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The detection of Fetal Heart Chamber Defects (FHCD) through ultrasound (US) imaging 

presents significant challenges due to issues with contrast, lighting, and image clarity. This 

impedes the physical detection of FHCDs, thus affecting the accuracy of computer-assisted 

diagnosis outcomes. Addressing this challenge, an innovative approach is proposed, 

employing a novel segmentation and prediction methodology using Enhanced Deep Belief 

Network-based Transit Search Algorithm (EDBN-TS). The key innovation of this study is 

the development of an augmented deep learning model, fine-tuned with an optimization 

algorithm, thereby enhancing the precision in predicting FHCDs. In the initial phase, US 

fetal imaging data are collected and subjected to pre-processing. This involves frame 

extraction, label removal, and application of filtering techniques, significantly enhancing 

image quality. Subsequently, feature extraction is carried out on these pre-processed images 

using the Grey Level Co-occurrence Matrix (GLCM) method. This step crucially minimizes 

redundant data in the pre-processed images. The segmented representation of the extracted 

features is then achieved via the Otsu Thresholding method, simplifying the image 

representation into a format more conducive for analysis. The final prediction stage utilizes 

the EDBN, wherein the hidden neurons of the Deep Belief Network (DBN) are fine-tuned 

using the Transit Search (TS) algorithm. This is aimed at maximizing accuracy and 

precision, the primary objectives for enhancing the prediction of FHCD. The integration of 

an optimization method in tuning the deep learning model represents a significant 

advancement in the prediction of FHCDs, yielding superior results in comparison to 

conventional methods across various analytical parameters. The proposed EDBN-FS model 

demonstrates an improvement in precision, accuracy, sensitivity, F1 score, and specificity 

by 1.76%, 0.75%, 1.76%, 2.22%, and 2.80% respectively, compared to existing models. 

Furthermore, the rate of successful FHCD predictions is enhanced by approximately 25%. 
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1. INTRODUCTION

The examination of fetal heart defect (FHD) by ultrasound 

is challenging due to inadequate lighting, lack of clarity, and 

insufficient intensity [1]. The primary reason for the failure to 

visually recognize FHDs is primarily attributed to the lack of 

adequate ultrasound imaging of fetal echocardiograms. The 

accuracy of computer-based diagnostic results is reduced due 

to the low quality of images in the United States [2]. Currently, 

prenatal testing frequently fails to detect cardiac defects in the 

womb using ultrasound, which can lead to severe illness or 

even death [3]. Screening programs in most rich nations often 

detect just 30% to 60% of heart abnormalities, depending on 

the type of cardiac disease and the skill level of the 

sonographer [4]. The accuracy of prenatal detection is 

significantly impacted by the sonographer's experience in 

doing a substantial number of routine abnormality 

examinations [5]. During the implementation of a standard 

anomaly search, approximately 49% of missed occurrences 

can be attributed to a lack of flexible human capabilities [6]. 

The efficacy of FHD prenatal identification is notably 

impacted by the quality of ultrasound images. When 

comparing cases where FHDs were not diagnosed to cases 

where FHD was detected, there was a higher occurrence of 

inadequate fetal cardiac ultrasound pictures [7]. Even if the 

photos from the United States have high quality, FHDs are not 

visible in 20% of unidentified cases. Therefore, in order to 

potentially improve the rate of detecting FHD, it is necessary 

to enhance the accuracy of the inspection [8]. 

Prenatal testing is predominantly conducted using US 

devices in the US for several reasons, including their 

affordability, low sensitivity, non-ionizing radioactivity, and 

user-friendly nature [9]. Despite the advantages mentioned, 

the United States still encounters substantial challenges due to 

issues such as poor contrast, low illumination, or inadequate 

lighting conditions, which result in a decrease in image quality 

[10]. Identifying cardiac anomalies on echocardiography is 

difficult due to the overall darkness of the image [11]. 
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Inadequate visibility and brightness in US photos can have 

significant consequences that may lead to an incorrect 

diagnosis. To improve the identification and forecasting of 

FHDs, it is possible to eliminate these deficiencies and 

transform low-light US photos into high-quality, sharp visuals 

[12]. Prior to establishing a prognosis, it is crucial to enhance 

the image quality of the low-light ultrasound in the fetal 

echocardiography. The suggested methodology involves 

preprocessing the collected US fetal pictures utilizing 

extracted frames, label removal, and filtering algorithms. 

Various image processing techniques can be employed to 

enhance the brightness and contrast of photographs, although 

these methods sometimes involve complex quantitative 

calculations [13]. The efficacy of an AI-focused medical 

image analysis platform varies significantly when it comes to 

the quality of images obtained by basic techniques [14]. Deep 

learning (DL) models have shown promising effectiveness in 

many medical imaging modalities. Automatic segmentation of 

the cardiac chambers is crucial for the assessment and 

prediction of heart diseases [15]. The continuous progress of 

deep learning has led to significant advantages in image 

processing and computer vision problems, as evidenced by 

many techniques. 

Contributions of this paper are: 

⚫ To segment and predict FHCD utilizing a cutting-edge 

intelligence technology called EDBN-TS. 

⚫ To initially gather and pre-process data from US fetal 

imaging using the extracted frames, label removal, and 

filtering techniques. 

⚫ To extract the features from the pre-processed images 

using the GLCM approach. 

⚫ To segment the extracted features by the Otsu 

Thresholding method. 

⚫ To do the prediction by the EDBN, in which the hidden 

neurons of the DBN are tuned by TS with the intention of 

accuracy and precision maximization as the main 

objective function. 

⚫ To utilize EDBN as the input for all reconstructed images 

to produce the most accurate classifier for predicting FHD. 

The paper organization is. Section I is the introduction 

regarding the fetal heart chamber. Section II is a literature 

survey. Section III is the proposed model and data collection 

for the introduced FHCD. Section IV is pre-processing and 

feature extraction for the introduced FHCD. Section V is 

segmentation and prediction for the introduced FHCD. Section 

VI is results. Section VII is the conclusion. 

 

 

2. RELATED WORKS 

 

The literature survey related to the FHCD model is 

categorized into three kinds, such as deep learning models, 

machine learning models, and other models. 

About Deep learning models: In 2020, Dong et al. [16] 

proposed a general deep learning (DL) approach for fetal US 

CFP quality monitoring that operates automatically. To 

accomplish completely autonomous quality assurance, an 

entire qualitative score of every CFP was calculated to 

demonstrate its flexibility and generalization capabilities. 

In 2020, Gong et al. [17] proposed a brand-new method 

called DGACNN, which performs optimally at identifying 

FHD, attaining a rate of 85%. This system was created to 

address the issue of not having enough training datasets to 

build a strong classifier. There were a lot of unidentified video 

slices. DANomaly and GACNN are the two components that 

make up the architecture of DGACNN (Wgan-GP and CNN). 

A much more reliable and accurate end-to-end OCC system 

was trained using DANomaly, which was comparable to the 

ALOCC system and integrated cycle adversarial learning to 

screen video slices. 

In 2022, Sutarno et al. [18] suggested low-light fetal 

echocardiogram improvement stacking using the classifier 

"FetalNet," a DNN. 460 images were used for the suggested 

FetalNet system. The findings demonstrated that entire raw US 

images might be enhanced with adequate accuracy, raising the 

PSNR to 30.85 dB, the SSIM to 0.96, and the MSE to 18.16. 

In order to create the optimal classifier for forecasting FHD, 

entire rebuilt images were also employed as inputs in a CNN. 

About Machine learning models: In 2023, Qiao et al. [19] 

proposed a PSFFGAN that uses FC sketch images to create 

high-quality perspectives. Additionally, we put forth a brand-

new TGALF, which enhances PSFFGAN and completely 

extracts the cardiac anatomical framework data. The empirical 

findings demonstrate the greatest appropriate assessment 

values, with MS-SSIM, SSIM, and FID being correspondingly 

0.6224, 0.4627, and 83.92. The PSFFGAN's efficiency was 

again demonstrated by the evaluation by two expert 

cardiologists. 

In 2022, Qiao et al. [20] developed a straightforward yet 

efficient RLDS to diagnose embryonic CHD to increase 

diagnostic accuracy. Our process utilizes CNNs to extract 

distinguishing information from the fetal cardiac anatomical 

diagrams. We offer a comprehensive graphical description of 

the RLDS's diagnosing procedure in order to increase its 

trustworthiness. 

About Other models: In 2022, Pu et al. [21] proposed to 

combine UNet, MobileNet, and an explicit FPN to create 

MobileUNet-FPN for the separation of 13 important cardiac 

components. This was the initial AI-oriented technique that, 

according to the information, was capable of segmenting 

various anatomical features in the fetal A4C image. Four 

stages make up the MobileNet backbone system, and we 

utilize the characteristics of each step as the encoder as well as 

the upsampling process as the decoder. The MobileUNet-FPN 

network is next trained concurrently at every edge node to 

significantly minimize network communication overhead. 

Several tests were run, and the findings demonstrate the 

suggested model's higher efficiency on the fetal A4C as well 

as femoral-length images. 

In 2022, Qiao et al. [22] developed an intelligent FLDS. The 

FLDS incorporates the MRHAM described in this research for 

learning strong and robust characteristics, assisting the FLDS 

in precisely localizing the four chambers in the fetal FC 

images. Thorough testing shows that the developed FLDS 

beats the traditional methods with consideration of recall, 

precision, mAP, F1 score, and FPS, which are completely 

0.971, 0.919, 0.944, and 43, respectively. Furthermore, the 

PASCAL VOC dataset, which visualizes images of nature, 

was used to evaluate the suggested FLDS. This dataset yields 

a greater mAP of 0.878. 

In 2022, Sengan et al. [23] proposed a unique ARVNet 

framework. FRRV, FRLV, FRRA, FRLA, and FRTV were 

investigated in this research. Images without rhabdomyoma 

signify "NC." The findings show that the suggested approach 

has strong CRD detection accuracy even with a fairly limited 

count of datasets. The findings demonstrated better results 

when it came to discovering CRDs. 

In 2020, Xu et al. [24] release a CU-net. Firstly, it obtains 
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distinct tissue borders and resolves the gradient-vanishing 

issue brought on by extending the depth of the system. 

Secondly, the CU-between-net links may communicate 

previous data from the thin pool to the deepest layer in order 

to provide more accurate segmentation. Finally, to maintain 

fine-grained structural data and establish distinct borders, the 

technique makes use of SSIM loss. The suggested technique 

obtains a Hausdorff distance of 3.33 and pixel accuracy of 

0.929, as shown by numerous tests, demonstrating its 

usefulness and promise as a therapeutic agent. 

In 2022, Ogenyi et al. [25] assessed and documented typical 

sonographic fetal heart rate (FHR) values to identify the 

function of FHR in predicting gestational age. It was chosen 

to carry out planned cross-sectional research on 2727 low-risk 

singleton expectant mothers. From January 2019 to December 

2020, a specialist radiologist and three skilled sonographers 

used a transabdominal technique to collect FHR values. Every 

individual underwent two FHR assessments. During the initial 

trimester, the fetal appearance and lying were also recorded. 

SPSS version 24 was used to examine the data (Armonk, IBM, 

USA, NY). 

Research gaps and challenges: The assessed literary works 

depict the results of screening investigations that offer insights 

into the proportion and prevalence of heart abnormalities. The 

authors classified all anomalies in the bulk of these research as 

noteworthy. Some cardiac disorders, such as complete heart 

block, cardiomyopathies, and cardiac malignancies, may not 

exhibit symptoms until the later stages of pregnancy. Some 

forms of CHD, such as pulmonary and aortic stenosis, could 

not have been detectable at 11 or 13 weeks of pregnancy due 

to the possibility of their progression into more serious 

abnormalities. Despite undergoing the customary anomaly 

scan during the second trimester, these cardiac abnormalities 

often remain undetected. Technical challenges, such as low 

imaging resolution, insufficient clarity relative to the size of 

the organs being observed, and fetal movements, can hinder 

the accurate assessment of the fetal heart. Therefore, in order 

to address the limitations in the existing literature, innovative 

deep learning-based optimization methods are employed to 

precisely forecast the FHCD. 

 

 

3. PROPOSED MODEL AND DATA COLLECTION 

FOR THE INTRODUCED FHCD MODEL 

 

3.1 Proposed model 

 

The developed FHCD model includes phases such as data 

collection, pre-processing, feature extraction, segmentation, 

and prediction. Initially, the images were gathered from US 

fetal imaging. The collected data undergoes pre-processing 

using the extracted frames, label removal, and filtering 

techniques. From the pre-processed images, the features are 

extracted using the GLCM approach. Using these extracted 

features, segmentation is performed by the Otsu Thresholding 

method. 

 

 
 

Figure 1. Proposed FHCD model 

 

The prediction of these segmented images is also done by 

EDBN, with the goal of improving accuracy and precision 

being the final objective function. This is done by tuning the 

hidden neurons of DBN. This EDBN predicts the final 

outcome as to whether the FHCD is present or not. The 

proposed FHCD model is pictorially given in Figure 1. 

 

3.2 Data collection 

 

With a frame rate of 25 frames per second as well as an 

average duration of 1 minute, 2D US cineloop videos of the 

fetal heart were created at gestational ages ranging from 21 to 

27 weeks. The fetal heart's four-chamber apical image was 

employed for research. The Chennai-based Mediscan Pvt. Ltd. 

contributed the cineloop patterns. For the investigation, 80 

echocardiographic frames were employed, 40 of which were 

normal and 40 of which were abnormal. In the case of any 

abnormal functionalities in the fetal heart, they are classified 

as abnormal; otherwise, they are categorized as normal. The 

defective images featured several embryonic cardiac 

anomalies. 

 

 

4. PRE-PROCESSING AND FEATURE EXTRACTION 

FOR THE INTRODUCED FHCD MODEL 

 

4.1 Pre processing 

 

The pre-processing of the gathered images for the 

developed FHCD model is done through the extraction of 

frames, label removal, and filtering techniques. The retrieved 

frames were originally made in grayscale. The frames were 
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next downsized to 256×256 in size. This size is mainly 

considered for its superior clarity and quality. Speckle noise is 

a common feature of US images, making successful chamber 

delineation dependent on preprocessing. The resized frames 

are first processed with the anisotropic diffusion filter, which 

accentuates the edges, and then with the LoG filter. The visual 

definition of the chamber borders improved as a consequence. 

The filtering operation's implementation yields a PSNR value 

of 26.87 dB. This describes the quality measurement between 

the original and a compressed image. This specified PSNR 

value demonstrates the better quality of the reconstructed or 

compressed image than using conventional models. The LoG 

filter can be described below. 

The ∇2Goperator is another name for the LoG operator. The 

initial step of the neurological filter in biological vision 

frameworks is similar to the ∇2Goperator. It combines two 

functions: the Laplacian function and the Gaussian function, 

respectively. A non-directional linear differential operator 

defines the Laplacian. The Laplacian operator linked with an 

image, g(x, y), may be described as: 

 

M(g(x, y)) =
∂2g(x, y)

∂x2
+
∂2g(x, y)

∂y2
 (1) 

 

The 2-D Gaussian operator is characterized as follows:  

 

H(x, y) =
1

2πσ2
exp (−

s2

2σ2
) (2) 

 

Here, s2 = x2 + y2  and σ  respectively represent the 

Gaussian function's space constant and the standard deviation. 

Consequently, the application of the ∇2G operator to the image 

f(x, y) yields the resulting output. 

 

g′′(x, y) = [(
∂2

∂x2
+
∂2

∂y2
) g(x, y)] ∗ g(x, y) (3) 

 

Hence, the 2-D LoG operator with a zero center has the 

following format:   

 

LoG(x, y) =
−1

πσ4
[1 −

s2

2σ2
] exp (−

s2

2σ2
) (4) 

 

The edges are produced via convolution of an image with 

the LoG operator using the second derivative loci of zero 

crossing points. The anisotropic diffusion filter is better at 

providing variance reduction, mean preservation, and edge 

localization. Similarly, a LoG filter minimizes the effect of 

changes being produced by noise. Both of these filters are 

effective in removing speckle noise; therefore, it becomes easy 

to perform the feature extraction process of the proposed 

FHCD model since it is free from speckle noise. 

 

4.2 Feature extraction 

 

The feature extraction for the developed FHCD model is 

accomplished by the GLCM method. GLCM describes a 

second-order statistical texture analysis approach. It analyzes 

the spatial relationship within the pixels and describes how 

commonly a mixture of pixels are available in an image with 

respect to the provided distance and direction. One of the 

familiar texture descriptors provides a measurement of the 

intensity changes in relation to every pixel. Being spaced by a 

certain distance, it is used to identify the characteristics. The 

characteristics that were extracted are listed below. 

Contrast: It reveals the image's intensity's range of 

fluctuation. In contrast to a zero value, which denotes 

uniformity, a value of a large number denotes the existence of 

noise as well as edges in the image. The below equation yields 

it. 

 

contrast = ∑∑(j − k)2Qj,k

H−1

k=0

H−1

j=0

 (5) 

 

Here, Qj,k  shows the element j, k  and H  shows the total 

count of grey levels indicated by the indices (j, k).  
Correlation: This metric quantifies the extent to which a 

pixel is influenced by its neighboring pixels. The correlation 

is determined by the following equation. When the pixels are 

uniformly distributed, a high correlation value is typically 

observed. 

 

correlation =∑∑
(jk)Q(j, k) − (μy × μz)

σy × σz

h

k=1

H

j=1

 (6) 

 

Here, the below equations yield μy and μz as the mean and 

the standard deviation, accordingly.  

 

μy = ∑ jQy(j)

H−1

j=0

 (7) 

 

μz = ∑kQz(k)

H−1

k=0

 (8) 

 

The row and column represent the mean and standard 

deviation of σy and σz, respectively. 

 

σy
2 = ∑(Qy(j) − μy(j))

2
H−1

j=0

 (9) 

 

σz
2 = ∑(Qz(k) − μz(k))

2
H−1

k=0

 (10) 

 

Entropy: This measure reflects the level of disorder or 

randomness in the pixel arrangement of an image, and it is 

inversely related to the uniformity of the image's pixel 

distribution. 

 

entropy = −∑∑Q(j, k)log(Q(j, k))

H−1

k=0

H−1

j=0

 (11) 

 

Homogeneity: This term is a measure of the smoothness or 

uniformity in an image, and it varies inversely with the level 

of contrast present in the image. 

 

homogenity =∑∑
Q(j, k)

1 + (j − k)2

H

k=1

H

j=1

 (12) 

 

Sum Average: This parameter is calculated using the 
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equation below and represents the average of the sum of grey 

levels distributed throughout the image. 

 

sum average = ∑ jqy+z(j)

2H−2

j=0

 (13) 

 

qy+z(l) = ∑∑ q(j, k),     l = 2,3,4,⋯ ,2H
H

k=1

H

j=1

 (14) 

 

Sum Entropy: This metric indicates the degree of disorder 

or randomness in the distribution of the sum of grey levels in 

the image. 

 

sum entropy = −∑qy+z(j)log{qy+z(j)}

2H

j=2

 (15) 

 

Autocorrelation: This parameter quantifies the degree of 

repetition or regularity in the texture of an image, essentially 

distinguishing between fine and coarse textures. 

 

autocorrelation = ∑∑(jk)q(j, k)

H−1

k=0

H−1

j=0

 (16) 

 

Cluster Prominence and Cluster Shade serve as indicators 

of the asymmetry or skewness in the matrix, with high values 

indicating an imbalance in the image distribution. 

 
cluster prominence

= ∑∑(j + k − μy − μz)
4
∙ Q(j, k)

H−1

j=0

H−1

j=0

 
(17) 

 

cluster shade = ∑∑(j + k − μy − μz)
3
∙ (j, k)

H−1

j=0

H−1

j=0

 (18) 

 

The GLCM is used for extracting the above-mentioned 

statistical texture parameters. These parameters are very 

helpful in performing the segmentation process of the 

proposed FHCD model.  

 

 

5. SEGMENTATION AND PREDICTION FOR THE 

INTRODUCED FHCD MODEL 

 

5.1 Segmentation 

 

For the extracted set of features, segmentation is 

accomplished by the Otsu Thresholding method. Otsu 

thresholding is employed for the automatic binarization-level 

decision on the basis of the shape associated with the 

histogram. The Otsu thresholding technique, which operates 

on the presumption that an image's pixels have two classes or 

a bimodal histogram, autonomously chooses the ideal global 

threshold for an image. In Otsu thresholding, a threshold that 

minimizes the variation inside the classes is thoroughly 

explored. Eq. (19) describes the intra-class variance as the 

weighted equation of the variances of every class: 

 

σx
2(u) = r1(u)σ1

2(u) + r2(u)σ2
2(u) (19) 

Here, the subscripts 1 and 2 respectively denote the 

foreground and background classes. The predicted variances 

and probabilities for these classes are computed as follows: 

 

r1(u) =∑Q(j)

u

j=1

 (20) 

 

In the above equation, the foreground classes are 

represented by r1(u) respectively.  

 

r2(u) = ∑ Q(j)

L

j=u+1

 (21) 

 

In the above equation, the background classes are 

represented by r2(u) respectively.  

 

σ1
2(u) = ∑[j − μ1(u)]

2
Q(j)

r1(u)

u

j=1

 (22) 

 

Here, the variance of class 1 is shown by σ1
2(u) respectively. 

 

σ2
2(u) = ∑ [j − μ2(u)]

2
Q(j)

r2(u)

L

j=u+1

 (23) 

 

Here, the variance of class 2 is shown by σ2
2(u) respectively.  

Here, the class means, μ1(u) and μ2(u), are measured as 

beneath:  

 

μ1(u) =∑
jQ(j)

r1(u)

u

j=1

 (24) 

 

In the above equation, the mean of class 1 is shown by 

μ1(u) respectively.  

 

μ2(u) = ∑
jQ(j)

r2(u)

L

j=u+1

 (25) 

 

In the above equation, the mean of class 2 is shown by 

μ2(u) respectively. Here, an image's pixel values vary from 0 

to L.  

 

5.2 Prediction 

 

The prediction of the segmented images for the developed 

FHCD model is performed by the EDBN model. The EDBN 

is selected here since it can accurately predict the FHCD 

model when compared with state-of-the-art deep learning 

models, and it is clearly revealed in the results section in terms 

of various analyses. Here, the hidden neurons of DBN are 

tuned by the TS algorithm with the consideration of accuracy 

and precision maximization as the major objective functions. 

In DBN, the regrets, which are described as the discrepancy 

between forecasts and actual outcomes, can be used to 

optimize the learning framework of the DBN through back 

propagation. Hence, DBN is appropriately feasible for the 

needs of prediction. Multiple layers associated with the DBN's 

model are made up of RBM. The below process illustrates the 

request sequence learning procedure: 
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Input: The three-dimensional vectors in [0,1]space serve as 

the inputs for DBN. To determine ∀yj ∈ Yk(u), the Ij(u) is 

substituted with Yk(u). 
 

yj =
uj − uin

ula − uin
 (26) 

 

Here, uin represents the first iteration and ula represents the 

last iteration. It is evident that yj ∈ [0,1]. Hence, the Yk(u) can 

be selected as input.  

RBM’S training process: The energy function linked with 

the RBM is described as: Unit j  is designated as bj in the 

visible layer while Unit k is designated as cjin the hidden layer. 

Assume the weight be designated as xjk, where ϕ = {x, b, c}.  

 

Gϕ(l, m) = −∑bjlj
j∈Ol

− ∑ ckmk −∑ xj,kljmk
{j,k}∈Ol×Omk∈Om

 
(27) 

 

The vectors l hold for the visible layer, and the vectors m 

for the hidden layer. The active probability hk of hidden unit 

k is described as:  

 

Q(hk|l) = sig (ck +∑xj,klj
j∈Ol

) (28) 

 

The sigmoid function with the form 
1

1+e−x
 is called sig(. ). 

As a result, we may infer that the activation threshold is 

specified as Ω.  

 

hk = {
1, Q(hk|l) ≥ Ω
0, otherwise

 (29) 

 

The conditional joint probability of (l, m)beneath ϕ can be 

attained using:  

 

Q(l,m|ϕ) =
1

Ac
e−G(l,m) (30) 

In the above equation, the conditional probability is shown 

by Q(l,m|ϕ) respectively.  

 

Aϕ = ∑ e
−GAϕ

(l,m)

l,m∈⊕

 (31) 

 

The below cost function is provided to upgrade ϕ: 

 

A(ϕ) =∑logQe(l|m, ϕ)

e∈E

 (32) 

 

Here, E shows the training group and the upgrade of ϕ may 

be provided as follows:  

 

ϕ = ϕ + ρ
∂A(ϕ)

∂ϕ
 (33) 

 

Here, ρ indicates the DL rate in RBM.  

Regulation and outputs: The units for output represents 

sigmoid functions, where zd = sig(f + ∑ xj,kmjj∈Ow
)  in 

output layer, f denotes the basis. To instantaneously monitor 

and control the DBN, the regrets are provided by l(u) =

∑ ∑ ‖zd(u − 1) − ne,d(u)‖
2

d∈Oe∈E , where zd(u − 1) denotes 

the value of zd  at u − 1  and ne,d(u − 1)  is described as 

follows:  

 

ne,d = {
1, prediction count
0, otherwise

 (34) 

 

The EDBN-based prediction for the FHCD model is given 

pictorially in Figure 2. The major objective of the EDBN-

based prediction for the FHCD model is to optimize the hidden 

neurons of DBN by the TS with the intention of accuracy plus 

precision maximization as below. 

 
Objective function = argmax⏟    

HNDBN

(accuracy + precision) 
(35) 

 

Here, the term argmax defines the maximization function, 

and hidden neurons are shown by HNDBN respectively.  

 

 
 

Figure 2. EDBN-based prediction for the developed FHCD model 
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5.3 TS algorithm 
 

The TS algorithm was chosen to improve the hidden 

neurons in the proposed FHCD framework's EDBN-based 

prediction model. The TS is mainly chosen here since it can 

return better local as well as global optimal solutions. It 

enhances the prediction phase of the proposed FHCD model 

by optimizing the hidden neurons of the existing DBN model 

to produce a novel EDBN model that, in turn, can return better 

prediction accuracy than the considered traditional models. 

The mentioned parameters are being optimized in order to 

derive accuracy plus precision maximization as the major 

objective. The SNR as well as the count of host stars (ot) 
represent two factors that are specified in the algorithm model. 

On the basis of the transit framework, the SN parameter is 

chosen. Moreover, the standard deviation is used to assess the 

noise. The feasibility that is attained from star images exists in 

reality. It must be remembered that the quantity of TS is equal 

to the product of the two algorithmic parameters (ot and TO). 

The TS implementation process consists of five stages: galaxy, 

star, transit, planet, and neighbor, as well as exploitation. 

The program chooses a galaxy to begin with. The galactic 

center is selected as the appropriate place in the search space 

in a random manner. Once this position is known, it will be 

essential to establish the galaxy's habitable planets (life belt). 

To achieve this, the prospective for the optimal stellar groups 

is determined by evaluating the ot ∗ TO random areas using 

Eqs. (36) to (38). Afterwards, the ones with the finest fitness 

are chosen. The method's following phases start with the 

locations that were chosen because they have the possibility of 

sustaining life. 
 

MS,m = Mgalaxy + E − noise     m = 1,⋯ , (ot × TO) (36) 

 

Here, the location is shown by MS,m respectively.  

 

E = {
d1Mgalaxy −Ms if a = 1 (negative region)

d1Mgalaxy +Ms if a = 2 (positive region)
 (37) 

 

In the above equation, the parameter is shown by the term E 

respectively.  
 

noise = (d2)
3Ms (38) 

 

The galaxy's center is represented by Mgalaxy  in the 

equations described above. In the search space, Ms represents 

a random place as well. A random integer (d1) and a random 

vector (d2) having the optimization issue are two coefficients.  

To illustrate how the condition of the research region differs 

from that of the galaxy's center, parameter E  is used as a 

comparison. This area may be found either on the front 

(positive portion) or back (negative portion) of the galaxy's 

center area. Here, the zone parameter (a)  defines a chance 

count between 1 and 2. In order to improve positioning 

accuracy, noise associated with the data gathered from the 

signals that were acquired must also be eliminated. It 

significantly varies from the settings for which it is designed. 

In order to lower the computational cost, a coefficient 

d2having a power of 3 has been utilized.  

The following phase involves selecting a star that 

corresponds to a stellar system utilizing Eqs. (39) to (41), one 

from each of the designated areas. As a result, the method can 

search for ot stars at the conclusion of this step. Mt in Eq. (39) 

displays the stars' positions. In these equations, the coefficients 

d3 and d4 represent random values between 0 and 1, while d5 

defines a random vector between 0 and 1.  

 

MT,j = MS,j + E − noise     j = 1,⋯ , ot (39) 

 

In the above equation, the position of the star is shown by 

MT,j respectively.  

 

E = {
d4MS,j − d3Ms if a = 1 (negative region)

d4MS,j + d3Ms if a = 2 (positive region)
 (40) 

 

In the above equation, the parameter is shown by the term E 

respectively.  

 

noise = (d5)
3Ms (41) 

 

The galaxy stage of the suggested method is run only once 

before the iterations begin. This phase's goal is to determine 

the proper circumstances in which to carry out the method's 

key steps.  

It is essential to reassess the light obtained from the star in 

order to identify any potential minimization in received light 

signals that could signal the transit. The MT  along with its 

corresponding fitness (gT) contain two meanings (N1 and N2) 

in the TS method. N1  is employed when it is desired to 

estimate and modify the position of a planet using the position 

of the star. N2 is employed when it is desired to ascertain and 

modify the brightness obtained from the star. Consequently, a 

variation in MT  in the instance of N2  denotes a novel light 

signal, whereas a variation in MT  in the consideration of 

N1denotes a variation in the star's position.  

The star’s class must be specified in the TS method. Every 

star's brightness is taken into account for this reason, utilizing 

the concept of N2. It is obvious that a close distance makes it 

possible to capture more photons. As a result, the brightness 

of the star is roughly determined by Eq. (42) in the suggested 

approach.  

 

Mj =
Sj ot⁄

(ej)
2      j = 1,⋯ , ot     Sj ∈ {1,⋯ , ot} (42) 

 

In the above equation, the location of the brightness of the 

star is shown by Mj respectively.  

 

ej = √(MT −MU)
2     j = 1,⋯ , ot (43) 

 

Here, Mj and Sj stand for the j star's brightness as well as 

rank, respectively. Moreover, ej  (Eq. (43)) addresses the 

separation between the telescope and star j. At the beginning 

of the procedure, a random position for the telescope, MU, is 

chosen; this position remains constant throughout 

optimization. By modifying the value of MT and utilizing the 

specification ofN2, the novel signal is obtained. The Eqs. (44) 

to (46) are applied for this reason. A random integer among -

1 and 1 as well as a random vector among 0 and 1 

correspondingly make up coefficients d6 and d7.  

 

MT,new,j = MT,j + E − noise     j = 1,⋯ , ot (44) 

 

In the above equation, the new position is shown by MT,new,j 

respectively.  
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E = d6MT,j (45) 
 

In the above equation, the parameter is shown by the term E 

respectively.  
 

noise = (d7)
3MT (46) 

 

Last but not least, the amount of the star's brightness is 

computed (the acquired gt utilizing the novel MT,new ), and 

therefore, the amount of the star's novel luminosity, Mj,new, is 

established by Eq. (47).  
 

Mj,new =
Sj,new ot⁄

(ej,new)
2      j = 1,⋯ , ot (47) 

 

The novel MT as well as the position of the telescope may 

be used to determine the parameter ej,new . It is possible to 

establish whether a transit is possible by contrasting Mj with 

Mj,new . On the basis of Eq. (48), this probability, QU , is 

described as 1 (probability of transit) and 0 (probability of 

non-transit). At the present iteration, the planet stage is utilized 

ifQU = 1, else, the neighbor stage is employed.   

 
if Mj,new < Mj QU = 1 (transit)

if Mj,new ≥ Mj QU = 0 (no transit)
 (48) 

 

If the transit is seen (QU = 1), the planet stage is carried out 

in the TS method by supplying the value of QU in the earlier 

stage. The original position of the identified planet is initially 

established at this stage. When the planet passes in front of the 

star as well as the telescope, less light is seen (a transit 

happens). This allows for the determination of the planet's 

original position(MA). This is accomplished by Eq. (49) in the 

TS method.  

 

MA = (d8MU + SMMT,j) 2     j = 1,⋯ , ot⁄  (49) 

 

In the above equation, the planet’s original position is 

shown by the term MA respectively.  

 

SM = MT,new,j MT,j⁄  (50) 

 

The luminance ratio, as determined by Eq. (50), is 

represented by the parameter SM. Moreover, the value of the 

random coefficient d8ranges from 0 to 1. The condition of the 

planet, which is currently located between the star and the 

telescope, is computed in Eq. (49).  

As was already established, one of the major crucial factors 

in establishing transit as well as minimizing the effect of noise 

is the SNR. The amount of signal obtained is analyzed to 

pinpoint the planet's position in its star framework by 

estimating the planet's precise position. For this reason, the TS 

method takes into account a variety of TO signals (Eq. (51)). 

In this equation, the coefficient d9 defines a chance value 

between 0 and 1. Moreover, the value of the random vector 

d10ranges from -1 to 1. Following signal determination(Mn), 

the final location of the planet (MQ) is adjusted as in Eq. (52).  

 

Mn,k = {

MA + d9Ms if A = 1                            for Aphelion region

MA − d9Ms  if A = 2 k = 1,⋯ , TO for Perihelion region 

MA + d10Ms if A = 3                        for Neutral region
 (51) 

 

In the above equation, the signal determination is shown by 

Mn,k respectively.  
 

MQ =
∑ Mn,k
TO
k=1

TO
 (52) 

 

The terms Aphelion and Perihelion are used in astronomy 

to define the maximum and minimum distances between a 

planet (such as Earth) and its host star, respectively. The 

Aphelion, Perihelion, and Neutral areas are three zones that 

are influenced by the zone parameter(A) in the planet stage. 

The value of this option will be either 1, 2, or 3. If the planet 

discovered within the star structure that is currently under 

investigation has superior characteristics for supporting life 

compared to the previously located planet, its position is 

retained in each iteration of the procedure. 

If a star in the present observation does not have a transit, 

the neighborhood planets of the star's recently identified planet 

will be investigated. In other terms, the existing planet of the 

star will take its position. Eqs. (52) to (54) are used in the 

neighbor stage of the TS method to accomplish this. Initially, 

the host star (MT,new) as well as a random position (MS) are 

taken into account when estimating the neighbor's starting 

position (MA) utilizing Eq. (53). Eqs. (54) and (55) are next 

used to calculate the neighbor planet's (MO) precise position. 

In Eq. (53), the coefficients d11 and d12cope with a random 

count between 0 and 1. Moreover, the coefficients d13 and d14 

in Eq. (53) are, accordingly, a random integer and a vector 

between-1 and 1.  

 

MA = (d11Mt,new + d12Ms) 2⁄  (53) 

 

In the above equation, the neighbor’s starting position is 

shown by MA respectively.  

 

Mo,k = {

MA − d13Ms if A = 1                        for Aphelion region

MA + d13Ms  if A = 2 k = 1,⋯ , TO for Perihelion region 

MA + d14Ms if A = 3                        for Neutral region
 (54) 

 

In the above equation, the precise position of the neighbor’s 

planet is shown by Mo,k respectively.  

 

MO,j =
∑ Mo,k
TO
k=1

TO
 (55) 

 

The ideal planet for every star is chosen in the earlier rounds. 

As was previously said, the mere discovery of a planet is 

meaningless. In reality, research on the planet's properties as 

well as the prerequisites for supporting life is essential. This is 

carried out in the Exploitation step of the TS method. A novel 

definition of the MQis presented at this stage. In other terms, 

the properties linked with the planet are what MQ  in the 

present stage (MF)  relates to (like its materials, density, 
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atmosphere, etc.). Finally, utilizing Eqs. (56) and (57), the 

final features of the planet are adjusted TO times (k =
1,⋯ , TO) by the addition of novel information(L).  

In this equation, the random numbers d15 and d16 are 

between 0 and 2, respectively. Moreover, the random vector 

d17is between 0 and 1. The value Q in the Eq. (57) specifies a 

random power between 1 and(ot ∗ TO). The knowledge index, 

denoted in this equation by the random integer dl(1, 2, 3, or 4), 

is present. In this step, the optimal MF may be discovered for 

every star, which is the optimal planet. The method's overall 

solution produces the finest planet ever among all 

otdiscovered planets.  

 

MF,k =

{
 
 

 
 
d16MQ + d15L if dl = 1 (State 1)

d16MQ − d15L if dl = 2 (State 2)

MQ − d15L    if dl = 3 (State 3)

MQ + d15L if dl = 4 (State 4)

 (56) 

Algorithm 1: TS algorithm 

Input: Host star count o, SNR TO, and iteration count oit (segmented images of the proposed FHCD model) 

Output: Position of the optimal planet ever MCalong with its respective fitness gC  (predicted image of the proposed FHCD 

model) 

Initialize the initial position of the galaxy 

E = {
d1Mgalaxy −Ms if a = 1 (negative region)

d1Mgalaxy +Ms if a = 2 (positive region)
 

noise = (d2)
3Ms 

MS,m = Mgalaxy + E − noise     m = 1,⋯ , (ot × TO) 

E = {
d4MS,j − d3Ms if a = 1 (negative region)

d4MS,j + d3Ms if a = 2 (positive region)
 

noise = (d5)
3Ms 

MT,j = MS,j + E − noise     j = 1,⋯ , ot 

Return optimal stars MT (hidden neurons of novel EDBN-based FHCD model) 

While (end criteria not met) do 

 MT,j = MS,j + E − noise     j = 1,⋯ , ot 

 
Mj =

Sj ot⁄

(ej)
2      j = 1,⋯ , ot     Sj ∈ {1,⋯ , ot} 

 
Mj,new =

Sj,new ot⁄

(ej,new)
2      j = 1,⋯ , ot 

  For j = 1: ot 
   If transit is detected 

    SM = MT,new,j MT,j⁄  

    MA = (d8MU + SMMT,j) 2     j = 1,⋯ , ot⁄  

Mn,k = {

MA + d9Ms if A = 1          for Aphelion region

MA − d9Ms  if A = 2 k = 1,⋯ , TO for Perihelion region 

MA + d10Ms if A = 3            for Neutral region
  

    
MQ =

∑ Mn,k
TO
k=1

TO
 

   else 

    MA = (d11Mt,new + d12Ms) 2⁄  

Mo,k = {

MA − d13Ms if A = 1                            for Aphelion region

MA + d13Ms  if A = 2 k = 1,⋯ , TO for Perihelion region 

MA + d14Ms if A = 3                        for Neutral region
 

    
MO,j =

∑ Mo,k
TO
k=1

TO
 

   end 

  end 

 Return MQ,jalong with its respective fitness (gQ,j) for every star (accuracy plus precision maximization of the proposed 

FHCD prediction model) 

 

MF,k =

{
 
 

 
 
d16MQ + d15L if dl = 1 (State 1)

d16MQ − d15L if dl = 2 (State 2)

MQ − d15L    if dl = 3 (State 3)

MQ + d15L if dl = 4 (State 4)

 

  Return MQalong with its respective fitness (gQ,j)  for every star (accuracy plus precision maximization of the 

proposed FHCD prediction model) 

end 

Return MC along with its respective fitness (gC) (final predicted image of the proposed FHCD model) 

Stop  
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In the above equation, the present stage is shown by MF,k 

respectively.  

 

L = (d17)
QMs (57) 

 

The generic pseudocode, that is apparent in Algorithm 1, is 

supplied here to describe the TS implementation procedure.  

 

 

6. RESULTS 

 

6.1 Experimental setup 

 

The proposed FHCD model was implemented in MATLAB 

2020a, and the outcomes were analyzed and shown in the 

Figure 3. An Intel processor was used with four logical cores. 

A RAM of around 5-8 GB was used for typical installation. 

The population size as well as the iteration count were fixed at 

10 and 100. The developed FHCD model was compared with 

various optimization algorithms such as GOA, GWO, TS, and 

TS-GWA in terms of distinct analyses such as accuracy, 

precision, sensitivity, specificity, and F1 score to prove the 

overall betterment of the proposed FHCD model. Some of the 

sample experimental images attained are shown below. 

 

 
 

Figure 3. Sample experimental images considered for the 

FHCD model 

 

6.2 Implementation details 

 

The F1-score, Accuracy, Specificity, Precision, and 

Sensitivity are employed to evaluate performance and properly 

detect FHCD. There are TP, FP, TN, and FN amounts of True 

Positives, False Positives, True Negatives, and False 

Negatives, correspondingly.  

The terms TP and TN represent the benefits and drawbacks 

of making correct forecasts in reference to the actual facts. FP 

and FN represent, respectively, the advantages and 

disadvantages of erroneous forecasts in comparison to the 

actual facts. A greater number yields better results from the 

FHCD model. The different equations used for the analysis are 

shown below. 

 

specificity =
TN

FP + TN
 (58) 

 

precision =
TP

FP + TP
 (59) 

 

sensitivity =
TP

FN + TP
 (60) 

accuracy =
TN + TP

TN + FN + FP + TP
 (61) 

 

f1 score = 2 ×
sensitivity × precision

sensitivity + precision
 (62) 

 

6.3 Specificity analysis 

 

Table 1 clearly portrays the specificity analysis of the 

developed FHCD model along with the existing methods. The 

proposed EDBN-TS reveals better sensitivity analysis than the 

other considered traditional methods, thereby revealing the 

supremacy of the proposed model in predicting the FHCD. 

The analysis also improves with the proposed method 

compared to state-of-the-art methods over the course of 

iterations. Hence, from this analysis, it can be clearly 

concluded that the proposed EDBN-TS model returns better 

specificity analysis than the conventional methods at all 

iterations, respectively and shown in the Figure 4. 

 

Table 1. Specificity analysis 

 

Methods 
Iteration 

20 40 60 80 100 

GOA [26] 91.40 94.58 98.11 98.16 96.09 

GWO [27] 93.94 95.47 97.38 97.43 97.33 

TS [28] 90.90 96.80 98.34 98.39 95.96 

TS-GWA [29] 90.39 96.53 98.71 98.76 97.43 

Proposed EDBN-TS 94.48 97.98 98.68 98.73 98.78 

 

 
 

Figure 4. Specificity analysis 

 

6.4 Precision analysis 

 

Table 2 describes the developed FHCD model's precision 

analysis in detail along with the current approaches.  

 

Table 2. Precision analysis 

 
Methods Iteration 

20 40 60 80 100 

GOA [26] 96.50 96.85 97.74 97.79 96.80 

GWO [27] 95.39 96.98 97.45 97.50 96.91 

TS [28] 94.75 96.19 97.39 97.44 97.53 

TS-GWA [29] 94.76 97.81 97.36 97.41 97.46 

Proposed EDBN-TS 96.52 97.85 98.23 98.29 98.50 

 

The proposed model is better at predicting FHCD than the 

other methods that were previously considered because it uses 
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the new EDBN-TS to do more accurate analysis than those 

other methods. 

 

 
 

Figure 5. Precision analysis 

 

During the course of iterations, the suggested technique 

outperforms state-of-the-art methods in terms of analysis and 

shown in Figure 5. Furthermore, it is evident from this study 

that the suggested EDBN-TS model provides superior 

precision analysis than the traditional approaches at each 

iteration. 

 

6.5 Sensitivity analysis 

 

Table 3 goes into great length on the sensitivity analysis of 

the created FHCD model as well as the present methods. The 

suggested model is superior in terms of FHCD prediction, as 

shown by the new EDBN-TS, which offers greater sensitivity 

analysis than the other traditional techniques that were 

previously taken into account and shown in the Figure 6. 

The proposed method beats cutting-edge methods in terms 

of analysis over the duration of iterations. This investigation 

makes it clear that the recommended EDBN-TS model offers 

greater sensitivity analysis than the conventional 

methodologies at each iteration as well. 

 

Table 3. Sensitivity analysis 

 
Methods Iteration 

20 40 60 80 100 

GOA [26] 96.45 96.80 97.69 97.74 96.75 

GWO [27] 95.34 96.93 97.40 97.45 96.86 

TS [28] 94.70 96.14 97.34 97.39 97.48 

TS-GWA [29] 94.71 97.76 97.31 97.36 97.41 

Proposed EDBN-TS 96.47 97.81 98.18 98.24 98.45 

 

6.6 F1 score analysis 

 

Table 4. F1 score analysis 

 
Methods Iteration 

20 40 60 80 100 

GOA [26] 93.88 95.70 97.92 97.97 96.50 

GWO [27] 94.66 96.26 97.81 97.86 97.43 

TS [28] 92.79 96.49 97.87 97.92 96.71 

TS-GWA [29] 92.52 97.17 98.48 98.53 97.19 

Proposed EDBN-TS 94.96 97.39 98.02 98.07 98.64 

 

The F1 score analysis of the developed FHCD model and 

the current approaches are covered in great detail in Table 4. 

It is suggested that the recommended model is better at 

predicting FHCD based on the new EDBN-TS method, which 

gives a more complete F1 score analysis than the other 

common methods already used and shown in Figure 7. Modern 

techniques are surpassed by the suggested method in terms of 

analysis during the course of iterations. 

 

 
 

Figure 6. Sensitivity analysis 

 

 
 

Figure 7. F1 score analysis 

 

This study demonstrates that the suggested EDBN-TS 

model provides more comprehensive F1 score analysis than 

the traditional approaches at each iteration. 

 

6.7 Accuracy analysis 

 

Table 5 goes into great length on the accuracy analysis of 

the created FHCD model and the existing methodologies.  

 

Table 5. Accuracy analysis 

 
Methods Iteration 

20 40 60 80 100 

GOA [26] 98.23 97.67 98.79 98.84 98.78 

GWO [27] 97.12 98.90 98.22 98.27 98.53 

TS [28] 97.98 97.98 98.41 98.46 98.90 

TS-GWA [29] 96.01 99.15 98.46 98.51 98.35 

Proposed EDBN-TS 98.53 98.53 98.85 98.90 99.52 
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The proposed model is superior in terms of FHCD 

prediction, according to the unique EDBN-TS, which offers a 

more thorough accuracy analysis than the other traditional 

approaches that were previously taken into account and shown 

in Figure 8. 

The recommended strategy outperforms contemporary 

methodologies in terms of analysis over the duration of 

iterations. This study reveals that the recommended EDBN-TS 

model offers a more thorough accuracy analysis at each 

iteration than the conventional methodologies. 

 

 
 

Figure 8. Accuracy analysis 

 

From the overall analysis, it is possible to clearly 

demonstrate that the proposed EDBN-based FHCD prediction 

model showed superior outcomes than the other conventional 

models. The proposed EDBN-based FHCD prediction model 

returned better precision, accuracy, sensitivity, F1 score, and 

specificity of about 1.76%, 0.75%, 1.76%, 2.22%, and 2.80% 

compared with other models. Therefore, it can be concluded 

clearly that the proposed EDBN-based FHCD prediction 

model is better at predicting FHCD images than the other 

traditional methods, respectively. 

 

 

7. CONCLUSION 

 

This study employed the state-of-the-art intelligence 

technology EDBN-TS to partition and predict FHCD. The 

research is unique in that it utilizes a cutting-edge deep 

learning-based optimization algorithm to forecast the FHCD 

model. This approach yields higher prediction accuracy 

compared to other advanced models currently available. 

Initially, the data from US fetal imaging was obtained and pre-

processed using the recovered frames, label removal, and 

filtering procedures. Subsequently, the GLCM approach was 

employed to derive the characteristics from the pre-processed 

images. Furthermore, the Otsu Thresholding approach was 

employed to segment the extracted features. In the last stage, 

the EDBN conducted the prediction. The buried DBN neurons 

of the EDBN were tweaked by TS, with the primary objective 

of maximizing accuracy and precision. The optimal classifier 

for predicting FHD was likewise generated by utilizing an 

EDBN as the input for all reconstructed pictures. The 

recommended EDBN-FS model significantly improved the 

prediction rate of FHCD by around 25%, taking into account 

precision, accuracy, sensitivity, and specificity. Furthermore, 

it achieved a 100% accurate prediction of unfavorable 

outcomes when applied to unfamiliar data. The precise 

forecasting of FHCD and the prompt detection of congenital 

heart defects were two potential pragmatic applications of the 

uncovered DL method. 

The EDBN-based FHCD prediction model demonstrated 

superior precision, accuracy, sensitivity, F1 score, and 

specificity, with improvements of approximately 1.76%, 

0.75%, 1.76%, 2.22%, and 2.80% respectively, when 

compared to alternative models. The suggested FHCD 

prediction model does not exhibit improved performance 

when used with hybrid optimization strategies. In the future, 

the FHCD prediction model can be expanded by using a novel 

hybrid optimization technique. 

 

 

REFERENCES  

 

[1] Wu, L., Cheng, J.Z., Li, S., Lei, B., Wang, T., Ni, D. 

(2017). FUIQA: fetal ultrasound image quality 

assessment with deep convolutional networks. IEEE 

Transactions on Cybernetics, 47(5): 1336-1349. 

https://doi.org/10.1109/TCYB.2017.2671898 

[2] Baumgartner, C.F., Kamnitsas, K., Matthew, J., Fletcher, 

T.P., Smith, S., Koch, L.M., Rueckert, D. (2017). 

SonoNet: real-time detection and localisation of fetal 

standard scan planes in freehand ultrasound. IEEE 

Transactions on Medical Imaging, 36(11): 2204-2215. 

https://doi.org/10.1109/TMI.2017.2712367 

[3] Maraci, M.A., Bridge, C.P., Napolitano, R., 

Papageorghiou, A., Noble, J.A. (2017). A framework for 

analysis of linear ultrasound videos to detect fetal 

presentation and heartbeat. Medical Image Analysis, 37: 

22-36. https://doi.org/10.1016/j.media.2017.01.003 

[4] Chen, L., Jiang, Y., Wang, J. (2020). Fetal cardiac 

rhabdomyoma due to paternal mosaicism of TSC2: A 

case report. Medicine, 99(35): e21949. 

https://doi.org/10.1097/MD.0000000000021949 

[5] Ide, T., Miyoshi, T., Katsuragi, S., Neki, R., Kurosaki, 

K.I., Shiraishi, I., Ikeda, T. (2019). Prediction of 

postnatal arrhythmia in fetuses with cardiac 

rhabdomyoma. The Journal of Maternal-Fetal & 

Neonatal Medicine, 32(15): 2463-2468. 

https://doi.org/10.1080/14767058.2018.1438402 

[6] Ekmekci, E., Ozkan, B.O., Yildiz, M.S., Kocakaya, B. 

(2018). Prenatal diagnosis of fetal cardiac rhabdomyoma 

associated with tuberous sclerosis: A case report. Case 

Reports in Women's Health, 19: e00070. 

https://doi.org/10.1016/j.crwh.2018.e00070 

[7] Vo, K., Le, T., Rahmani, A.M., Dutt, N., Cao, H. (2020). 

An efficient and robust deep learning method with 1-D 

octave convolution to extract fetal electrocardiogram. 

Sensors, 20(13): 3757. 

https://doi.org/10.3390/s20133757 

[8] Torrents-Barrena, J., Piella, G., Masoller, N., Gratacós, 

E., Eixarch, E., Ceresa, M., Ballester, M.Á.G. (2019). 

Segmentation and classification in MRI and US fetal 

imaging: recent trends and future prospects. Medical 

Image Analysis, 51: 61-88. 

https://doi.org/10.1016/j.media.2018.10.003 

[9] Balayla, J., Shrem, G. (2019). Use of artificial 

intelligence (AI) in the interpretation of intrapartum fetal 

heart rate (FHR) tracings: A systematic review and meta-

analysis. Archives of Gynecology and Obstetrics, 300: 7-

14. https://doi.org/10.1007/s00404-019-05151-7 

[10] Nurmaini, S., Rachmatullah, M.N., Sapitri, A.I., 

Darmawahyuni, A., Tutuko, B., Firdaus, F., Bernolian, N. 

596



 

(2021). Deep learning-based computer-aided fetal 

echocardiography: application to heart standard view 

segmentation for congenital heart defects detection. 

Sensors, 21(23): 8007. 

https://doi.org/10.3390/s21238007 

[11] Nurmaini, S., Rachmatullah, M.N., Sapitri, A.I., 

Darmawahyuni, A., Jovandy, A., Firdaus, F., Passarella, 

R. (2020). Accurate detection of septal defects with fetal 

ultrasonography images using deep learning-based 

multiclass instance segmentation. IEEE Access, 8: 

196160-196174. 

https://doi.org/10.1109/ACCESS.2020.3034367 

[12] Skeika, E.L., Da Luz, M.R., Fernandes, B.J.T., Siqueira, 

H.V., De Andrade, M.L.S.C. (2020). Convolutional 

neural network to detect and measure fetal skull 

circumference in ultrasound imaging. IEEE Access, 8: 

191519-191529. 

https://doi.org/10.1109/ACCESS.2020.3032376 

[13] Singh, Y., McGeoch, L. (2016). Fetal anomaly screening 

for detection of congenital heart defects. Journal of 

Neonatal Biology, 5(2): 100-115. 

https://doi.org/10.4172/2167-0897.100e115 

[14] Verdurmen, K.M., Eijsvoogel, N.B., Lempersz, C., 

Vullings, R., Schroer, C., van Laar, J.O., Oei, S.G. (2016). 

A systematic review of prenatal screening for congenital 

heart disease by fetal electrocardiography. International 

Journal of Gynecology & Obstetrics, 135(2): 129-134. 

https://doi.org/10.1016/j.ijgo.2016.05.010 

[15] Jayaseelan, S.M., Gopal, S.T., Muthu, S., Selvaraju, S., 

Patel, M.S. (2022). A hybrid fuzzy based cross neighbor 

filtering (HF-CNF) for image enhancement of fine and 

coarse powder scanned electron microscopy (SEM) 

images. Journal of Intelligent & Fuzzy Systems, 42(6): 

6159-6169. https://doi.org/10.3233/JIFS-212561 

[16] Dong, J., Liu, S., Liao, Y., Wen, H., Lei, B., Li, S., Wang, 

T. (2019). A generic quality control framework for fetal 

ultrasound cardiac four-chamber planes. IEEE Journal of 

Biomedical and Health Informatics, 24(4): 931-942. 

https://doi.org/10.1109/JBHI.2019.2948316 

[17] Gong, Y., Zhang, Y., Zhu, H., Lv, J., Cheng, Q., Zhang, 

H., Wang, S. (2019). Fetal congenital heart disease 

echocardiogram screening based on DGACNN: 

adversarial one-class classification combined with video 

transfer learning. IEEE Transactions on Medical Imaging, 

39(4): 1206-1222. 

https://doi.org/10.1109/TMI.2019.2946059 

[18] Sutarno, S., Nurmaini, S., Partan, R.U., Sapitri, A.I., 

Tutuko, B., Rachmatullah, M.N., Sulistiyo, D. (2022). 

FetalNet: Low-light fetal echocardiography 

enhancement and dense convolutional network classifier 

for improving heart defect prediction. Informatics in 

Medicine Unlocked, 35: 101136. 

https://doi.org/10.1016/j.imu.2022.101136 

[19] Qiao, S., Pan, S., Luo, G., Pang, S., Chen, T., Singh, A. 

K., Lv, Z. (2022). A pseudo-siamese feature fusion 

generative adversarial network for synthesizing high-

quality fetal four-chamber views. IEEE Journal of 

Biomedical and Health Informatics, 27(3): 1193-1204. 

https://doi.org/10.1109/JBHI.2022.3143319 

[20] Qiao, S., Pang, S., Luo, G., Pan, S., Chen, T., Lv, Z. 

(2021). FLDS: An intelligent feature learning detection 

system for visualizing medical images supporting fetal 

four-chamber views. IEEE Journal of Biomedical and 

Health Informatics, 26(10): 4814-4825. 

https://doi.org/10.1109/JBHI.2021.3091579 

[21] Pu, B., Lu, Y., Chen, J., Li, S., Zhu, N., Wei, W., Li, K. 

(2022). Mobileunet-fpn: A semantic segmentation model 

for fetal ultrasound four-chamber segmentation in edge 

computing environments. IEEE Journal of Biomedical 

and Health Informatics, 26(11): 5540-5550. 

https://doi.org/10.1109/JBHI.2022.3182722 

[22] Qiao, S., Pang, S., Luo, G., Pan, S., Yu, Z., Chen, T., Lv, 

Z. (2022). RLDS: An explainable residual learning 

diagnosis system for fetal congenital heart disease. 

Future Generation Computer Systems, 128: 205-218. 

https://doi.org/10.1016/j.future.2021.10.001 

[23] Sengan, S., Mehbodniya, A., Bhatia, S., Saranya, S.S., 

Alharbi, M., Basheer, S., Subramaniyaswamy, V. (2022). 

Echocardiographic image segmentation for diagnosing 

fetal cardiac rhabdomyoma during pregnancy using deep 

learning. IEEE Access, 10: 114077-114091. 

https://doi.org/10.1109/ACCESS.2022.3215973 

[24] Xu, L., Liu, M., Zhang, J., He, Y. (2020). Convolutional-

neural-network-based approach for segmentation of 

apical four-chamber view from fetal echocardiography. 

IEEE Access, 8: 80437-80446. 

https://doi.org/10.1109/ACCESS.2020.2984630 

[25] Ogenyi, P., Chiegwu, H.U., England, A., Akanegbu, U. 

E., Ogbonna, O.S., Abubakar, A., Dauda, M. (2022). 

Appraisal of trimester-specific fetal heart rate and its role 

in gestational age prediction. Radiography, 28(4): 926-

932. https://doi.org/10.1016/j.radi.2022.06.015 

[26] Meraihi, Y., Gabis, A.B., Mirjalili, S., Ramdane-Cherif, 

A. (2021). Grasshopper optimization algorithm: theory, 

variants, and applications. IEEE Access, 9: 50001-50024. 

https://doi.org/10.1109/ACCESS.2021.3067597 

[27] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf 

optimizer. Advances in Engineering Software, 69: 46-61. 

https://doi.org/10.1016/j.advengsoft.2013.12.007 

[28] Mirrashid, M., Naderpour, H. (2022). Transit search: An 

optimization algorithm based on exoplanet exploration. 

Results in Control and Optimization, 7: 100127. 

https://doi.org/10.1016/j.rico.2022.100127 

[29] Shobana Nageswari, C., Kumar, V., Vini Antony Grace, 

N., Thiyagarajan, J. (2023). Tunicate swarm-based grey 

wolf algorithm for fetal heart chamber segmentation and 

classification: a heuristic-based optimal feature selection 

concept. Journal of Intelligent & Fuzzy Systems, 44(1): 

1029-1041. https://doi.org/10.3233/JIFS-221654 

 

597




