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This study discusses the evaluation of aspects of technology acceptance of M2RSi using 

Hybrid Technology Acceptance Model (HTAM) that is linked with its external factors, 

including information quality, infrastructure, knowledge and skills, costs, and virtual 

simulation environments. The four response alternatives on the 4-point Likert scale 

utilized in this study were (1) Strongly Disagree, (2) Disagree, (3) Agree, and (4) Strongly 

Agree. Structural Equation Modeling was used to examine the data (SEM). To assess the 

efficacy of Mixed Reality (MR) technology in crisis management, this study included 100 

respondents from two cities in the evaluation process. The research questionnaire included 

numerous questions about the features of technological acceptability. This research tested 

19 hypotheses, and each hypothesis had a significant influence on external variables 

related to the effectiveness of MR technology in disaster management. There were 5 

dominant priority variables for evaluation by developers: Acceptance (ACC), Behavioral 

Intention (BI), Satisfaction (SA), Perceived Usefulness (PU), and Trialability (TR). In 

conclusion, developers will gain a more holistic understanding of the effectiveness of 

Mixed reality (MR) technology in disaster mitigation simulations by prioritizing 

evaluation of these variables. 
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1. INTRODUCTION

A rapid advancement in hardware and software has led to the 

development of Mixed Reality to a higher level. It can be seen 

from the development of modern devices, such as Augmented 

reality (AR) and virtual reality (VR), and the integration of 

increasingly sophisticated sensor and computing technologies. 

Mixed reality (MR) is now at the center of innovation, 

attracting the interest of developers, companies, and users due 

to its ability to provide more immersive and interactive 

experiences [1-3]. The MR technology revolution brings new 

functionalities and empowerment to all sectors of society. MR 

brings many benefits to various fields, especially those related 

to learning, training, and simulation [4, 5]. To give consumers 

a distinctive experience, MR integrates virtual reality and 

telepresence technology during the simulation process [6]. 

Using this technology, students can learn practical skills in a 

safe setting, visualize complex ideas, and construct interactive 

simulations [7, 8]. 

In educational settings, technology has an important role in 

coordinating people, ideas, procedures, and outcomes of 

educational implementation. All educational activities can be 

controlled with technology, making it easier to project the 

achievement of educational goals clearly [6]. It covers various 

fields, including disaster education. Nowadays, the use of 

various types of learning media plays a crucial role in 

increasing understanding of the disaster risk reduction process 

[9]. Media has an interdependent relationship with society and 

plays a significant role in disseminating information before, 

during, and after a disaster [10]. Learning media comes in a 

range of forms that can be customized to meet the needs and 

preferences of the user, such as interactive, audio, and visual 

media. Because immersive technologies can offer interactive 

visualizations, like Virtual Reality (VR) and Augmented 

Reality (AR), they can open up new experiences for users [11, 

12]. A significant factor in the creation of the metaverse is MR 

technology, since it complements all the shortcomings of AR 

and VR [13, 14]. MR not only displays virtual objects but also 

receives all new information, processes feedback, and 

synchronizes data from users. 

Mobile Mixed Reality Simulator (M2RSi) is an application 

that combines real-world and virtual elements. MR2Si is 

designed to increase understanding of disaster preparedness 

through simulations and interactive instructions based on 

Mixed Reality technology. In this way, users can easily 

practice preparedness actions in real world contexts. However, 

the use of technology cannot be easily accepted by society, 

especially in emergencies. It is important to consider many 

aspects, including intentions, behavior, benefits, convenience, 

and comfort in using the media, devices, or services being 
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developed. In Figure 1, an example of the initial display of the 

MR2Si application is shown. 

 

 
 

Figure 1. Mobile Mixed Reality Simulator (M2Rsi) 

 

However, the use of technology cannot be easily accepted 

by society, especially in emergencies. It is important to 

consider many aspects, including intentions, behavior, 

benefits, convenience, and comfort in using the media, 

devices, or services being developed. 

The Technology Acceptance Model (TAM) is one model 

that is frequently used to assess elements or factors influencing 

users in using a technology or system. Several previous studies 

explained that the factors in the Technology Acceptance 

Model (TAM) variables need to be reviewed to examine the 

extent to which the use of immersive technology can influence 

users in the learning process [15]. TAM is widely used in 

various contexts with reliable and accurate results [16, 17]. 

The Hybrid Technology Acceptance Model (HTAM) 

concept is an idea to test aspects of technology acceptance, 

which are then linked with external factors. External factors 

play a significant role in shaping user perceptions about ease 

of use, usefulness, usage intentions, and actual behavior 

regarding technology acceptance [18]. Study limitations and 

research on using Extended Reality (AR, VR, MR) technology 

are necessary to support better disaster management [19]. 

HTAM integrates the Technology Acceptance Model (TAM) 

with the Innovation Diffusion Theory (IDT) [20]. 

This study discusses the evaluation of aspects of technology 

acceptance of M2RSi using the Hybrid Technology 

Acceptance Model (HTAM) linked with its external factors, 

including information quality, infrastructure, knowledge and 

skills, costs, and virtual simulation environments. TAM theory 

explains two things that influence users to use new technology, 

namely Perceived Usefulness (PU) and Perceived Ease of Use 

(PEOU) [21]. TAM is a theory that measures users’ 

willingness and intention to use technology based on four main 

elements, including Perceived Usefulness, Perceived Ease of 

Use, Attitude, and Behavioral Intention [22-24]. 

The four response alternatives on the 4-point Likert scale 

utilized in this study were (1) Strongly Disagree, (2) Disagree, 

(3) Agree, and (4) Strongly Agree. Next, the Structural 

Equation Model (SEM) was used to evaluate the data and look 

for relationships between the variables. SEM consists of 

relationships between latent variables, where each cause-and-

effect relationship can be expressed by a linear regression 

equation, or called a structural equation [25].  

TAM analysis using small sample data can cause problems 

since it is related to the statistical methods used in the 

hypothesis analysis of relationships between constructs in the 

TAM structure. SEM requires the fulfillment of several 

assumptions, including normality and linearity [26, 27]. The 

use of the Partial Least Squares (PLS) analysis technique is a 

necessity in TAM analysis to meet normality assumptions and 

to solve the problem of small data size in the research [28]. 

In the context of a Mobile Mixed Reality Simulator 

(M2RSi) evaluation related to disaster mitigation simulation, 

TAM analysis is expanded by combining aspects of 

technology acceptance with aspects of innovation diffusion 

theory (IDT). The combination of two approach models 

(TAM+IDT) called the Hybrid Technology Acceptance Model 

(HTAM) can provide a more holistic approach in 

understanding and designing technology to support disaster 

management, by considering the psychological aspects of 

users as well as effective presentation of information in 

emergency situations, especially concerns the effectiveness of 

using MR technology in disaster management. 

 

 

2. MATERIALS AND METHODS 
 

2.1 The Hybrid Technology Acceptance Model (HTAM) 

 

Several empirical studies recommend integrating TAM with 

other theories or models to address radical technological 

change. TAM is the most used framework to explore the 

adoption of technology [29]. Previous researchers showed that 

the integration of TAM and IDT can provide better models 

than use alone [30]. The HTAM concept was first used to 

overcome the ineffectiveness of the previous method (TAM) 

in explaining the complex information technology adoption 

process [31]. The HTAM technology acceptance model is of 

great benefit in explaining and analyzing information system 

usage behavior, which in turn is influenced by attitudes and 

behavioral intentions [20]. The integration of the TAM model 

has been proven to provide appropriate antecedents in utilizing 

technology since TAM has a stronger theoretical background 

in predicting behavioral intentions [32, 33]. 

 

2.2 Mixed reality technology in disaster management 

 

The use of MR technology in disaster management provides 

many significant benefits in preparing, planning and 

responding to disaster situations better and more effectively. 

As a technology for disaster training simulation, MR has a 

bright future [34]. Fischer research proposed using serious 

games based on MR technology in disaster response scenarios 

[35]. Lochhead and Hedley [36] introduced a new way of 

linking human simulations to real-world contexts utilizing MR 

technology. Girau et al. [37] introduced an MR system for 

emergency and first aid simulation scenarios. Several previous 

studies that have been presented have focused more on the use 

of MR technology, but have not yet discussed the process of 

evaluating the use of MR technology. 

 

2.3 Framework and development hypothesis 

 

The HTAM framework was developed not only to connect 

the classic TAM method with the problem of information 

technology (IT) adoption, but was also employed to 

investigate several issues surrounding the application of 

Mixed Reality (MR) technology in disaster management. 

Figure 2 shows the development of the hypothesis and 

framework of HTAM which reveals causal relationships 

between variables by mapping based on respondents' 

hypotheses to the research problem. The instrument in the 

form of a questionnaire was created online and can be accessed 
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on the page http://mrsi.my.id/technology-acceptance to get 

information from responders with the aim of testing 

hypotheses or gaining a better understanding of the 

phenomenon being studied. 

This research was conducted in two different locations, 

namely in Termate City, North Maluku Province and 

Semarang City, Central Java Province. These two areas were 

chosen because they are potentially prone to disasters such as 

floods, earthquakes and volcanic eruptions. The population in 

this study was obtained based on the number of residents 

sourced from data from the Central Statistics Agency (BPS) in 

2022. The sampling technique used in this research was 

Proportionate random sampling. Proportionate random 

sampling technique was used to determine the number of 

samples with a population taken proportionally [38]. The 

sample criteria selected were grouped based on age ranging 

from 10-64 years. The population was then divided into 

several groups according to proportion, namely with a ratio of 

60:40, (60 Respondents from Semarang City), (40 

Respondents from Ternate City) samples were taken randomly 

from each group. The sample size in this study was calculated 

using the Slovin equation. Slovin's formula is as follows: 

 

n=
N

1+Ne2
 (1) 

 

where:  

n = Sample size/ number of respondents 

N = Population size 

e = Acceptable percentage of error; e = 0.1 (10%) 

 

Based on this equation, the sample size in this study was 

100 respondents. Table 1 shows the sample and proportion 

based on age group. 

n=
1375417

1+1.375.417(0,1)2
=99,99 ~ 100 respondents 

 

Table 1. Sample and proportions based on age group 

 

Location 
Age 

Group 
Population Proportion Sample 

A 

Semarang 

City 

10-14 124,332 10.04% 6 

15-19 127,834 10.32% 6 

20-24 123,356 9.96% 6 

25-29 127,842 10.32% 6 

30-34 131,434 10.61% 6 

35-39 135,311 10.92% 7 

40-44 134,405 10.85% 7 

45-49 122,443 9.88% 6 

50-54 109,113 8.81% 5 

55-59 95,163 7.68% 5 

60-64 7,704 0.62% 0 

Number of 

Respondents 
1,238,937 100.00% 60 

B. 

Ternate 

City 

10-14 16,841 12.34% 5 

15-19 16,684 12.22% 5 

20-24 17,966 13.16% 5 

25-29 19,144 14.03% 6 

30-34 18,731 13.72% 5 

35-39 1,703 1.25% 1 

40-44 15,225 11.16% 4 

45-49 12,867 9.43% 4 

50-54 10,634 7.79% 3 

55-59 842 0.62% 0 

60-64 5,843 4.28% 2 

Number of 

Respondents 
136,480 100.00% 40 

Total A+ B 1,375,417 100.00% 100 

 

The formulation of the hypothesis is shown in Table 2 

below. 

 

 
 

Figure 2. HTAM framework and hypothesis development 
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Table 2. HTAM hypothesis variable 

 
Variable Indicator Hypothesis 

H1 Perceived ease of use (PEOU) Has a positive influence on Perceived Usefulness (PU) 

H2 Perceived ease of use (PEOU) Has a positive influence on Satisfaction (SA) 

H3 Perceived usefulness (PU) Has a positive influence on Satisfaction (SA) 

H4 Observability Has a positive influence on Perceived Usefulness (PU) 

H5 Trialability Has a positive influence on Perceived Usefulness (PU) 

H6 Compatibility Has a positive influence on Acceptance (ACC) 

H7 Compatibility (CO) Has a positive influence on Behavioral Intention (BI) 

H8 Infrastructure (IS) Has a positive influence on Behavioral Intention (BI) 

H9 Knowledge and Skills (KS) Has a positive influence on Behavioral Intention (BI) 

H10 Cost (CT) Has a positive influence on Acceptance (ACC) 

H11 Information Quality (IQ) Has a positive influence on Relative Advantage (RA) 

H12 Information Quality (IQ) Has a positive influence on Satisfaction (SA) 

H13 Virtual Simulation Environment (VE) Has a positive influence on Behavioral Intention (BI) 

H14 Virtual Simulation Environment (VE) Has a positive influence on Acceptance (ACC) 

H15 Virtual Simulation Environment (VE) Has a positive influence on Satisfaction (SA) 

H16 Relative Advantage (RA) Has a positive influence on Satisfaction (SA) 

H17 Complexity (CY) Has a negative influence on Perceived Ease of Use (PEOU) 

H18 Satisfaction (SA) Has a positive influence on Behavioral Intention (BI) 

H19 Behavioral Intention (BI) Has a positive influence on Acceptance (ACC) 

 

Table 3. HTAM research questionnaire 

 
Variable No. Questions 

Quality of 

information 

1 The material presented in the mixed reality simulator (MESI) meets expectations. 

2 The simulation material contains complete procedures regarding the stages of disaster mitigation. 

3 Using mixed reality simulators (MRSI) greatly assists in understanding the disaster mitigation process. 

Perceived ease of use 
1 

Using mixed reality simulators (MRSI) provides experience and convenience in understanding the simulation 

process of disaster mitigation. 

2 The mixed reality simulator helps understand disaster mitigation. 

Perceived usefulness 
1 Mixed reality simulators offer more opportunities to understand the simulation material effectively. 

2 Mixed reality simulators offer more opportunities to understand mitigation procedures. 

Compatibility 
1 Each simulation content created is sufficient to meet the procedures for disaster mitigation stages. 

2 Mixed reality simulator (MRSI) can describe the same conditions as those in the real world. 

Complexity 
1 Mixed reality simulators are difficult to use in the disaster mitigation simulation process. 

2 The scenarios presented are difficult to understand in the learning process. 

Trialability 
1 The guidelines for using mixed reality devices are very easy to understand. 

2 It takes a long time to understand how to use a mixed reality simulator. 

Observability 
1 Simulation using a mixed reality simulator has an effective impact on society. 

2 Mixed reality simulator technology is easy to implement in everyday life. 

Relative advantage 
1 Mixed reality simulator technology has better quality than the previous technology 

2 Mixed reality simulator technology provides a more effective and efficient training model. 

Behavioral intention 
1 Mixed reality simulator provides a detailed understanding of disaster mitigation 

2 The use of mixed reality simulators can change attitudes and actions in responding to disaster events. 

Satisfaction 
1 Simulation using a mixed reality simulator provides satisfaction in understanding the disaster mitigation process. 

2 The use of a mixed reality simulator provides convenience in the simulation process. 

Infrastructure 
1 The use of mixed reality simulator requires adequate network connectivity 

2 The use of mixed reality simulator requires adequate hardware specifications. 

Knowledge and skills 
1 The use of mixed reality technology requires knowledge and skills in information technology. 

2 The use of mixed reality simulators can enrich knowledge, attitudes, and skills in disaster response... 

Cost 
1 The use of mixed reality simulators requires quite large costs to implement. 

2 The use of mixed reality technology is only limited to certain circles or industries. 

Virtual environment 

simulation 

1 The use of mixed reality simulator provides flexibility in exploring the simulated environment. 

2 The simulation process using mixed reality simulator devices is only limited to certain spaces and environments. 

Acceptance 
1 The use of mixed reality simulators can reduce user anxiety about the threat of disasters. 

2 The use of mixed reality simulators can help and support government programs in reducing disaster risk. 

 

The questionnaire consists of 31 questions and is based on 

a conceptual model that controls the variables' involvement. 

Table 3 lists the variables and questions from the Hybrid TAM 

(HTAM) questionnaire used in the M2RSi evaluation 

procedure for simulations of disaster mitigation. 

On the 4-point Likert scale used in this study, the four 

response options were (1) Strongly Disagree, (2) Disagree, (3) 

Agree, and (4) Strongly Agree. The most excellent score for 

an answer is 4, while the lowest is 1. After reducing the 

number of classes/categories used to establish the criteria to a 

scale of 4 classes, the class interval was (4-1): 4=0.75. The 

requirements for describing the mean value produced for each 

item, indicator, and variable are outlined in Table 4. 

 

Table 4. Indicator score of research variable 

 
No Score Interpretation 

1 1.00-1.74 Poor 

2 1.75-2.49 Bad 

3 2.50-3.24 Good 

4 3.25-4.00 Excellent 
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3. RESULTS AND DISCUSSIONS 

 

3.1 Measurement model assessment 

 

The validity of the measurement model can be evaluated by 

looking at the results of the estimated loadings for each factor. 

If a variable's standard factor loading is ≥ 0.50 and/or its factor 

loading t-value is larger than the critical value (≥ 1.96), it is 

deemed to have strong validity for its construct or latent 

variable. Meanwhile, if the Average Variance Extracted 

(AVE) value is > 0.50 and Construct Reliability (CR ≥ 0.70) it 

can be used to assess the reliability of the measurement model 

in PLS. A recapitulation of validity and reliability results can 

be seen in Table 5. 

According to the Table 5, all loading factor values for the 

reflective indicators are ≥ 0.50 (Valid), and all AVE values are 

≥ 0.50 (Valid), indicating that all indicators that measure them 

are deemed valid. In the meantime, the Composite Reliability 

(CR) value is > 0.70 (Reliable), according to the reliability 

computation findings. Consequently, it may be said that each 

of these latent variables has a reasonable and workable 

indicator. Specifically, the following criteria can be used to 

identify the most prominent signs that contribute to the latent 

concept: 

 

1. The indicator that best represents Acceptance (ACC) 

variable is ACC1 (Use of mixed reality simulator can 

reduce user anxiety regarding the threat of disasters 

arising) with the highest factor loading of 0.858. 

2. The indicator that best represents the Behavioral 

Intention (BI) variable is BI1 (Mixed reality simulator 

provides a detailed understanding of disaster mitigation), 

with the highest factor loading of 0.906. 

3. The indicator that best represents the Compatibility (CO) 

variable is CO1 (Each simulation content meets the 

procedures in the disaster mitigation stage), with the 

highest factor loading of 0.867. 

4. The indicator that best represents the Cost (CT) variable is 

CT2 (The use of mixed reality technology is only limited 

to certain groups or industries), with the highest factor 

loading of 0.9. 

5. The indicator that best represents the Complexity (CY) 

variable is CY2 (The scenarios made are difficult to 

understand in the learning process), with the highest factor 

loading of 0.937. 

6. The indicator that best represents the Infrastructure (IF) 

variable is IF2 (The use of mixed reality simulator requires 

adequate hardware specifications), with the highest 

loading factor of 0.858. 

7. The indicator that best represents the Information Quality 

(IQ) variable is IQ3 (The use of mixed reality simulator 

(MRSI) is very helpful in studying the disaster mitigation 

process), with the highest factor loading of 0.843. 

8. The indicator that best represents the Knowledge and 

Skills (KS) variable is KS2 (The use of mixed reality 

simulators can enrich knowledge, attitudes, and skills in 

disaster response), with the highest factor loading of 0.84. 

 

Table 5. Summary measurement model evaluation (outer model) 
 

Variable 
Indicator 

(Factor) 

Partial Validity Parsial 

(Per Indicator) 
Ranking 

Over All Validity (Per 

Construct) 
Composite Reliability 

(CR > 0.7) 
(LF > 0.5=Valid) (AVE > 0,5=Valid) 

Outer Loading Detail AVE Conclusion CR Detail 

Acceptance (ACC) 
ACC1 0.858 Valid 1 

0.721 Valid 0.838 Reliable 
ACC2 0.841 Valid 2 

Behavioral Intention 

(BI) 

BI1 0,906 Valid 1 
0.805 Valid 0.892 Reliable 

BI2 0.889 Valid 2 

Compatibility (CO) 
CO1 0.867 Valid 1 

0.656 Valid 0.791 Reliable 
CO2 0.749 Valid 2 

Cost (CT) 
CT1 0.846 Valid 2 

0.763 Valid 0.865 Reliable 
CT2 0.900 Valid 1 

Complexity (CY) 
CY1 0.910 Valid 2 

0.853 Valid 0.921 Reliable 
CY2 0.937 Valid 1 

Infrastructure (IF) 
IF1 0.654 Valid 2 

0.582 Valid 0.732 Reliable 
IF2 0.858 Valid 1 

Information Quality 

(IQ) 

IQ1 0.812 Valid 3 

0.693 Valid 0.871 Reliable IQ2 0.842 Valid 2 

IQ3 0.843 Valid 1 

Knowledge and Skills 

(KS) 

KS1 0.790 Valid 2 
0.665 Valid 0.798 Reliable 

KS2 0.840 Valid 1 

Observability (OB) 
OB1 0.851 Valid 1 

0.668 Valid 0.801 Reliable 
OB2 0.782 Valid 2 

Perceived ease of use 

(PEOU) 

PEOU1 0.913 Valid 1 
0.826 Valid 0.905 Reliable 

PEOU2 0.905 Valid 2 

Perceived usefulness 

(PU) 

PU1 0.861 Valid 2 
0.766 Valid 0.868 Reliable 

PU2 0.889 Valid 1 

Relative advantage 

(RA) 

RA1 0.882 Valid 2 
0.779 Valid 0.876 Reliable 

RA2 0.883 Valid 1 

Satisfaction (SA) 
SA1 0.890 Valid 1 

0.787 Valid 0.881 Reliable 
SA2 0.884 Valid 2 

Triability (TR) 
TR1 0.919 Valid 1 

0.604 Valid 0.745 Reliable 
TR2 0.602 Valid 2 

Virtual Environment 

Simulation (VE) 

VE1 0.866 Valid 1 
0.735 Valid 0.848 

 

Reliable VE2 0.849 Valid 2 
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9. The indicator that best represents the Observability (OB) 

variable is OB1 (Simulation using a mixed reality 

simulator effectively impacts society), with the highest 

factor loading of 0.851. 

10. The indicator that best represents the Perceived Ease of 

Use (PEOU) variable is PEOU1 (The use of the mixed 

reality simulator provides better experience and ease in 

understanding the disaster mitigation simulation process), 

with the highest factor loading of 0.913. 

11. The indicator that best represents the Perceived 

Usefulness (PU) variable is PU2 (Mixed reality simulator 

offers more opportunities to understand mitigation 

procedures), with the highest factor loading of 0.889. 

12. The indicator that best represents the Relative Advantage 

(RA) variable is RA2 (Mixed reality simulator technology 

provides a more effective and efficient training model), 

with the highest factor loading of 0.883. 

13. The indicator that best represents the Satisfaction (SA) 

variable is SA1 (Simulation using the mixed reality 

simulator provides satisfaction in understanding the 

disaster mitigation process), with the highest factor loading 

of 0.89. 

14. The indicator that best represents the Trialability (TR) 

variable is TR1 (Guidelines for using mixed reality devices 

are easy to understand), with the highest factor loading of 

0.919. 

15. The indicator that best represents the Virtual 

Environment Simulation (VE) variable is VE1 (The use 

of a mixed reality simulator provides flexibility in 

exploring the simulation environment), with the highest 

factor loading of 0.866. 

 

3.2 Structural model assessment 

 

As with regression interpretation, the R-squared value for 

each endogenous latent variable will be looked at first when 

evaluating a structural equation model using PLS. This will 

determine the structural model's predictive potential. The 

impact of some exogenous latent factors on endogenous latent 

variables is explained and its significance is assessed using 

changes in the R-squared value. The R-squared number in PLS 

represents the percentage of the construct's variance that the 

model can account for. The percentage of variance that the 

model can explain increases with an increase in the R-squared 

value. 

The perceived ease of use (PEOU), observability (OB), and 

trialability (TR) models' coefficient of determination (R-

squared) on perceived usefulness (PU) is 0.665, which 

indicates that 66.5% of the variables can be accurately 

measured on perceived usefulness (PU), while the remaining 

33.5 is influenced by other variables outside the research. The 

Complexity (CY) model's coefficient of determination (R-

squared) on Perceived Ease of Use (PEOU) is 0.213, meaning 

that 21.3% of the data can be accurately measured, with the 

remaining 78.7% being influenced by factors outside the scope 

of the study. The information quality (IQ) model's coefficient 

of determination (R-squared) on relative advantage (RA) is 

0.663, which indicates that 66.3% of the information quality 

(IQ) on RA can be accurately measured, with the remaining 

33.7 percent influenced by variables not included in the study. 

From the models of perceived usefulness (PU), perceived ease 

of use (PEOU), information quality (IQ), relative advantage 

(RA), and virtual environment simulation (VE) for satisfaction 

(SA), the coefficient of determination (R-squared) is 0.931, 

which can be explained that the accuracy of measurement of 

Perceived Usefulness (PU), Perceived Ease of Use (PEOU), 

Information Quality (IQ), Relative Advantage (RA), Virtual 

Environment Simulation (VE) on Satisfaction (SA) is 93.1% 

and the remaining 6.9 is influenced by other variables outside 

the research. The coefficient of determination (R-squared) 

obtained from the models of Satisfaction (SA), Infrastructure 

(IF), Knowledge and Skills (KS), Compatibility (CO), and 

Virtual Environment Simulation (VE) on Behavioral Intention 

(BI) is 0.937, which can be explained that the accuracy of 

measurement of Satisfaction (SA), Infrastructure (IF), 

Knowledge and Skills (KS), Compatibility (CO), and the 

impact of Virtual Environment Simulation (VE) on Behavioral 

Intention (BI) is 93.7%. external factors influence the 

remaining 6.3%. The coefficient of determination (R-squared) 

obtained from the models of the Behavioral Intention (BI), 

Virtual Environment Simulation (VE), Compatibility (CO), 

and Cost (CT) on Acceptance (ACC) is 0.906, which can be 

explained that the accuracy of measuring Behavioral Intention 

(BI), Virtual Environment Simulation (VE), Compatibility 

(CO), and Cost (CT) on Acceptance (ACC) is 90.6% and the 

remaining 9.4 is influenced by other variables outside the 

research. Table 6 below shows the evaluation results of R-

squared values in PLS. 

 

Table 6. Evaluation results R-squared values in PLS 

 

Influence 
R Square 

Values 

Perceived ease of use 

(PEOU) 

-

-> 

Perceived usefulness 

(PU) 
0.665 Observability (OB) 

-

-> 

Triability (TR) 
-

-> 

Complexity (CY) 
-

-> 

Perceived ease of 

use (PEOU) 
0.213 

Information Quality (IQ) 
-

-> 

Relative advantage 

(RA) 
0.663 

Perceived usefulness 

(PU) 

-

-> 

Satisfaction (SA) 0.931 

Perceived ease of use 

(PEOU) 

-

-> 

Information Quality (IQ) 
-

-> 

Relative advantage (RA) 
-

-> 

Virtual Environment 

Simulation (VE) 

-

-> 

Satisfaction (SA) 
-

-> 

Behavioral Intention 

(BI) 
0.937 

Infrastructure (IF) 
-

-> 

Knowledge and Skills 

(KS) 

-

-> 

Compatibility (CO) 
-

-> 

Virtual Environment 

Simulation (VE) 

-

-> 

Behavioral Intention (BI) 
-

-> 

Acceptance (ACC) 0.906 

Virtual Environment 

Simulation (VE) 

-

-> 

Compatibility (CO) 
-

-> 

Cost (CT) 
-

-> 
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3.3 Hypothesis testing (path analysis) 

 

If at a significance threshold of 0.05, the t-statistic falls 

between -1.96 and 1.96, a causal association is deemed non-

significant. Resampling procedures such as bootstrapping are 

used to make t-statistic estimates more stable. In the 

bootstrapping process, samples are determined through 

replacement (sampling with replacement), so each sample has 

the same size as the original sample. Then, statistical estimates 

are calculated from each sample to produce more stable and 

accurate statistical estimates. The results of PLS-SEM Path 

Analysis are shown in Table 7.  

Perceived Usefulness (PU) is known to be positively 

impacted by the Perceived Ease of Use (PEOU) variable. The 

results of Perceived Usefulness (PU), where the Path 

coefficient found is 0.324 with a t-value of 3.546, indicate that 

the Perceived Ease of Use (PEOU) is higher. Given that the t-

value (3.546 > 1.96) exceeds the critical value, according to 

the statistical hypothesis, H0 is rejected. This indicates a 

significant relationship between the Perceived Usefulness 

(PU) and Perceived Ease of Use (PEOU) variables. It is known 

that the Observability (OB) variable has a positive influence 

on Perceived Usefulness (PU). It means that the higher the 

Observability (OB), the higher the results of the Perceived 

Usefulness (PU), where the Path coefficient obtained is 0.207 

with a t-value of 2.079. Statistical hypothesis H0 is rejected 

since the t-value (2.079 > 1.96) exceeds the critical value, 

meaning that the Observability (OB) variable has a significant 

influence on the Perceived Usefulness (PU) variable. It is 

known that the Trialability (TR) variable has a positive 

influence on Perceived usefulness (PU). It means that the 

higher the Trialability (TR), the higher the results of the 

Perceived Usefulness (PU) variable, where the Path 

coefficient obtained is 0.412 with a t-value of 4.441. Since the 

t-value is greater than the critical value (4.441 > 1.96), 

according to the statistical hypothesis, H0 is rejected, 

indicating a substantial relationship between the Trialability 

(TR) and Perceived Usefulness (PU) variables. It is well 

established that the Complexity (CY) component negatively 

impacts perceived ease of use (PEOU). It means that the higher 

the Complexity (CY), the lower the results of the Perceived 

Ease of Use (PEOU) variable, where the Path coefficient 

obtained is -0.462, with a t-value of 5.042. Given that the t-

value (5.042 > 1.96) is higher than the critical threshold, the 

statistical hypothesis suggests that H0 is rejected, indicating 

that the Complexity (CY) variable significantly affects the 

Perceived Ease of Use (PEOU) variable. It is known that the 

Information Quality (IQ) variable has a positive influence on 

Relative Advantage (RA). This indicates that the Relative 

Advantage (RA) variable's outcomes increase with increasing 

Information Quality (IQ), with a t-value of 20.097 and a Path 

coefficient of 0.814 found. Since the t-value is greater than the 

critical value (20.097 > 1.96), According to the statistical 

hypothesis, H0 is rejected, indicating a substantial relationship 

between the Relative Advantage (RA) and Information 

Quality (IQ) variables. It is well established that Satisfaction 

(SA) is positively impacted by the Perceived Utility (PU) 

variable. This indicates that the Satisfaction (SA) variable 

yields higher outcomes the higher the Perceived usefulness 

(PU), with a t-value of 4.921 and a path coefficient of 0.452. 

Given that the t-value above the critical value (4.921 > 1.96), 

the statistical hypothesis posits the rejection of H0, indicating 

a noteworthy impact of the Perceived usefulness (PU) variable 

on the Satisfaction (SA) variable. Figure 3 displays the factor 

weight values of the manifest variables in the measurement 

model and the path coefficients in the structural model. These 

may be seen in the path diagram of the measurement model 

and structural model. 

Based on the Path Diagram above, the Acceptance variable 

(ACC) is more dominantly influenced by the Behavioral 

Intention (BI) variable, with the highest path coefficient of 

0.329. Meanwhile, the Behavioral Intention (BI) variable is 

more dominantly influenced by the Satisfaction (SA) variable, 

with the highest path coefficient of 0.340, where the dominant 

variable in influencing the Satisfaction (SA) variable is the 

Perceived Usefulness (PU) variable, with the highest path 

coefficient of 0.452. This is caused by the Trialability (TR) 

variable that has a more dominant influence on Perceived 

usefulness (PU), with the highest path coefficient of 0.412. In 

this case, the most dominant indicator representing the 

Trialability (TR) variable is the TR1 indicator (Guidelines for 

using mixed reality devices are easy to understand), with the 

highest factor loading of 0.9. 

 

Table 7. Results of PLS-SEM path analysis 

 
Influence between Latent Variables 

Path Coefficient t-Value p-Value Conclusion 
Causal Variables --> Effect Variables 

Perceived ease of use (PEOU) --> Perceived usefulness (PU) 0.324 3.546 0.000 Significant 

Observability (OB) --> Perceived usefulness (PU) 0.207 2.079 0.038 Significant 

Trialability (TR) --> Perceived usefulness (PU) 0.412 4.441 0.000 Significant 

Complexity (CY) --> Perceived ease of use (PEOU) -0.462 5.042 0.000 Significant 

Information Quality (IQ) --> Relative advantage (RA) 0.814 20.097 0.000 Significant 

Perceived usefulness (PU) --> Satisfaction (SA) 0.452 4.921 0.000 Significant 

Perceived ease of use (PEOU) --> Satisfaction (SA) 0.150 2.392 0.017 Significant 

Information Quality (IQ) --> Satisfaction (SA) 0.150 2.173 0.030 Significant 

Relative advantage (RA) --> Satisfaction (SA) 0.144 2.065 0.039 Significant 

Virtual Environment Simulation (VE) --> Satisfaction (SA) 0.151 2.451 0.015 Significant 

Satisfaction (SA) --> Behavioral Intention (BI) 0.34 3.721 0.000 Significant 

Information Quality (IQ) --> Behavioral Intention (BI) 0.157 2.522 0.012 Significant 

Knowledge and Skills (KS) --> Behavioral Intention (BI) 0.185 2.482 0.013 Significant 

Compatibility (CO) --> Behavioral Intention (BI) 0.169 2.605 0.009 Significant 

Virtual Environment Simulation (VE) --> Behavioral Intention (BI) 0.189 2.61 0.009 Significant 

Behavioral Intention (BI) --> Acceptance (ACC) 0.329 3.205 0.001 Significant 

Virtual Environment Simulation (VE) --> Acceptance (ACC) 0.299 3.904 0.000 Significant 

Compatibility (CO) --> Acceptance (ACC) 0.218 2.338 0.020 Significant 

Cost (CT) --> Acceptance (ACC) 0.184 3.584 0.000 Significant 
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Figure 3. Path model diagram of the research results 

 

Several findings presented in this research to determine the 

effectiveness of using mixed reality technology in disaster 

mitigation are: 

1. Acceptance (ACC): This variable has the highest path 

coefficient in influencing the final endogenous variable. 

Evaluation of the acceptance or adoption of mixed reality 

technology by users will provide an idea of how effective 

this technology is in being applied in the context of disaster 

mitigation. 

2. Behavioral Intention (BI): This variable influences 

Acceptance (ACC) with a significant path coefficient. 

Evaluation of users' intentions or desires to use mixed 

reality technology in disaster situations can help 

understand the extent to which this technology will be used 

effectively. 

3. Satisfaction (SA): This variable has a dominant influence 

on Behavioral Intention (BI). Evaluation of user 

satisfaction with the experience of using mixed reality 

technology in disaster simulation can provide insight into 

how effective this technology is in meeting user needs and 

expectations. 

4. Perceived usefulness (PU): Satisfaction (SA) is mostly 

influenced by this variable. Evaluating user perceptions of 

how useful mixed reality technology is in assisting disaster 

mitigation can provide an in-depth understanding of the 

factors that influence user satisfaction. 

5. Triability (TR): This characteristic significantly 

influences perceived usefulness (PU) Evaluation of the 

ease of users in trying and testing mixed reality technology 

in the context of disaster mitigation can help determine 

how effective this technology is in being implemented and 

accepted by users 

The practical application and significance of mixed reality 

evaluation in disaster mitigation efforts has great potential to 

increase effectiveness, efficiency and safety in disaster 

management, namely: 

1. Assessment of Mitigation Strategy Effectiveness: By using 

mixed reality, disaster management teams can evaluate in 

real-time the effectiveness of the mitigation strategies they 

use. They can see firsthand how certain actions affect a 

disaster situation and refine their approach as needed. 

2. Identify Deficiencies and Improvements: Evaluation of the 

use of mixed reality in disaster simulations can help in 

identifying deficiencies in the preparation and response of 

disaster management teams. This makes it possible to 

make necessary repairs and upgrades in infrastructure, 

equipment and disaster management strategies. 

3. Developing Better Disaster Scenarios: By studying 

evaluation results from disaster simulations using mixed 

reality, disaster experts can develop more realistic and 

accurate scenarios for use in training and future mitigation 

planning. 
 

 

4. CONCLUSSION 

 

Considering the previous description, it can be concluded 

that MR technology-based simulation media can be used for 

disaster simulation because there are objects and artificial 

virtual environments like in the real world that can carry out 

scenarios such as a disaster. This can be seen from the 19 

hypotheses designed, each of which significantly influences 

external variables related to the effectiveness of using MR 

technology in disaster management. 

There are several limitations in this research. First, it was 

carried out using only 100 participants. Future research could 

replicate this study with more participants and greater 

representation in terms of gender and age. Second, use 
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statistical analysis such as ANOVA to test the mean between 

groups. 
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NOMENCLATURE 

 

H Hypothesis 

ACC Acceptance 

BI behavioral intention 

CO Compatability 

CT Cost 

CY Complexity 

IF Infrastructure 

IQ Information quality 

KS Knowledge and skills 

OB Observability 

PEOU Perceived ease of use 

PU Perceived usefulness 

RA Relative advantage 

SA Satisfaction 

TR Trialability 

VE Virtual environment simulation 

CR Composite reliability 

LF Loading factor 

 

Greek symbols 

 

--> Influence 

> Greater than 

< Less than 
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