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The strategic siting of logistics distribution centers, particularly within the medical sector, 

has increasingly emerged as a crucial consideration in optimizing the supply chain. This 

study focuses on identifying the most advantageous location for a new logistics 

distribution center in Aceh Province, leveraging the integration of the analytical hierarchy 

process (AHP) and geographic information systems (GIS) overlay techniques. Parameters 

were weighted using AHP, and spatial analysis facilitated the classification of zones into 

three suitability categories: low, moderate, and high. It was determined that the optimal 

location for the establishment of a new center would be within a high suitability zone. Six 

potential sites, designated as Locations A through F, were initially identified. Subsequent 

evaluation, which included considerations of access road availability and the capacity to 

uniformly service all health-related warehouses, led to the selection of Location C as the 

most ideal. This selection underscores the importance of comprehensive spatial and 

hierarchical analysis in the decision-making process for logistics operations, ensuring 

effective distribution networks within critical sectors such as healthcare. 
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1. INTRODUCTION

Logistics is crucial to effectively managing supply 

requirements and competing in the trade industry. Hence, 

identifying the logistics center is a crucial tactic that must be 

executed. An essential factor to consider when selecting a 

logistics center is its ability to facilitate the integration of 

diverse modes of transportation globally [1-3]. Nevertheless, 

significant calamities frequently obliterate transportation 

infrastructure and restrict transportation capacity. This results 

in the impeding and intricate nature of the logistics distribution 

process. An alternative is to utilize air transportation, 

specifically helicopters. Nevertheless, utilizing helicopters in 

distribution incurs significant costs and involves intricate 

procedures [4-6]. Hence, identifying the logistics center is an 

aspect that necessitates additional investigation. An 

assessment encompassing socio-economic, geographical, and 

disaster factors must be conducted to determine the optimal 

placement for a strategic logistics center. In terms of socio-

economics, the logistics center should be strategically located 

to facilitate the efficient transportation of goods between 

different locations. Additionally, it should have convenient 

accessibility to minimize distribution costs [7, 8]. The logistics 

center must be located in a geographically safe area, free from 

natural disasters that could harm its infrastructure or the 

transportation routes connecting it to the distribution area. 

Natural disasters encompass seismic events such as 

earthquakes, tidal waves known as tsunamis, mass movements 

of land called landslides, and other catastrophic occurrences of 

natural origin [9-13].  

Aceh, located in Indonesia, exhibits remarkably elevated 

seismic activity. This phenomenon results from multiple 

seismic sources, including subduction zones and faults that 

traverse the province. The 2004 earthquake in Indonesia was 

one of the most significant seismic events ever recorded. There 

was a tsunami that followed it, which caused significant 

property damage and over 250,000 fatalities. Transportation 

reached a standstill during this event, causing significant 

challenges in distributing essential logistics such as medicine 

and food [14-17]. Distributing medicines is one of the essential 

steps that must be carried out immediately when a disaster 

occurs [18, 19]. However, the situation changes if, 

simultaneously, the logistics center is impacted by a disaster, 

particularly the medical logistics center. This will result in 

logistical delays as the distribution of logistics needs to be 

carried out from distant logistics centers, which inevitably 
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takes more time [5, 20-27]. An additional instance that can 

exemplify the significance of the medical logistics distribution 

process is the COVID-19 pandemic. The urgent priority in this 

situation is the immediate distribution of medicines and 

vaccines to all health facilities in response to the virus's rapid 

transmission [2, 28-30]. 

Hence, identifying the logistics center will require a 

comprehensive analysis involving multiple disciplines. To 

determine the optimal location for a logistics center and ensure 

its safety from potential natural disasters, it is necessary to 

conduct comprehensive reviews of various aspects. Multi-

disciplinary assessment results are utilized to identify 

numerous study variables that must be assigned relative 

importance. Incorporating interdisciplinary research findings 

into the GIS framework assigns relative importance to 

numerous study variables identified through multi-

disciplinary assessment results [23, 31-36]. The AHP and 

analytical network process (ANP) methods are two approaches 

that can be employed for weighting criteria [37]. The two 

approaches are applicable and can be seamlessly incorporated 

with GIS principles. Several studies have used the AHP 

framework to select a site. The AHP assesses and renders 

decisions involving multiple criteria. This approach offers 

multiple options based on specific criteria and assigns a 

relative score to each option. The AHP enables incorporating 

both subjective and objective elements into the decision-

making process, facilitating the identification of the most 

crucial factors in intricate scenarios [37-46]. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Research location 

 

A case study was conducted in this study to test the results 

of the AHP analysis. The selected case study location is 

situated in Aceh Province, Indonesia. Geographically, the 

research site is located at 20-60 N and 950-980 E. On the 

northern and eastern sides, Aceh Province is bordered by 

Malaysia and the Strait of Malacca; on the southern side by 

North Sumatra Province; and on the western side by the Indian 

Ocean. Figure 1 displays the map of the case study location. 

 

2.2 Material 

 

The data used in this study consists of secondary data 

collected from various references. The data consists of 

shapefiles for each parameter used in the study. Seven 

parameters were selected for this research, which include four 

hazard parameters (earthquake, landslide, tsunami, and 

volcanic activity), as well as land cover type, soil type, and 

annual rainfall. The first parameter used in this study is the 

earthquake vulnerability parameter. According to Priambodo 

et al. [47], the earthquake hazard vulnerability zones are 

divided into three categories: low, moderate, and high 

(descriptions for each classification can be seen in Table 1). 

Based on Priambodo et al. [47], the classification of 

earthquake hazard vulnerability zones in Aceh Province is 

divided into two categories: moderate and high (refer to Figure 

2a). 

The second parameter used in this study is the landslide 

vulnerability zone. The landslide vulnerability zone is divided 

into four classifications: very low, low, medium, and high 

(each classification is explained in Table 1) [48]. In general, 

the coastal areas of Aceh Province are classified as having 

very low to low landslide vulnerability zones. This is because 

the coastal areas have relatively gentle slopes and lower 

elevations. On the other hand, the central areas with steeper 

relief and higher elevations are classified as medium- to high-

landslide vulnerability zones (Figure 2b). 

Moving on to the aspect of tsunami hazards, the tsunami 

hazard vulnerability zones in this study are divided into three 

categories: low, moderate, and high (descriptions for each 

classification are explained in Table 1). The map displaying 

the distribution of tsunami hazard vulnerability zones is shown 

in Figure 2c [49]. The last hazard parameter examined is the 

volcanic hazard vulnerability zone. Aceh Province has three 

active volcanoes, according to data from the Indonesian 

Meteorology, Climatology, and Geophysics Agency (BMKG): 

Seulawah Agam, Bur Ni Telong, and Peut Sagoe [50-52]. The 

volcanic hazard vulnerability zones are divided into six zones: 

A, B, C, D, E, and F (descriptions for each zone are displayed 

in Table 1). The first three zone groups, A, C, and E, represent 

zones of lava flow and lahars, while the other three zone 

groups, B, D, and F, represent zones of projectile rocks and 

volcanic ashfall. The distribution maps of the zones for each 

volcano are shown in Figure 3. 

 

 
 

Figure 1. Research location 
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(a) 

 
(b) 

 
(c) 

 

Figure 2. Hazard Map of Aceh, (a) Earthquake [47], (b) 

Landslide [48], (c) Tsunami Hazard Map of Banda Aceh City 

[49] 

 

 
(a) 
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(b) 

 

 
(c) 

Figure 3. Volcano Hazard Map of Aceh, (a) Seulawah Agam [51], (b) Bur Ni Telong [52], (c) Peut Sagoe [49, 50] 

 

Table 1. Hazard zone classification 

 
Earthquake Hazard Zone Classification [47] 

Classification Zone Description 

Low 
The area has the potential to be affected by earthquake shaking with an intensity scale between V-VI MMI (Modified 

Mercally Intensity) 

Moderate 
The area has the potential to be hit by an earthquake with an intensity scale between VII-VIII MMI (Modified 

Mercally Intensity) 

High 
The area has the potential to be hit by strong earthquake shaking with an intensity scale greater than VIII MMI 

(Modified Mercally Intensity) 

Landslide Zone Classification [48] 

Classification Zone Description 

Very Low 

The zone has very low susceptibility to landslide evidence. The zone was rarely or never been subjected to landslide. 

There is no landmark of old or new landslide found in this zone, except on the small area on the river sides. The area 

is mostly flat to gentle undulating areas with natural slope less than 5-15%, and the slope is not formed by landslide 

deposits, filling material or plastic and swelling clay 

Low 

The zone has low susceptibility to landslide evidence. Landslide rarely occur unless the slope is disturbed and old 

landslide has been stabilized during the past period. Small landslide may occur especially on the river side or gulley. 

Interval of the natural slope is gentle (5-15%) to steep (30-50%), depending on the physical and engineering 

properties of rock and soil forming the slope. On the steep slope area, slope is mostly composed of rock with thin 

soil, and converted by dense vegetation in the form of forest and plantation 

Medium 

The zone has moderately susceptibility to landslide evidence. Landslide may occure in this zone, especially along 

the river side, scarp, road cut, of the slope to be disturbed. Old landslide may be activity especially when induced by 

high rainfall and strong erosion process. Interval of the natural slope is gentle (5-15%) to very steep (>70%), 

depending on the physical and engineering properties of rock and soil forming the slope. The slope is mostly covered 

by poor to very poor vegetation 

High 

The zone has high degree susceptibility to landslide. In this zone, landslide occur very frequently. Old and new 

landslides still occur induced by high rainfall or strong erosion process. Interval of the natural slope is moderate (30-

50%) to very steep (>75%), depending on the physical and engineering properties of rock and soil forming the slope. 

The slope is mostly very poor coverage vegetation 

Tsunami Hazard Zone Classification [49] 

Classification Zone Description 

Low 
This area has the potential to be hit by a tsunami with an inundation height of less than 1m with a tsunami intensity 

scale of V or less 

Moderate 
This area has the potential to be hit by a tsunami with an inundation height of 1-3m with a tsunami intensity scale of 

V-VI 
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High 
This area has the potential to be hit by a tsunami with an inundation height of >3m with a tsunami intensity scale of 

VII or more 

Classification of Volcanic Hazard Zone [50-52] 

Classification Zone Description 

A (KRB I) Potentially affected by lava flow 

B (KRB I) Potentially affected by ashfall and possible incandescent rockfalls 

C (KRB II) Potential for hot clouds, lava flows, and toxic gases 

D (KRB II) Potential for incandescent rock ejections and heavy ash rains 

E (KRB III) High potential for hot clouds, lava flows, and toxic gases 

F (KRB III) High potential for incandescent rockfalls and heavy ashfalls 

 

The next parameter used in the study is the land cover 

parameter. This parameter is used to determine the land use in 

a particular area. By understanding the land use types, we can 

select a more suitable area for the development of a logistic 

distribution center (LDC). Based on the Ministry of 

Environment and Forestry (2019), the land cover classification 

is divided into 19 categories, which are then modified and 

simplified into five classifications: industrial zone (including 

airports, seaports, and mining areas), forest zone (including 

primary and secondary dryland forests, plantation forests, and 

scrub zones), swamp zone (including swamp scrub, secondary 

mangrove forests, and primary and secondary swamp forests), 

residential zone (including residential areas, open lands, 

transmigration areas, savannahs, and grasslands), and 

agricultural zone (including plantations, dryland farming areas, 

mixed dryland farming areas, and ponds). More detailed 

explanations can be found in Table 2, while the map showing 

the distribution of land cover types in Aceh Province is 

displayed in Figure 4a [53]. Soil type is one of the parameters 

used in this study. The classification of soil types is based on 

the classification by the Food and Agriculture Organization of 

the United Nations (FAO/UNESCO). According to this 

classification, there are five soil types found in the study area: 

andosol, ferrasol, fluvisol, luvisol, and rendzina. The 

description of each soil type is provided in Table 2, while the 

map showing the distribution of soil types is displayed in 

Figure 4b [54]. The last parameter used in this study is annual 

rainfall. Essentially, these two parameters (rainfall and soil 

type) are closely related to each other. High rainfall can 

certainly affect the level or precipitation capacity of the soil in 

a particular location [55]. The classification of annual rainfall 

in this study is based on Indonesia's agroclimate resources. 

The average annual rainfall is divided into three classifications: 

dry, moderate, and wet. The classification and detailed 

descriptions are explained in Table 2. Furthermore, the map 

displaying the distribution of average annual rainfall in Aceh 

Province is shown in Figure 4c [56-58]. 

 

Table 2. Land cover, soil type, and rainfall classification 

 
Land Cover Zone Classification [53] 

Classification Zone Description 

Industrial 
Airports, ports and mining zones fall under this zone. These zones are grouped by land use as areas that have been 

utilized and cannot be changed as new zones 

Forest 
Primary and secondary dryland forest, plantation forest and scrub zones belong to this zone. These zones are not 

recommended for use as they are mostly protected forest areas 

Swamp 
Swamp scrub, secondary mangrove forest, primary and secondary swamp forest belong to this zone. This zone is not 

recommended for use because it takes time to develop the area and also in terms of inadequate access 

Residential 
Residential, open land, transmigration, savannah and grassland zones fall under this zone. This zone is highly 

recommended for use as it already has access points and is easy to develop 

Agricultural 
Plantation, dryland farming, mixed dryland farming and ponds are classified in this zone. This zone is recommended 

for use as it already has access points and is easy to develop 

Soil Type Classification [54] 

Soil Type Contents Description 

Andosol Volcanic eject 
Andosols are highly porous, dark-coloured soils developed from parent material of 

volcanic origin, such as volcanic ash, tuff, and pumice 

Fluvisol Alluvial lowlands 

Fluvisols are found typically on level topography that is flooded periodically by 

surface waters or rising groundwater, as in river floodplains and deltas and in coastal 

lowlands 

Luvisol 
Clay accumulation; distinct 

seasons 

The mixed mineralogy, high nutrient content, and good drainage of these soils make 

them suitable for a wide range of agriculture, from grains to orchards to vineyards 

Ferralsol 

Deeply weathered, red or 

yellow soils of the humid 

tropics 

Clay assemblage dominated by low activity clays (mainly kaolinite) and a high 

content of sesquioxides 

Acrisol 

Acidic soils with a layer of 

clay accumulation; seasonally 

dry, humid tropics 

Clays with low cation exchange capacity 

Rendzina Humus-rich; shallow soils Carbonates or occasionally sulfate-rich 

Rainfall Zone Classification [57, 58] 

Classification Zone Description 

Wet The area that has an annual rainfall of >2,500mm/year 

Moderate The area that has an annual rainfall of 1,500-2,500mm/year 

Dry The area that has an annual rainfall <1,500mm/year 

613



 
(a) 

 
(b) 

 
(c) 

 

Figure 4. (a) Landcover Map [53], (b) Soil Map [54], (c) 

Annual Rainfall Map [56] 

 

2.3 Method 

 

2.3.1 AHP  

The method used in this research is AHP combined with the 

concept of GIS overlay. The study begins with the collection 

of shapefile data for each parameter, which is then classified 

based on specific references. The 7 parameters are analyzed, 

and weightings are calculated based on their level of 

importance. The higher the level of importance, the greater the 

assigned value. AHP is one of the methods classified under the 

multi-criteria decision-making (MCDM) approach. AHP is a 

popular method for decision-making compared to other 

methods because it can determine criteria that have significant 

importance compared to other parameters [59, 60]. Basically, 

the AHP method consists of three stages: creating a hierarchy 

tree based on importance levels, determining weights through 

pairwise comparison, and estimating the consistency level of 

the weighting [60, 61]. In other words, the weights assigned to 

indicators in AHP indicate the dominance and significance of 

each element compared to other indicators. Consistency 

between evaluations and weights is a critical aspect of AHP 

for factor weighting. The Consistency Index (CI) is used to 

ensure this consistency, which is defined as follows: 

 

𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (1) 

 

where, n represents the order of a matrix, and λmax indicates 

the principal eigenvalue of a pairwise comparison matrix. 
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Finally, the consistency ratio (CR) can be calculated using the 

following equation: 

 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 (2) 

 

where, RI represents the random consistency index, which can 

be seen in Table 3. For simplicity, Figure 5 displays a detailed 

flowchart of the AHP analysis. The results of the AHP 

calculations for the 7 parameters, along with their respective 

sub-criteria, can be seen in Table 4. 

 

2.3.2 GIS analysis 

After the AHP weight calculations are completed, the next 

step is to input the calculated weights into each parameter's 

respective shapefile. In this study, GIS analysis is conducted 

using ArcGIS software. Some map shapefiles are obtained 

directly from secondary data, while there are also parameter 

map shapefiles obtained through interpolating secondary data, 

such as rainfall data. The average rainfall map is obtained by 

interpolating data from several rainfall observation stations 

owned by BMKG. Table 5 displays the interpolated rainfall 

data using the IDW tool in ArcGIS, resulting in a rainfall map 

as shown in Figure 4c. 

Once each parameter map is prepared, the next step is to add 

the AHP weighting data field to each parameter. The data 

entered includes the weight factor of the main parameter and 

the pairwise weight factor for each parameter. These two 

values are then multiplied to obtain the weight value for each 

parameter. After all the parameters are weighted according to 

the AHP calculations, the next step is to apply the overlay 

technique to the seven weighted parameter maps. The overlay 

technique used is union, where all the parameters are 

combined into a new shapefile [62]. Next, the result of the 

overlay (union) is assigned a new attribute or field that is filled 

with values calculated using the mathematical model obtained 

from the AHP calculations. The calculation result with the 

mathematical model yields the AHP calculation values, which 

are then filtered based on predefined range classes. This 

filtering is useful for classifying zones that have the best 

potential to be selected as the location for the LDC. A detailed 

flowchart of the GIS analysis can be seen in Figure 6. In 

simpler terms, the overall analysis process can be seen in the 

research diagram displayed in Figure 7. 

 

Table 3. Random consistency index (RI) 

 
n RI 

1 0 

2 0 

3 0.58 

4 0.90 

5 1.12 

6 1.24 

7 1.32 

8 1.41 

9 1.45 

10 1.49 

11 1.52 

12 1.54 

 

 

 
 

Figure 5. AHP flowchart 

 

Table 4. AHP calculation 

 
AHP Pairwise Comparison Matrix (PCM) Calculation 

 Soil 

Type 

Land 

Cover 

Earthquake 

Zone 

Tsunami 

Zone 

Landslide 

Zone 

Volcano 

Eruption 
Rainfall 

Priorities 

(P) 

Principal Eigen 

Value (PEV) 

Eigen 

Vector 

Soil Type 1.000 0.333 0.111 0.111 0.111 0.111 4.000 0.027 0.208 7.812 

Land Cover 3.000 1.000 0.111 0.111 0.111 0.111 5.000 0.038 0.303 8.053 
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Earthquake 9.000 9.000 1.000 1.000 1.000 1.000 9.000 0.230 1.647 7.166 

Tsunami 9.000 9.000 1.000 1.000 1.000 1.000 9.000 0.230 1.647 7.166 

Landslide 9.000 9.000 1.000 1.000 1.000 1.000 9.000 0.230 1.647 7.166 

Volcano 9.000 9.000 1.000 1.000 1.000 1.000 9.000 0.230 1.647 7.166 

Rainfall 0.250 0.200 0.111 0.111 0.111 0.111 1.000 0.015 0.133 7.988 

Earthquake Vulnerability Zone Pairwise Comparison Matrix (PCM) Calculation 

Earthquake Zone Low Moderate High Priorities (P) PEV Eigen Vector 

Low 1.000 3.000 9.000 0.655 2.019 3.080 

Moderate 0.333 1.000 7.000 0.290 0.892 3.080 

High 0.111 0.143 1.000 0.055 0.169 3.080 

Landslide Vulnerability Zone Pairwise Comparison Matrix (PCM) Calculation 

Landslide Zone Very Slow Low Medium High Priorities (P) PEV Eigen Vector 

Very Slow 1.000 2.000 2.000 9.000 0.432 1.805 4.176 

Low 0.500 1.000 3.000 9.000 0.338 1.446 4.275 

Medium 0.500 0.333 1.000 9.000 0.195 0.830 4.249 

High 0.111 0.111 0.111 1.000 0.034 0.141 4.160 

Tsunami Vulnerability Zone Pairwise Comparison Matrix (PCM) Calculation 

Tsunami Zone Low Moderate High Priorities (P) PEV Eigen Vector 

Low 1.000 4.000 9.000 0.701 2.178 3.108 

Moderate 0.250 1.000 6.000 0.243 0.755 3.108 

High 0.111 0.167 1.000 0.056 0.175 3.108 

Vulcanic Vulnerability Zone Pairwise Comparison Matrix (PCM) Calculation 

Volcano Eruption A B C D E F 
Priorities 

(P) 
PEV Eigen Vector 

A 1.000 2.000 2.000 3.000 4.000 9.000 0.329 2.074 6.311 

B 0.500 1.000 2.000 2.000 3.000 9.000 0.232 1.479 6.365 

C 0.500 0.500 1.000 2.000 9.000 9.000 0.222 1.564 7.059 

D 0.333 0.500 0.500 1.000 2.000 9.000 0.128 0.778 6.080 

E 0.250 0.333 0.111 0.500 1.000 9.000 0.070 0.491 6.976 

F 0.111 0.111 0.111 0.111 0.111 1.000 0.019 0.128 6.689 

Landcover Zone Classification Pairwise Comparison Matrix (PCM) Calculation 

Land Cover Industrial Forest Swamp Residential Agricultural 
Priorities 

(P) 
PEV 

Eigen 

Vector 

Industrial 1.000 2.000 0.500 0.111 0.125 0.050 0.269 5.366 

Forest 0.500 1.000 0.500 0.111 0.250 0.044 0.232 5.323 

Swamp 2.000 2.000 1.000 0.111 0.167 0.070 0.364 5.207 

Residential 9.000 9.000 9.000 1.000 4.000 0.581 3.076 5.295 

Agricultural 8.000 4.000 6.000 0.250 1.000 0.255 1.396 5.463 

Soil Type Pairwise Comparison Matrix (PCM) Calculation 

Soil Type Andosol Fluvisol Luvisol Ferrasol Acrisol Rendzina 
Priorities 

(P) 
PEV Eigen Vector 

Andosol 1.000 9.000 9.000 4.000 5.000 9.000 0.575 3.625 6.310 

Fluvisol 0.111 1.000 2.000 2.000 2.000 0.500 0.102 0.705 6.947 

Luvisol 0.111 0.500 1.000 1.000 2.000 1.000 0.081 0.518 6.423 

Ferrasol 0.250 0.500 1.000 1.000 1.000 2.000 0.092 0.590 6.396 

Acrisol 0.200 0.500 0.500 1.000 1.000 2.000 0.079 0.521 6.579 

Rendzina 0.111 2.000 1.000 0.500 0.500 1.000 0.072 0.505 7.034 

Rainfall Pairwise Comparison Matrix (PCM) Calculation 

Rainfall Wet Moderate Dry Priorities (P) PEV Eigen Vector 

Wet 1.000 0.500 1.000 0.250 0.750 3.000 

Moderate 2.000 1.000 2.000 0.500 1.500 3.000 

Dry 1.000 0.500 1.000 0.250 0.750 3.000 

 

Table 5. Annual rainfall data [56] 

 
X Y Station Rainfall (mm/year) 

96.42702 4.257144 Krueng Seunagan 617.5 

95.56333 5.37025 Desa Seuneubok 2138.8 

95.36989 5.536033 Desa Cot Irie 1707.43 

96.58098 4.0512 Gunung Kong 4456.5 

95.45833 5.422558 Desa Kp. Lheue 1059.1 

95.49589 5.363611 Desa Siron Blang 127 

97.95225 4.164472 Peunaron 2288.11 

95.2391 5.359892 Pulau Tiga 2854.68 

96.20003 4.311306 Sarah Mane 2647.8 

95.85882 5.220469 Sawang Teubee 3272.45 

97.6803 4.634925 U. Gadeng 2748.97 
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Figure 6. GIS analysis flowchart 

 

 
 

Figure 7. Research flow chart 

 

 

3. RESULTS AND DISSCUSSION 

 

3.1 Results 

 

3.1.1 Weight factor and mathematical model 

The results of the weight calculations for AHP are presented 

in Table 6. The AHP calculations are based on weighting 

according to the level of importance of each parameter. The 

AHP weights are calculated for both the main criteria and sub-

criteria. Based on the AHP calculations, a mathematical model 

can be derived that can be used in GIS analysis. The model 

equation is as follows: 

𝐿𝐷𝐶 = 0.23(𝐸 + 𝐿𝑠 + 𝑇𝑠 + 𝑉) + 0.038𝐿𝑐 + 0.027𝑆𝑡
+ 0.017𝑅 

 

where, LDC represents the logistic distribution center, E 

represents the weight of the earthquake parameter, Ls 

represents the weight of the landslide parameter, Ts represents 

the weight of the tsunami parameter, V represents the weight 

of the volcano parameter, Lc represents the weight of the 

landcover parameter, St represents the weight of the soil type 

parameter, and R represents the weight of the rainfall 

parameter. Furthermore, the results of the CR testing are 

displayed in Table 7. In addition to the CR testing, sensitivity 
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analysis is also conducted, and the results are presented in 

Table 8. 

 

Table 6. AHP Weight factor scale result 

 
Parameter AHP Weight Factor Scale 

Earthquake 0.23 

Landslide 0.23 

Tsunami 0.23 

Volcano 0.23 

Landcover 0.038 

Soil Type 0.027 

Rainfall 0.015 

AHP Pairwise Calculation 

Parameter 
AHP Pairwise Weight 

Factor 

AHP Weight 

Factor 

Earthquake Hazard 

Low 0.655 

0.23 Moderate 0.29 

High 0.055 

Landslide Hazard 

Very Low 0.432 

0.23 
Low 0.338 

Medium 0.195 

High 0.034 

Tsunami Hazard 

Low 0.701 

0.23 Moderate 0.243 

High 0.056 

Volcanic Hazard 

A (KRB I) 0.329 

0.23 

B (KRB I) 0.232 

C (KRB II) 0.222 

D (KRB II) 0.128 

E (KRB 

III) 
0.07 

F (KRB III) 0.019 

Landcover 

Industrial 0.05 

0.038 

Forest 0.044 

Swamp 0.07 

Residential 0.581 

Agricultura

l 
0.255 

Soil Type 

Andosol 0.575 

0.027 

Fluvisol 0.102 

Luvisol 0.081 

Ferralsol 0.092 

Acrisol 0.079 

Rendzina 0.072 

Rainfall 

Wet 0.25 

0.017 Moderate 0.5 

Dry 0.25 

 

Table 7. Consistency ratio testing 

 

Parameter 
Eigen 

Value 
CI n RI CR 

Main criteria 7.503 0.084 7.000 1.320 0.063 

Soil type 6.615 0.123 6.000 1.240 0.099 

Land cover 5.331 0.083 5.000 1.120 0.074 

Earthquake 3.080 0.040 3.000 0.580 0.069 

Tsunami 3.108 0.054 3.000 0.580 0.093 

Landslide 4.215 0.072 4.000 0.900 0.080 

Volcano 6.580 0.116 6.000 1.240 0.094 

Rainfall 3.000 0.000 3.000 0.580 0.000 

 

 

Table 8. Sensitivity analysis 

 
Criterion Trial 1 Trial 2 Main Result 

Soil Type 2.56 3.19 2.66 

Land Cover 3.12 4.46 3.76 

Earthquake Zone 23.05 22.6 22.98 

Tsunami Zone 23.05 22.6 22.98 

Landslide Zone 23.05 22.6 22.98 

Volcano Eruption 23.05 22.6 22.98 

Rainfall 2.1 1.94 1.66 

 

3.1.2 GIS analysis 

The GIS analysis was conducted using the ArcGIS software. 

A case study was developed using the obtained mathematical 

model, and the study location was Aceh Province, Indonesia. 

The weights obtained from the AHP analysis for each 

parameter were incorporated into shapefiles or polygons 

representing each parameter in the case study. The map 

overlay was performed using the ArcGIS software, 

specifically utilizing the union tool (as explained in Section 

3.2.2). The calculation of the LDC in the Aceh region was 

carried out using the equation mentioned in Section 4.1.1. 

Subsequently, grouping was performed based on 

predetermined ranges, resulting in a map illustrating the 

distribution of suitability zones for the construction of a LDC 

in Aceh Province, as shown in Figure 8. 

 

 
 

Figure 8. The recommendation of logistic distribution center 

location based on AHP and GIS analysis 

 

3.2 Discussion 

 

3.2.1 Weight factor 

The process of analysis or weighting using the AHP method 

can be seen more concisely in Figure 7. As explained earlier, 
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disaster parameters are given higher priority than other 

parameters, resulting in a weight value of 0.23 for the disaster 

parameter. As for the alternatives or sub-criteria within each 

disaster parameter, zones with the lowest risk receive the 

highest weight values compared to other zones. This is done 

with the aim of identifying strategic and safe locations for 

potential natural disasters. The parameters that are considered 

to be represented by the earthquake vulnerability parameter 

are the earthquake source zone parameters (subduction zones 

and faults) and the distribution of earthquake acceleration 

levels. Both parameters serve the purpose of identifying areas 

that would experience greater impacts during an earthquake 

event and determining the areas closest to the earthquake 

source. However, these two parameters are adequately 

represented since the analysis or determination of earthquake 

vulnerability zones already incorporates them [14, 63, 64]. The 

second parameter chosen is the landslide vulnerability 

parameter. The landslide vulnerability parameter is considered 

to represent three other parameters: elevation, terrain 

morphology, and slope. This is because in the analysis of 

vulnerability zones, these three parameters are inherently 

included in the analysis process [65, 66]. This parameter is 

primarily used with the aim of minimizing the possibility of 

soil movement at the future distribution center location. 

Another selected disaster parameter is tsunami hazard 

vulnerability. This aspect is considered to be one of the crucial 

parameters in this study. The classification of tsunami hazard 

vulnerability zones is primarily conducted in coastal areas, 

which are the areas that receive the most severe impacts. 

The volcanic eruption hazard The volcanic eruption hazard 

parameter is the last selected disaster parameter. This 

parameter is used to avoid areas that are prone to disaster if a 

volcano erupts. 

One of the limitations of this study is the lack of socio-

economic parameters included in the analysis. Socio-

economic parameters that could be important to incorporate 

include land ownership data for each area. This information 

would be useful in determining whether a location has the 

rights or permits to construct buildings or if the location has 

the appropriate purchasing power when it is selected as a LDC 

area. 

Residential zones are selected as sub-criteria with the 

highest weight. This is due to the accessibility criterion, as 

residential areas generally have open and easily accessible 

roads. Similarly, agricultural zones are chosen with the 

assumption that their access is guaranteed since they are 

usually located near residential areas. However, the weight of 

these zones is not equivalent to that of residential zones due to 

factors such as land conversion. Generally, access to 

agricultural zones is not as good as that of residential zones, 

so if agricultural zones are converted into LDC locations, the 

effectiveness of the logistic distribution may be reduced due 

to their potentially more remote locations compared to 

residential areas. 

Industrial zones have a lower weight because they typically 

serve as ports or mining areas, which are less strategic if 

located in inland areas (in the case of mining areas). Ports and 

airports are already considered separate strategic areas, 

making them unsuitable for selection as LDC locations. 

Wetland zones also have a lower weight due to cost-

effectiveness considerations. It would require extra costs to 

reclaim wetland areas, making them less recommended as 

LDC locations. Additionally, these zones have limited 

accessibility. Forest zones are strongly discouraged as they not 

only lack accessibility but are also often protected forest areas, 

making them highly unsuitable as LDC locations. 

Regarding soil types, weighting is based on the soil content, 

where materials with higher precipitation levels receive higher 

weight values compared to those with lower precipitation 

levels. As for the rainfall parameter, moderate rainfall has a 

higher weight than wet and dry rainfall. This is because 

excessive rainfall increases the likelihood of soil movement in 

areas with high relief and slope, while low rainfall increases 

the possibility of limited or difficult access to water. The 

results of the consistency level testing can be seen in Table 7. 

The CR obtained from the AHP analysis with 7 parameters is 

0.063 < 0.1. Similarly, for all criteria, the CR is also <0.1. 

Therefore, it can be concluded that the degree of inconsistency 

is considered satisfactory [37]. The CR refers to how 

consistent or stable the pairwise comparisons that have been 

established are. Calculating the CR is important to ensure that 

the final results of the AHP analysis are more reliable and valid. 

When the CR value approaches zero, it indicates that the 

pairwise comparisons are highly consistent (an example of 

such a result is the calculation of the sub-criteria rainfall (CR 

= 0.000)). However, if the CR value is too high, it indicates 

that the calculations are inconsistent and a recalculation is 

necessary [67-69]. Fundamentally, the AHP method has 

advantages in terms of its usage. It can be easily scaled and 

adjusted according to its level of importance. The method is 

highly compatible with GIS analysis due to its simple 

weighting system. However, a different scenario arises when 

there are excessive alternative variations and expert opinions, 

which can lead to an extensive workflow due to differing 

results. Inconsistency can also be experienced with this 

method when there are too many variations in decision-

making. However, this can be minimized by conducting CR 

testing [70, 71]. One of the other MCDM methods that can be 

used as a benchmark with the AHP method is the Preference 

Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE). This method has the advantage of providing 

rankings for alternatives, either partially or as a whole. 

However, it does not explain in detail the method for 

determining the importance level of each parameter [70, 72]. 

Therefore, in research that involves determining criteria based 

on their importance level and does not involve too many 

alternatives, the AHP method is highly recommended for use. 

This is because it can easily be combined with GIS, making it 

a suitable choice for such studies. 

 

3.2.2 Sensitivity analysis 

Sensitivity analysis is conducted with the aim of 

determining the parameters that have the greatest impact on 

determining the location of LDCs. Sensitivity testing is 

performed through two trials: trial 1 involves changing the 

importance values of alternatives (sub-criteria), while trial 2 

involves changing the importance values of main criteria (this 

reweighting process is done by seeking opinions from two 

different experts). The results of the sensitivity analysis are 

presented in Table 8. 

In trial 1, the altered alternatives or sub-criteria are related 

to parameters such as landslides, tsunamis, earthquakes, and 

landcover. In trial 2, the importance values of the main criteria 

are changed, specifically for non-hazard parameters such as 

rainfall, soil type, and landcover. Based on Table 8, it can be 

observed that there is an increase in priority for hazard-related 

parameters in trial 1, while non-hazard parameters experience 

a decrease. Similarly, in trial 2, there is an increase in priority 
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for hazard-related parameters, while non-hazard parameters 

experience a decrease. Based on these results, it can be 

concluded that hazard-related parameters (including 

earthquakes, tsunamis, landslides, and volcanoes) have the 

greatest impact in the AHP analysis for determining LDC 

locations. 

 

3.2.3 Case study 

The province of Aceh was chosen as the case study location 

based on the results of the AHP analysis and modeling in this 

study. The selection of parameters and their respective weights 

is fundamentally based on the existing conditions in the 

Indonesian region, particularly Aceh. Indonesia is an area that 

is highly prone to disasters [73]. Therefore, disaster-related 

parameters become crucial factors to include in the AHP 

analysis for determining the location of LDCs. Earthquakes 

are one of the significant parameters in this study, considering 

their frequent occurrence in the province of Aceh. One of the 

largest earthquakes ever recorded in Aceh was the 9.1 Mw 

earthquake in 2004, accompanied by a devastating tsunami 

that caused infrastructure damage and the loss of lives. 

Building upon this event, the earthquake parameter becomes 

an essential component to be considered in this study. The high 

occurrence of earthquakes in Aceh can be attributed to various 

factors, including the presence of seismic sources such as 

subduction zones and the Sumatra fault passing through the 

region [74-76]. In addition to earthquakes and tsunamis, the 

presence of active volcanoes also underlies the reason why 

disaster-related parameters are prioritized over others. 

Furthermore, the occurrence of landslides in highland areas, 

such as the Tangse region, is another strong reason for 

prioritizing disaster-related parameters. Therefore, the 

prioritization of disaster-related parameters, including 

earthquakes, tsunamis, active volcanoes, and landslides, is 

justified based on their significant impact and occurrence in 

the study area. [77, 78]. Using ArcGIS software (with the 

"Union" tool), a map overlay was performed on the seven 

parameter maps generated (Figures 2-4). The result of the map 

overlay is presented in Figure 8. Based on the overlay of the 

seven parameter maps, which were assigned AHP weight 

values, calculation values ranging from 0.0017 to 0.3000 were 

obtained. These values were then divided into three equally 

sized ranges: 0-0.1 (low suitable zone) with a total area of 

29,033.58 km², 0.1-0.2 (moderate suitable zone) with a total 

area of 28,663.028 km², and 0.2-0.3 (high suitable zone) with 

a total area of 117.76 km². This division is based on the 

weighting of each parameter class, where classes with higher 

importance criteria have higher weights than those with less 

important criteria (using the benefit criteria concept). 

Therefore, locations with higher AHP values are chosen as 

highly suitable locations compared to locations with lower 

AHP values [79-81]. Figure 8 displays the overlay of the map, 

including the locations of health warehouses in each district 

within Aceh Province (indicated by white star symbols) and 

the recommended locations for the new LDC based on the 

analysis (indicated by purple star symbols). The new 

recommended locations are chosen within the high-suitable 

zone, which fulfills specific criteria such as easy road access, 

strategic positions (close to city centers), and the ability to 

reach the health warehouses in each district. Based on these 

criteria, location C can be selected as the LDC for Aceh 

Province. This decision is influenced by the central position of 

location C within Aceh Province, allowing for evenly 

distributed travel distances to the health warehouses in each 

district, whether they are located in the northern or southern 

parts of the province. On the other hand, locations A, B, D, E, 

and F can still be considered as potential LDC locations due to 

their accessibility via national roads. However, their positions, 

being either too far north or too far south in the province, make 

them less prioritized as the central LDC. Furthermore, no 

suitable zones for selecting a LDC were found in the western 

part of Aceh Province based on the AHP analysis mentioned 

above. 

 

 

4. CONCLUSIONS 

 

The AHP method has proven to be a useful approach for 

weighting parameters based on their level of importance. In 

determining the location of LDCs, seven parameters were 

considered. These parameters include four disaster-related 

factors (earthquake hazard, landslide hazard, tsunami hazard, 

and volcanic eruption hazard), land cover, soil type, and 

rainfall. The selection of each parameter was carefully 

considered to adapt to the environmental conditions and obtain 

the most ideal results. However, there are several limitations 

that need to be considered when using the AHP approach for 

weighting. One prominent limitation is the significant level of 

bias that can arise if expert opinions vary greatly. This can 

make it challenging to prioritize parameters with higher 

importance. One way to minimize bias or errors is by 

conducting a CR test and sensitivity analysis. These tests can 

help assess the validity of the AHP analysis results and 

identify parameters that have the most significant impact. 

Based on the applied case study, the results yielded a high 

level of accuracy and alignment with expectations. The 

suitability zones were distributed according to the weighted 

importance levels, and the high suitable zone was only found 

in specific areas that truly met the ideal criteria based on the 

weighting of each parameter. However, it is worth noting that 

this research has limitations, such as the absence of socio-

economic parameters in the AHP analysis to determine LDCs. 

It is hoped that future studies will address this limitation by 

incorporating more complex parameters to achieve more ideal 

and accurate results. Additionally, the inclusion of additional 

weighting methods could provide further comparative insights. 
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