise range. 

In this study, a hybrid method merges CNN and WSST, and 

optimization of it for PQD classification has been proposed for 

the first time. Apart from the other studies mentioned in Table 

4, a comprehensive study based on WSST was conducted 

using CNN with a high PQD class number (21) and a dataset 

consisting of only noisy data (in the range of 20-60 dB). With 

this method, diversity and robustness have been provided, and 

results with higher accuracy have been obtained in comparison 

with the other studies, too. 

 

Table 4. Comparative results of the proposed method 

 

Method 
Class 

Number 

Noise 

Range 

Accuracy (%) 

Noisy 

(in…dB)  

Noiseless 

(in…dB) 
Mean 

Hybrid Soft Computing -kNN & Support Vector Machines [12] 10 - - 98.75 98.75 

Rule-Based Decision Tree & ST [24] 6 20-50 98.1 (20) 99.3 98.7 

Fractional Fourier Transform [27] 15 10-40 94.37 (20) 99.93 97.2 

ST Features [28] 16 - - 97.93 97.93 

Volterra series with the Type-2 Fuzzy Logic System [29] 6 20-30 98.83 (20) 99.8 99.31 

Strong Tracking Filters & Rule-based Extreme Learning Machine 

[30] 
20 20-40 92.6 (20) 98.8 (40) 95.7 

HHT & kNN [31] 18 20-30 97.38 (20) 99 98.19 

Linear KF & Fuzzy-Expert System [32] 7 20-40 92.3 98.71 (40) 95.5 

Generalized Approach & KF [33] 16 20-40 98.8 100 99.4 

Sparse Signal Decomposition & Decision Tree [34] 32 30-45 96.92 97.31 97.1 

Multi-Objective Grey Wolf Optimizer, 2D-Riesz Transform, & kNN 

[35] 
18 20-40 99.56 (20) 99.93 (40) 99.75 

Simple Gated Recurrent Network [37] 15 - - 99.07 99.07 

Time-Dependent Spectral Featured & Adaptive kNN with Excluding 

Outliers [38] 
12 30-50 97.91 (30) 99.81 98.86 

Evolving Gaussian Fuzzy Classification [40] 9 20-60 93.17 (60) - 93.17 

Variational Mode Decomposition & Detrended Fluctuation Analysis 

[41] 
9 10-30 99.38 (30) - 99.38 

DWT- Effective Feature Extraction 10 - 99.44 - 99.44 

Optimum Base Wavelet & MLA [43] 14 20-50 93.29 (20) 99.85 96.32 

1D-2D CNN [45] 13 0-50 - - 99.97 

Temporal Convolutional Network [46] 8 - - 99.82 99.82 

Deep CNN [47] 13 40-50 99.74 (50) 99.61 99.67 

Label-Guided Attention Method [48] 7 20-50 99.30 (50) - 99.20 

Integrated DL [49] 14 20-40 99.70 (20) 99.98(40) 99.96 

Identification on DL [52] 12 - - - 99.70 

Image-based Deep Transfer Learning [50] 4 - - - 99.3 

Bagging LSTM [58] 15 20-50 98.67 (20) 99.66 (50) 99,23 

DL in 2D Scalogram [51] 6 30-60 96.67 (30) 97.33 (60) 97,67 

Proposed Method 21 20-60 99.77 (20) 100 (60) 99.93 
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7. EXPERIMENTAL SETUP 

 

PQD signals are time-consuming due to their variational 

structure and are dangerous to obtain in the field. So, most 

studies are performed with experimental or only synthetic 

signals. While a synthetic one provides a wide range of signals 

and a high number of classes, experimental setups are more 

restricted in terms of types of equipment. In this study, a 

synthetic dataset generated in MATLAB for the training of the 

model is utilized, as mentioned before. Then, WSST is applied 

to all time signals. Finally, Python is utilized to build a CNN 

model with optimization through a training dataset, owing to 

the flexibility of Python in deep learning. Similarly, an 

experimental dataset is generated in an experimental setup for 

testing. The obtained dataset is processed with WSST in 

MATLAB. Eventually, the test dataset is performed on an 

optimized CNN model in Python for the evaluation of the 

proposed method. The experimental setup was established for 

the realization of the generation of the experimental dataset. 

 

 
 

Figure 16. WT-based comparation of proposed method 

 

This setup, consisting of an oscilloscope, two AATech 1032 

Arbitrary Waveform Generators (AWG), a Rigol MSO 5204 

Digital Storage Oscilloscope (DSO), a PC, 8 BNC connectors, 

and MATLAB and Python software, is used as figured out in 

Figure 17. 

Initially, a 3.2 kHz (or more according to the specification 

of AWG) sampling frequency and 0.2 s window length 

providing a 5 Hz resolution are required in this setup, similar 

to some studies in studies [6-11]. In the first case of only one 

AWG usage, synchronization between AWGs and 

oscilloscopes was performed with a time-shifting arrangement. 

In the other case of two AWGs usage, both AWGs were tuned 

in phase, utilizing the AWGs’ consoles at first. Then, the 

obtained signals were arranged into the related window with 

the oscilloscope console, as in the first case. After the 

necessary preliminary preparations, AWGs are utilized to 

generate the signals based on variables and parameters with 

related intervals and scales in Table 1. These signals have 

time-varying noise, as illustrated in study [18], and therefore, 

noise addition is not required. BNC connectors transmit the 

signals to the DSO. After that, the transmitted signals are tuned 

into a 0.2-sec window. The whole signal at different channels 

is processed by different math functions to obtain the models 

in the table with the help of DSO's tool. As an example, the 

acquisition of a signal model is displayed in Figure 17(b) and 

clarified in the following paragraph, step by step. This method 

has been used for the generation of all event classes. The 

obtained 0.2-second signals are compiled in MATLAB and 

applied to signal processing with WSST on PC. After that, 

WSST images are used for testing on the optimized CNN 

model in Python. 

C1 class, a pure signal, is seen having about 36 dB of 

spontaneous grid noise on the DSO monitor in Figure 18(a). 

While single classes like 5, 8, and 9 can be generated by only 

an AWG, lots of them need at least two AWGs and 8 BNC 

probes. One of the multiple disturbance events, C14, 

comprising the sag and transient signals, is given with all 

subcomponents in Figure 18(b). For the generation of this 

signal, 

• Both pure signals and pure transients are generated 

periodically. 

• These periodic signals are windowed by rectangular 

windows according to the related segments of sag and 

transients. 

• The C14-event with sag- and transient-signals is 

created by the summation of the windowed signals. 

 

 
(a) An image from the setup 

 
(b) Flowchart of the test setup 

 

Figure 17. PQD event generation to test proposed model 

 

 
(a) C1 

 
(b) C14 

 

Figure 18. PQD events from the DSO’s monitor for different 

classes 
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All PQD classes are generated with about 36 dB of 

spontaneous grid noise under the mathematical models from 

AWG, as seen in the comprehensive waveforms in Figure 

18(a). Further, since two different AWGs are needed, a phase 

shift is formed that must be coped with. Taking into account 

all these circumstances, it is seen that the generated signals to 

test the proposed model are disturbed, which is similar to field 

data. Herewith, the experimental dataset is obtained by this 

method. 

 

 

8. CONCLUSIONS 

 

This investigation has led to the development of a method 

that integrates WSST with an optimized CNN for the detection 

and classification of a wide array of PQDs in environments 

characterized by noise and rapid signal variation. A 

comparative analysis of several CNN models was conducted, 

focusing on accuracy metrics. Subsequently, the most 

efficacious model was selected through an optimization 

process. The application of WSST-enhanced images for PQD 

classification with this optimized CNN model is a novel 

approach undertaken in this study. It yielded notable accuracy 

rates, achieving 99.93% in training and 96.15% in testing 

scenarios, despite the challenges posed by a diverse range of 

classes and noise levels. The robustness of this method in the 

face of signal noise and variation is crucial for accurate PQD 

analysis. Results have demonstrated that this robust approach 

maintains high accuracy across datasets characterized by 

significant class and noise diversity. Furthermore, the 

classification accuracy of PQDs has been enhanced, alongside 

a simplification in computation. Within the constraints of the 

available hardware, a dataset comprising 6615 time-series 

signals, encapsulating 21 PQD classes across noise intervals 

of 20 dB to 60 dB, was transformed using WSST. Subsequent 

training and testing were executed on a medium-capacity 

workstation. Future research could extend the dataset size and 

the number of classes, contingent on the availability of more 

advanced computational resources and experimental setups. 

Overcoming these hardware limitations could pave the way for 

more expansive datasets, fostering the development of 

comprehensive, stable, and robust methods. 
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