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Effective cross-platform malware categorization techniques are becoming more and more 

necessary as malware spreads across more systems. Conventional methods are primarily 

concerned with the static or dynamic aspects of malware, which often restricts their ability 

to identify and categorize malware on various operating systems. In this paper, we use 

both static and dynamic characteristics to present a unique deep learning-based method 

for cross-platform malware classification. Our work aims to identify the distinct features 

of malware on different operating systems, such as Windows, macOS, Android, and iOS. 

We provide a complete depiction of malware behavior by collecting both dynamic and 

static data, such as system calls and network traffic patterns, as well as file properties, API 

calls, and header information. Convolutional Neural Networks (CNN) and Gated 

Recurrent Units (GRU) are two components of our deep learning architecture that we use 

to address the inherent issues of cross-platform malware categorization. This fusion of 

networks enables us to effectively capture both spatial and temporal patterns present in 

malware samples, enhancing the accuracy of classification across platforms. To evaluate 

the performance of our proposed model, we employ benchmark datasets encompassing 

diverse malware families across different operating systems. The results demonstrate 

superior classification accuracy, precision, recall, and F-score compared to traditional 

machine learning approaches and single-feature-based models. 
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1. INTRODUCTION

With the proliferation of malware across various platforms, 

it has become imperative to develop effective cross-platform 

malware classification techniques [1]. Traditional methods 

typically focus on either static or dynamic features, which 

often restrict their ability to detect and classify malware across 

diverse operating systems. The research work presented in this 

paper introduces a novel deep learning-based approach for 

cross-platform malware classification [2-6] that combines 

both static and dynamic features to address these challenges. 

The objective of this research is to capture the unique 

characteristics of malware targeting Windows, macOS, 

Android, and iOS platforms. To achieve this, the approach 

involves the extraction of both static and dynamic features 

from malware samples [7-9]. Static features encompass file 

attributes [10]. Application Programming Interface (API) calls, 

and header information, providing insights into the structural 

properties of the malware. 

In addition to static attributes, dynamic behaviors [11-15] 

are analyzed by examining system calls and network traffic 

patterns [16]. These dynamic features shed light on how 

malware interacts with the underlying operating system and 

external networks, offering valuable information about its 

behavior [17-24]. 

To effectively tackle the complexities of cross-platform 

malware classification, a deep learning architecture is 

employed [25-32]. This architecture combines Convolutional 

Neural Networks (CNN) and Gated Recurrent Unit (GRU) 

networks [33, 34]. By utilizing this fusion of networks, the 

approach can capture both spatial and temporal patterns 

inherent in malware samples, thereby enhancing classification 

accuracy. 

The performance of the proposed model is evaluated 

through experiments conducted on benchmark datasets 

encompassing a wide range of malware families targeting 

different operating systems. The results exhibit superior 

classification accuracy, precision, recall, and F-score when 

compared to traditional machine-learning approaches and 

single-feature-based models.  

2. LITERATURE SURVEY

Several studies have investigated state-of-the-art methods 

for malware classification, with varying degrees of success. 

An approach for Android malware classification using static 

sensitive sub-graph characteristics was presented by Ou and 

Xu [4]. Higher-level properties of Android applications were 

collected by expanding function call graphs and identifying 

relevant vertices. By calculating a malignant score for each 

node, they were able to pinpoint those that were most 
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susceptible to attack. This model performed very well against 

malware, with an F1-score of 97.04%. 

Malware categorization was proposed by Vu et al. [7], who 

suggested using the encoding and organization of binary file 

bytes into pictures. These pictures were made from statistical 

and syntactic elements, and they were decorated with space-

filling curves. When fed into a CNN model, these image-based 

features led to an impressive Hilbert curve accuracy of 93.01%. 

An Android malware detection method based on machine 

learning was presented by Abusitta [12]. To extract API 

information such API calls, frequency, and sequence, they 

used Control Flow Graph (CFG) capabilities. The ensemble 

model for malware classification that included these visual 

cues achieved a remarkable detection accuracy of 98.98%. 

Using CNNs to examine AndroidManifest.xml properties, 

Arslan and Tasyurek [15] presented a graphical Android 

malware detection tool. Their model accomplished real-time 

inspection of mobile applications with a 96.2% malware 

detection rate, 97.9% precision, 98.2% recall, and 98.1% F1-

score by encoding a one-or-zero vector from these variables in 

two dimensions for CNN training. 

Kumar et al. [16] described a technique for malware 

classification using bitwise samples and visual cues. To extract 

both local and global textural properties, they converted 

Windows PEs into grayscale photographs. The visual 

characteristics were then loaded into a bespoke deep CNN 

model, obtaining a high-test accuracy of 98.34%. An approach 

for assessing non-running Android applications using an app 

similarity graph (ASG) was proposed by Frenklach et al. [17]. 

This method presupposed that functions and other generic, 

reusable primary components form the basis for an app's 

activity categorization. On standard datasets, the approach was 

97.5% accurate and had an AUC of 98.7%. 

PSI-Graph, a method for detecting IoT botnets by analyzing 

function-call graphs in executable files, was proposed by 

Nguyen et al. [18]. It achieved a remarkable accuracy of 98.7% 

on a wide variety of samples. Pektaş and Acarman [19] 

demonstrated possible malware operations using API call 

charts. By using these graphs as low-dimensional embeddings 

in deep networks, they were able to retain a high degree of 

accuracy (98.86%) while also improving network 

performance. 

A deep transfer learning-based method for malware image 

classification using CNN that has been trained on ImageNet 

was proposed by Kumar and Janet [20]. By converting 

Windows PE files to grayscale images, they were able to 

achieve test accuracies of 93.19 percent on Microsoft datasets 

and 98 percent on Malimg datasets [21-31]. The MCFT-CNN 

model, developed by Wang and Gao [32], is a cutting-edge 

application of deep transfer learning to the problem of 

malware classification [33, 34]. This ResNet50-based model 

performed very well, with an accuracy of 99.18% on MalImg 

malware datasets, and consistently, with an accuracy of 

98.63% on a bigger dataset. 

 

 

3. PROPOSED MODEL 

 
The methodology for cross-platform classification utilizing 

the CNN-GRU model involves a comprehensive approach to 

effectively capture static and dynamic features. This section is 

structured to highlight the key steps shown in Figure 1, starting 

with data pre-processing, followed by static feature 

representation using CNN, dynamic feature representation 

using GRU, and finally, an exploration of the synergistic 

working of the combined CNN-GRU model. 

 

3.1 Data pre-processing 

 

Before model development, a rigorous data pre-processing 

stage is undertaken. This involves cleaning, normalization, 

and augmentation procedures to ensure the uniformity and 

quality of the dataset. The objective is to enhance the 

robustness of the model against variations in cross-platform 

data, preparing it for subsequent feature extraction. 

 

 
 

Figure 1. Cross-platform malware classification using CNN-

GRU 

 

3.2 Feature representation 

 

The first step in the cross-platform malware detection 

process is feature representation. Malware samples are diverse 

and can exhibit unique characteristics across different 

platforms (e.g., Windows, macOS, Android, iOS). Therefore, 

the model needs to capture both static and dynamic features 

from these samples. 

Static features include file attributes, header information, 

and other characteristics that do not change during program 

execution. On the other hand, dynamic features include system 

calls, network traffic patterns, and other behaviors that vary 

during runtime. By leveraging both static and dynamic 

features, the model can gain a comprehensive understanding 

of malware behavior on different platforms. 

 

3.3 CNN for static features 

 

The CNN architecture is well-suited for capturing spatial 

patterns in data, making it an ideal choice for processing static 

features. In the CNN operations, the static features (𝑋𝑠𝑡𝑎𝑡𝑖𝑐) 

are extracted by convolutional layers, to generate a feature 

map. An activation function, typically ReLU (Rectified Linear 

Unit), introduces non-linearity to the model, enabling it to 

learn complex relationships between features. Subsequent 

pooling layers down-sample the feature map, reducing its 

dimensions while retaining critical information. The fully 

connected layer further processes the pooled output to learn 

high-level representations. 

 

3.4 GRU for dynamic features 

 

The dynamic features (𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐) require a model capturing 

temporal dependencies, as the order and timing of system calls, 

and network activities are crucial in malware behaviour. The 

GRU is a type of Recurrent Neural Network (RNN) that 

introduces gating mechanisms to regulate information flow 

over time. These gates, including the reset gate (rt) and update 

gate (zt), control the flow of information from the previous 

time step (ht-1) and the current input (Xdynamic). 

During the GRU operations, the reset gate determines which 

parts of the previous hidden state to forget, while the update 
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gate decides how much of the new information to incorporate 

into the candidate hidden state (ℎ�̂�). The candidate's hidden 

state is calculated as a combination of the reset gate and the 

current input. Finally, the current hidden state (ht) is updated 

using the candidate hidden state and the update gate. 

 

Reset Gate (rt): 

 

𝑟𝑡 = 𝜎(𝑊𝑟 × [ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏𝑟) (1) 

 

Update Gate (zt): 

 

𝑧𝑡 = 𝜎(𝑊𝑧 × [ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏𝑧) (2) 
 

Candidate Hidden State (ℎ𝑡

⏜

): 

 

ℎ𝑡

⏜

= 𝑡𝑎𝑛ℎ(𝑊𝑔𝑟𝑢 × [𝑟𝑡 × ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏ℎ) (3) 

 

Current Hidden State (ht): 

 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡

⏜

 (4) 

 

where, 𝑊𝑐𝑛𝑛 and 𝑏𝑐𝑛𝑛 represents the weights and biases of the 

CNN layers, and 𝑊𝑔𝑟𝑢, 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧 , 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ  represents the 

weights and biases of the GRU layers. 

 

3.5 Combining CNN and GRU 

 

Once the static and dynamic features are processed 

separately, the model combines them for cross-platform 

malware detection. The outputs from the Fully Connected 

layer (F) and the GRU ( ℎ𝑡 ) are concatenated to form a 

comprehensive representation of malware behavior across 

different platforms. This combined output, referred to as 

Combined_Output, represents a rich feature representation 

that captures both spatial and temporal patterns present in the 

malware samples. 

 

3.6 Classification 

 

The Combined_Output is passed through a fully connected 

layer for classification. This layer maps the features to 

different malware classes and computes the raw scores for 

each class. The Sigmoid function is then applied to classify 

whether the operating system contains malware or not.  

By leveraging the strengths of both CNN for static features 

and GRU for dynamic features, the proposed CNN-GRU 

model achieves effective cross-platform malware detection 

shown in Figure 2. The model's ability to capture unique 

characteristics of malware across various platforms makes it a 

robust and versatile solution for detecting and classifying 

malware threats in diverse operating environments.  

Let 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 represents the static features extracted from the 

malware samples, and 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐   represents the dynamic 

features. Let 𝑊𝑐𝑛𝑛 and 𝑏𝑐𝑛𝑛 represent the weights and biases 

of the CNN layers, and 𝑊𝑔𝑟𝑢 , 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧 , 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ represent 

the weights and biases of the GRU layers. 

 

Algorithm-1: Cross-Platform Malware Detection 

Initialization: 𝑊𝑔𝑟𝑢, 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧, 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ 

1. For each iteration  

2. Extract static and dynamic features from malware 

samples.  

3. Compute 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 and 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐  from step 2. 

#CNN Operations: 

4. Apply convolutional layers to 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 to get the 

feature map. 

5. Apply the ReLU activation function to the feature 

map. 

6. Perform max pooling to down-sample the feature 

map. 

7. Flatten the output and pass it through fully 

connected layers to get F. 

8. For Iterate over each time step t in 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐. 

9. Calculate the {𝑟𝑡 , 𝑧𝑡 , ℎ𝑡

⏜

}.  

10. Compute the ℎ𝑡 using the update gate and the 

candidate hidden state. 

11. Combine F and ℎ𝑡 to obtain the final combined 

output. 

12. Pass the combined output to a fully connected 

layer for classification.  

13. Use the Sigmoid function to classify whether the 

input is Malware or Benign. 

 

 
 

Figure 2. CNN-GRU architecture for cross-platform malware classification 
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The cross-platform malware detection algorithm leverages 

both static and dynamic features of malware samples. The 

CNN extracts spatial features from the static data, while the 

GRU captures temporal dependencies from the dynamic data. 

The combined output from the CNN and GRU is used to make 

predictions about the malware class. Algorithm-1 can be 

trained on diverse datasets containing malware samples from 

different platforms, enabling effective cross-platform 

detection and classification of malware threats. 
 

Table 1. CNN-GRU model parameters 
 

Layer Parameter Description 

Input Input size (6248, 1087) 

Convolutional 

Layer 

Input Size (64, 300, 1087) 

Number of Filters 64, 128, 256 

Filter size & Stride 3 & 1 

Activation 

function 
ReLU 

Pooling layer 
Max Pooling with size 2, 

stride 2 

Output shape (64, 36, 256) 

Flatten Layer 
Input Shape (64, 36, 256) 

Output Shape (589824,) 

Fully 

Connected 

Layer for 

CNN 

Input Shape (589824,) 

Output Shape (1,) 

GRU Layer 

Input Shape (32, 150, 128) 

Number of LSTM 

units 
128 

Activation 

function 
(tanh) 

Output shape (32, 150, 128) 

Flatten Layer 
Input Shape (32, 150, 128) 

Output Shape (614400,) 

Fully 

Connected 

Layer for 

GRU 

Input Shape (614400,) 

Output Shape (1,) 

Combine 

Features 
(1,) 

Concatenates static and 

dynamic outputs 

Activation 

Function 

(Sigmoid) 

(1,) 
Classifies into Malware or 

Benign 

 

Table 1 outlines the architecture and parameters of a neural 

network model for cross-platform classification. The network 

comprises several layers, starting with an input layer with a 

size of (6248, 1087). Following this, a convolutional layer 

with 64, 128, and 256 filters of size 3 and a ReLU activation 

function is applied, along with max pooling. The output shape 

after this convolutional layer is (64, 36, 256). Subsequently, a 

flattened layer is introduced, reshaping the data to (589824,). 

The fully connected layer for CNN follows, transforming the 

input shape to (1,). A GRU layer with 128 GRU units is then 

applied to the input shape (32, 150, 128), producing an output 

shape of (32, 150, 128). Another flattens layer reshapes the 

data to (614400,), and a subsequent fully connected layer 

transforms it to (1,). The features from both the CNN and GRU 

pathways are combined, and a Sigmoid activation function is 

applied to classify the output into either malware or benign, 

with a final output shape of (1,). 

 

 

4. EXPERIMENTAL RESULTS 

 

This section delves into the experimental analysis 

conducted on the VxHeaven dataset for cross-platform 

malware analysis. The dataset serves as a comprehensive 

benchmark to evaluate the efficacy of the proposed CNN-

GRU model in comparison to existing models, including CNN, 

GRU, and MCFT-CNN. 

 

4.1 Dataset  

 

The dataset used in this study is the "Malware static and 

dynamic features VxHeaven and Virus Total3 datasets." It is a 

multivariate dataset relevant to the field of computer science 

and is primarily associated with classification tasks. The 

dataset contains 2955 instances, where each instance 

represents a unique sample or file. The attributes in the dataset 

are of two types: integer and real values, and there are a total 

of 1087 attributes for each instance. The dataset is divided into 

three main files, each providing valuable insights into the 

static and dynamic properties of files on different platforms.  

The first file, "staDynBenignLab.csv," consists of data 

extracted from 595 files on MS Windows 7 and 8, specifically 

obtained from the Program Files directory. It encompasses 

1087 features, which capture important information related to 

the static and dynamic characteristics of benign files. The 

second file, "staDynVxHeaven2698Lab.csv," contains data 

from 2698 files obtained from the VxHeaven dataset. Like the 

previous file, it comprises 1087 features for each instance, 

providing valuable insights into the static and dynamic 

features associated with malware samples. The third file, 

"staDynVt2955Lab.csv," contains data extracted from 2955 

files provided by Virus Total in 2018. It also includes 1087 

features for each instance, representing both static and 

dynamic properties of malware samples.  

The primary objective of this dataset is to facilitate the 

classification of files as either benign or malicious based on 

their static and dynamic features. Researchers and 

practitioners in the field of cybersecurity can utilize this 

dataset to train and evaluate machine learning models for 

effective cross-platform malware detection. The richness of 

the dataset, with its comprehensive collection of features from 

diverse sources, empowers the development of robust 

classification algorithms. This dataset plays a crucial role in 

advancing malware detection techniques in real-world 

scenarios, contributing significantly to the enhancement of 

cybersecurity practices, and ensuring the protection of critical 

systems and sensitive data.  

 

4.2 Results and discussion 

 

The results obtained from the experimental analysis are 

presented and discussed in this section. The proposed CNN-

GRU model is evaluated against baseline models, including 

CNN, GRU, and MCFT-CNN (Malware Classification with 

fine-tuned convolution Neural Networks), to assess its 

superiority in cross-platform malware analysis. Comparative 

analyses encompass key performance metrics such as 

Accuracy, Precision, Recall, and F1-score. These metrics offer 

insights into the model's ability to correctly classify malware 

instances across diverse platforms while minimizing false 

positives and negatives. 

The discussion delves into the strengths and limitations of 

each model, highlighting instances where the CNN-GRU 

model outperforms its counterparts. Factors such as the ability 

to capture both spatial and temporal features contribute to the 

effectiveness of the proposed model in handling cross-
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platform malware threats. Furthermore, the section explores 

specific instances where the CNN-GRU model excels, 

showcasing its robustness in handling dynamic and complex 

cross-platform malware scenarios. Insights gained from the 

analysis contribute to a nuanced understanding of the proposed 

model's capabilities and its potential advancements for future 

cross-platform malware detection and classification. 

 

 
 

Figure 3. Accuracy 

 

Figure 3 offers a compelling insight into the accuracy values 

achieved by various models, with a specific focus on the 

consistently superior performance of the proposed CNN-GRU 

model compared to other models. Accuracy is a fundamental 

metric in assessing classification models, measuring their 

ability to correctly classify data points. The data presented in 

Figure 3 unequivocally demonstrates that the CNN-GRU 

model consistently outperforms three other models—CNN, 

GRU, and MCFT-CNN—across all 100 epochs. At epoch 100, 

the CNN-GRU model attains an impressive accuracy of 93%, 

while the CNN, GRU, and MCFT-CNN models achieve 87%, 

86%, and 89% accuracy, respectively. This remarkable 

performance highlights the CNN-GRU model's capacity to 

provide a more accurate and robust solution for cross-platform 

malware detection. It excels in correctly classifying malware 

samples, achieving a significantly higher accuracy rate 

compared to existing models. 

The key advantage of the CNN-GRU model lies in its ability 

to create a comprehensive feature representation that captures 

both spatial and temporal patterns within malware behavior. 

By effectively incorporating both spatial and temporal 

information, the CNN-GRU model gains a more profound 

understanding of the intricate relationships between different 

features. This holistic approach enables the model to achieve 

higher accuracy by considering the full spectrum of 

characteristics that define malware samples. In contrast, the 

limitations of existing models, such as the CNN's focus on 

spatial features and the GRU's restriction to capturing 

sequential patterns, hinder their ability to achieve the same 

level of accuracy. These models may miss critical information 

or fail to uncover subtle relationships within the data, 

ultimately impacting their performance in accurately 

classifying malware samples.  

Figure 4 provides a crucial insight into the precision 

achieved by different models, including the proposed CNN-

GRU model, during their training phases. Precision is a vital 

metric in the context of malware classification, as it measures 

the model's capability to accurately identify true positives 

while minimizing the occurrence of false positives. In our 

comparative analysis, we evaluated the precision of the CNN-

GRU model alongside three other models: CNN, GRU, and 

MCFT-CNN. The precision of the CNN-GRU model stands 

out prominently with 94%. This result demonstrates the 

model's exceptional ability to correctly identify and classify 

positive malware samples among the predicted positives. A 

precision of 94% signifies that the CNN-GRU model excels at 

maintaining a high level of precision while avoiding the 

inclusion of false positives in its classifications. 

 

 
 

Figure 4. Precision 

 

Comparatively, the CNN model achieves a precision of 

89%, which is commendable but falls short of the CNN-GRU's 

performance. The CNN model, while proficient at capturing 

spatial patterns in data, may encounter limitations when it 

comes to capturing temporal dependencies, which are crucial 

for accurately assessing dynamic behaviors in malware. The 

GRU model, on the other hand, achieves a precision of 87%, 

demonstrating its effectiveness in precision-oriented tasks but 

still slightly trailing behind the CNN-GRU model. GRU, 

known for its focus on sequential patterns, exhibits a strong 

performance but may not fully capture the intricacies of both 

spatial and temporal features as effectively as the CNN-GRU 

model. Lastly, the MCFT-CNN model achieves a precision of 

92%, showcasing respectable performance but lagging behind 

the CNN-GRU model. The MCFT-CNN model incorporates 

convolutional neural networks and temporal fusion 

mechanisms but still doesn't match the precision offered by the 

CNN-GRU architecture. 

The CNN-GRU model's advantage lies in its unique ability 

to seamlessly capture both spatial and temporal patterns. This 

comprehensive approach to feature extraction results in a more 

precise representation of malware behavior. In contrast, the 

limitations of existing models, such as the CNN's inability to 

fully grasp temporal dependencies and the GRU's primary 

focus on sequential patterns, may lead to less optimal 

precision-recall trade-offs and imbalanced classification 

performance. 

Figure 5 provides a crucial perspective on the recall 

performance of various models, including the proposed CNN-

GRU model, throughout their training phases. Recall, often 

referred to as sensitivity or true positive rate, is a vital metric 

in malware classification as it measures the model's capability 

to correctly identify actual malware instances while 

minimizing the occurrence of false negatives. A recall score of 

94% for the CNN-GRU model signifies its exceptional ability 

to capture a higher proportion of actual malware instances. In 

other words, it excels at recognizing and correctly classifying 
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more instances of malware, thereby minimizing the likelihood 

of false negatives. This is a crucial advantage in the context of 

malware detection, as false negatives can result in undetected 

security threats that can cause significant harm. Comparatively, 

the CNN model achieves a recall of 90%, which is respectable 

but falls short of the CNN-GRU model's performance. The 

CNN model, which specializes in capturing spatial features, 

may not fully exploit the capability to identify temporal 

patterns that are critical for accurate malware detection. 

 

 
 

Figure 5. Recall 

 

The GRU model achieves a recall of 89%, demonstrating its 

effectiveness in capturing true positives, but it still lags the 

CNN-GRU model. GRU, with its primary focus on sequential 

patterns, offers good recall performance but may not be as 

versatile as the CNN-GRU model in capturing both spatial and 

temporal features. Lastly, the MCFT-CNN model achieves a 

recall score of 91%, showcasing a commendable performance 

but still trailing behind the CNN-GRU model's recall 

capabilities. The CNN-GRU model's distinct advantage lies in 

its ability to seamlessly capture both spatial and temporal 

patterns. This comprehensive approach to feature extraction 

enables it to achieve higher recall values, which means it 

identifies more actual malware instances and minimizes the 

occurrence of false negatives. This capability is particularly 

advantageous in the context of cross-platform malware 

detection, where a diverse range of behaviors and features 

must be considered.  

 

 
 

Figure 6. Loss 

 

Figure 6 provides a valuable perspective on the loss values 

achieved by various models during their training phases, with 

a particular focus on the consistently lower loss values of the 

proposed CNN-GRU model compared to other models. In this 

context, loss measures the dissimilarity between predicted 

values and actual values, with lower loss values indicating 

more accurate predictions and better model convergence. The 

data presented in Figure 6 demonstrates that the CNN-GRU 

model consistently achieves lower loss values compared to 

three other models: CNN, GRU, and MCFT-CNN. 

Specifically, the CNN-GRU model achieves a remarkably low 

loss of 0.31, underscoring its outstanding performance in 

terms of prediction accuracy and convergence. 

A loss of 0.31 for the CNN-GRU model signifies its 

exceptional ability to provide accurate predictions and achieve 

superior model convergence. This indicates that the CNN-

GRU model excels in delivering precise and reliable 

predictions, which is crucial in the context of cross-platform 

malware detection. In contrast, the CNN model achieves a loss 

value of 0.49. The CNN's specialization in capturing spatial 

features may lead to less accurate predictions and slower 

model convergence when temporal patterns are equally crucial. 

The GRU model achieves a higher loss value of 0.51, 

implying a larger dissimilarity between predicted and actual 

values compared to the CNN-GRU model. While the GRU is 

effective in capturing temporal patterns, its focus on sequential 

data may result in higher loss values and slower model 

convergence when spatial features are essential. Lastly, the 

MCFT-CNN model achieves a loss value of 0.35, confirming 

the CNN-GRU model's superior accuracy and convergence in 

terms of loss values. The CNN-GRU model's advantage lies in 

its unique ability to seamlessly capture both spatial and 

temporal patterns, resulting in more precise feature 

representations and better model convergence. The CNN-

GRU model's lower loss values reflect its capability to provide 

more accurate and reliable predictions, enhancing its 

effectiveness in cross-platform malware detection and 

ensuring faster convergence during training. 

 

 
 

Figure 7. F-score 

 

Figure 7 provides a comprehensive view of the F-scores 

achieved by various models, including the proposed CNN-

GRU model, during their training phases. The F-score is a vital 

metric in evaluating classification models as it balances both 

precision and recall, providing insight into a model's ability to 

find a harmonious trade-off between correctly identifying 

malware samples and minimizing misclassifications. The F-

score ranges between 0 and 1, with higher values indicating a 

better balance between precision and recall. The CNN-GRU 

model consistently achieves higher F-scores compared to three 

other models: CNN, GRU, and MCFT-CNN. Specifically, the 
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CNN-GRU model achieves an F-score of 0.95, outperforming 

the other models. 

An F-score of 0.95 for the CNN-GRU model indicates its 

exceptional ability to strike a balance between precision and 

recall, resulting in a more accurate classification performance. 

This means that the CNN-GRU model not only correctly 

identifies malware samples but also minimizes the occurrence 

of misclassifications or false positives and false negatives. In 

comparison, the CNN model achieves an F-score of 0.89, 

which is commendable but falls slightly short of the CNN-

GRU model's performance. The CNN model's specialization 

in capturing spatial features may limit its capacity to achieve a 

more balanced trade-off between precision and recall. The 

GRU model achieves an F-score of 0.87, demonstrating its 

effectiveness in achieving a balanced classification 

performance. However, it still slightly trails behind the CNN-

GRU model in terms of F-score. The GRU's primary focus on 

capturing temporal patterns may result in less optimal 

classification when spatial features are also crucial. 

Lastly, the MCFT-CNN model achieves an F-score of 0.93, 

showcasing a solid performance but still not reaching the F-

score attained by the CNN-GRU model. The CNN-GRU 

model's advantage lies in its unique ability to seamlessly 

capture both spatial and temporal patterns. This 

comprehensive approach to feature representation enables it to 

achieve higher F-scores, indicating a more balanced and 

accurate classification performance. The CNN-GRU model's 

capacity to excel in both precision and recall reflects its ability 

to maintain high accuracy while minimizing misclassifications. 

This balanced performance is crucial in the context of cross-

platform malware detection, where both the accuracy of 

detection and the minimization of false alarms are critical. 

 

 
 

Figure 8. Mean squared error (MSE) 

 

Figure 8 offers a valuable perspective on the Mean Squared 

Error (MSE) values achieved by various models, including the 

proposed CNN-GRU model, during their training phases. The 

MSE is a critical metric used to assess the accuracy of 

predictive models by quantifying the average of squared 

prediction errors. Lower MSE values indicate more accurate 

predictions and smaller prediction errors. The CNN-GRU 

model consistently achieves lower MSE values compared to 

three other models: CNN, GRU, and MCFT-CNN. 

Specifically, the CNN-GRU model achieves an impressively 

low MSE of 0.035, outperforming the other models. 

An MSE of 0.035 for the CNN-GRU model indicates its 

exceptional ability to make accurate predictions with minimal 

prediction errors. This suggests that the CNN-GRU model 

excels in providing precise and reliable predictions, which is 

especially crucial in the context of cross-platform malware 

detection. 

In contrast, the CNN model achieves a higher MSE of 0.050, 

indicating larger prediction errors compared to the CNN-GRU 

model. The CNN's specialization in capturing spatial features 

may result in less accurate predictions when temporal patterns 

are equally important. The GRU model achieves an MSE of 

0.055, which is also higher than that of the CNN-GRU model. 

While the GRU is effective in capturing temporal patterns, its 

focus on sequential data may lead to larger prediction errors 

when spatial features are essential. 

Lastly, the MCFT-CNN model achieves an MSE of 0.038, 

falling short of the CNN-GRU model's impressive accuracy in 

terms of prediction errors. The CNN-GRU model's advantage 

lies in its unique ability to seamlessly capture both spatial and 

temporal patterns. This comprehensive approach to feature 

representation results in more precise representations of 

malware behavior and minimizes prediction discrepancies. 

The CNN-GRU model's lower MSE values reflect its 

capability to provide more accurate and reliable predictions, 

making it a highly effective solution for cross-platform 

malware detection. 

 

 
 

Figure 9. Mean absolute error (MAE) 

 

Figure 9 offers valuable insight into the Mean Absolute 

Error (MAE) values achieved by various models, including the 

proposed CNN-GRU model, during their training phases. 

MAE is a crucial metric used to assess the accuracy of 

predictive models by quantifying the average of absolute 

prediction errors. Lower MAE values indicate more accurate 

predictions and smaller absolute prediction errors. The CNN-

GRU model consistently achieves lower MAE values 

compared to three other models: CNN, GRU, and MCFT-

CNN. Specifically, the CNN-GRU model achieves a 

remarkably low MAE of 0.12, outperforming the other models. 

An MAE of 0.12 for the CNN-GRU model signifies its 

exceptional ability to make accurate predictions with minimal 

absolute prediction errors. This suggests that the CNN-GRU 

model excels in providing precise and reliable predictions, a 

critical aspect of cross-platform malware classification. In 

contrast, the CNN model achieves a higher MAE of 0.13, 

indicating larger absolute prediction errors compared to the 

CNN-GRU model. The CNN's specialization in capturing 

spatial features may result in less accurate predictions when 

temporal patterns are equally important. 

The GRU model achieves an MAE of 0.14, which is also 

higher than that of the CNN-GRU model. While the GRU is 
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effective in capturing temporal patterns, its focus on sequential 

data may lead to larger absolute prediction errors when spatial 

features are essential. Lastly, the MCFT-CNN model achieves 

an MAE of 0.13, further confirming the CNN-GRU model's 

superior accuracy in terms of absolute prediction errors. The 

CNN-GRU model's advantage lies in its unique ability to 

seamlessly capture both spatial and temporal patterns. This 

comprehensive approach to feature representation results in 

more precise representations of malware behavior and 

minimizes absolute prediction discrepancies. The CNN-GRU 

model's lower MAE values reflect its capability to provide 

more accurate and reliable predictions, enhancing its 

effectiveness in cross-platform malware classification. 

 

 
 

Figure 10. Mean absolute percentage error (MAPE) 

 

Figure 10 provides valuable insight into the Mean Absolute 

Percentage Error (MAPE) values achieved by various models, 

with a special emphasis on the consistently lower MAPE 

values of the proposed CNN-GRU model compared to other 

models. MAPE is a critical metric used to assess the accuracy 

of predictive models by quantifying the percentage of 

prediction errors relative to the actual values. Smaller MAPE 

values indicate more accurate predictions with lower 

percentage prediction errors. CNN-GRU model consistently 

achieves lower MAPE values compared to three other models: 

CNN, GRU, and MCFT-CNN. Specifically, at epoch 100, the 

CNN-GRU model achieves a remarkably low MAPE of 3%, 

showcasing its outstanding performance in terms of prediction 

accuracy. 

A MAPE of 3% for the CNN-GRU model reflects its 

exceptional ability to provide accurate predictions with 

minimal percentage prediction errors. This indicates that the 

CNN-GRU model excels in delivering precise and reliable 

predictions, which is of utmost importance in the context of 

cross-platform malware detection. 

In contrast, the CNN model achieves a higher MAPE of 

3.5%, implying a larger percentage of prediction errors 

compared to the CNN-GRU model. The CNN's specialization 

in capturing spatial features may lead to less accurate 

predictions when temporal patterns are equally crucial. The 

GRU model achieves a MAPE of 5%, which is also higher 

than that of the CNN-GRU model. While the GRU is effective 

in capturing temporal patterns, its focus on sequential data 

may result in a larger percentage of prediction errors when 

spatial features are essential. Lastly, the MCFT-CNN model 

achieves a MAPE of 4.2%, further confirming the CNN-GRU 

model's superior accuracy in terms of percentage prediction 

errors. The CNN-GRU model's advantage lies in its unique 

ability to seamlessly capture both spatial and temporal patterns. 

This comprehensive approach to feature representation results 

in more precise representations of malware behavior and 

minimizes percentage prediction discrepancies. The CNN-

GRU model's lower MAPE values reflect its capability to 

provide more accurate and reliable predictions, enhancing its 

effectiveness in cross-platform malware detection. 

 

 

5. CONCLUSIONS 

 

Malware attacks pose a significant and growing threat in 

today's digital landscape, targeting multiple operating systems 

with increasingly sophisticated tactics. Detecting and 

classifying malware that can operate across diverse platforms 

has become a critical challenge for cybersecurity. In response 

to this challenge, this part of the work introduces a pioneering 

deep learning-based approach, known as the CNN-GRU 

model, designed for cross-platform malware classification. 

This model effectively harnesses both static and dynamic 

features to capture the distinct characteristics of malware 

behavior on platforms such as Windows, macOS, Android, 

and iOS. Traditional methods of malware classification often 

fall short in the face of evolving malware threats. These 

methods typically rely on either static or dynamic features, 

which alone may not provide a comprehensive understanding 

of contemporary malware's multifaceted nature. The CNN-

GRU model presented in our study seeks to overcome these 

limitations by combining the strengths of CNN and GRU 

networks. This fusion allows the model to detect both spatial 

and temporal patterns within malware samples, thereby 

enhancing its accuracy and robustness. 

The experimental results of our study validate the efficacy 

of the CNN-GRU model. It achieves an impressive accuracy 

rate of 93%, outperforming traditional methods by a 

significant margin. This high level of accuracy is a testament 

to the model's ability to adapt to the complexities of cross-

platform malware detection. By successfully integrating static 

and dynamic features, the CNN-GRU model creates a 

comprehensive feature representation of malware behavior 

that enables it to excel in the face of sophisticated threats. The 

CNN-GRU model's cross-platform capabilities are a key 

feature that sets it apart from conventional methods. It can 

effectively classify malware on a wide range of operating 

systems, making it a versatile tool in the fight against malware 

attacks that target multiple platforms. This adaptability is 

crucial in today's digital landscape, where cyber threats are no 

longer confined to a single operating system. 

One of the primary advantages of the CNN-GRU model is 

its ability to provide cybersecurity professionals with early 

detection and mitigation capabilities. With an accuracy rate of 

93%, it can swiftly identify malicious software, enabling rapid 

response and containment of security risks. This proactive 

approach is vital in safeguarding critical systems and sensitive 

data from the ever-evolving landscape of malware threats. 

 

 

REFERENCES  

 

[1] Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D. 

(2011). A survey of mobile malware in the wild. In 

Proceedings of the 1st ACM workshop on Security and 

Privacy in Smartphones and Mobile Devices, pp. 3-14. 

https://doi.org/10.1145/2046614.2046618 

484



 

[2] Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, 

L. (2017). The evolution of android malware and android 

analysis techniques. ACM Computing Surveys, 49(4): 1-

41. https://doi.org/10.1145/3017427 

[3] Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J. (2019). A 

combination method for android malware detection 

based on control flow graphs and machine learning 

algorithms. IEEE Access, 7: 21235-21245. 

https://doi.org/10.1109/ACCESS.2019.2896003 

[4] Ou, F., Xu, J. (2022). S3feature: A static sensitive 

subgraph-based feature for android malware detection. 

Computers & Security, 112: 102513. 

https://doi.org/10.1016/j.cose.2021.102513 

[5] Karbab, E.B., Debbabi, M. (2019). Maldy: Portable, 

data-driven malware detection using natural language 

processing and machine learning techniques on 

behavioral analysis reports. Digital Investigation, 28: 

S77-S87. https://doi.org/10.1016/j.diin.2019.01.017 

[6] Zhang, M., Duan, Y., Yin, H., Zhao, Z. (2014). 

Semantics-aware android malware classification using 

weighted contextual API dependency graphs. In 

Proceedings of the 2014 ACM SIGSAC Conference on 

Computer and Communications Security, New York, 

United States, pp. 1105-1116. 

https://doi.org/10.1145/2660267.2660359 

[7] Vu, D.L., Nguyen, T.K., Nguyen, T.V., Nguyen, T.N., 

Massacci, F., Phung, P.H. (2020). Hit4mal: Hybrid image 

transformation for malware classification. Transactions 

on Emerging Telecommunications Technologies, 31(11): 

e3789. https://doi.org/10.1002/ett.3789 

[8] Milosevic, N., Dehghantanha, A., Choo, K.K.R. (2017). 

Machine learning aided android malware classification. 

Computers & Electrical Engineering, 61: 266-274. 

https://doi.org/10.1016/j.compeleceng.2017.02.013 

[9] Egele, M., Scholte, T., Kirda, E., Kruegel, C. (2008). A 

survey on automated dynamic malware-analysis 

techniques and tools. ACM Computing Surveys, 44(2): 

1-42. https://doi.org/10.1145/2089125.2089126 

[10] Wang, P., Wang, Y.S. (2015). Malware behavioural 

detection and vaccine development by using a support 

vector model classifier. Journal of Computer and System 

Sciences, 81(6): 1012-1026. 

https://doi.org/10.1016/j.jcss.2014.12.014 

[11] Wang, W., Zhao, M.C., Gao, Z.Z., Xu, G.Q., Xian, H.Q., 

Li, Y.Y., Zhang, X.L. (2019). Constructing features for 

detecting android malicious applications: issues, 

taxonomy and directions. IEEE Access, 7: 67602-67631. 

https://doi.org/10.1109/ACCESS.2019.2918139 

[12] Abusitta, A., Li, MQ., Fung, B.C. (2021). Malware 

classification and composition analysis: A survey of 

recent developments. Journal of Information Security 

and Applications, 59: 102828. 

https://doi.org/10.1016/j.jisa.2021.102828 

[13] Mahindru, A., Singh, P. (2017). Dynamic permissions 

based android malware detection using machine learning 

techniques. In Proceedings of the 10th Innovations in 

Software Engineering Conference, Jaipur, India, pp. 202-

210. https://doi.org/10.1145/3021460.3021485 

[14] Alasmary, H., Abusnaina, A., Jang, R., Abuhamad, M., 

Anwar, A., Nyang, D., Mohaisen, D. (2020). Soteria: 

Detecting adversarial examples in control flow graph-

based malware classifiers. In 2020 IEEE 40th 

International Conference on Distributed Computing 

Systems (ICDCS), Singapore, Singapore, pp. 888-898. 

https://doi.org/10.1109/ICDCS47774.2020.00089 

[15] Arslan, R.S., Tasyurek, M. (2022). AMD-CNN: Android 

malware detection via feature graph and convolutional 

neural networks. Concurrency and Computation Practice 

and Experience, 34(23): e7180. 

https://doi.org/10.1002/cpe.7180 

[16] Kumar, S., Janet, B., Neelakantan, S. (2022). 

Identification of malware families using stacking of 

textural features and machine learning. Expert Systems 

with Applications, 208: 118073. 

https://doi.org/10.1016/j.eswa.2022.118073 

[17] Frenklach, T., Cohen, D., Shabtai, A., Puzis, R. (2021). 

Android malware detection via an app similarity graph. 

Computers & Security, 109: 102386. 

https://doi.org/10.1016/j.cose.2021.102386 

[18] Nguyen, H.T., Ngo, Q.D., Le, V.H. (2020). A novel 

graph-based approach for IoT botnet detection. 

International Journal of Information Security, 19(5): 567-

577. https://doi.org/10.1007/s10207-019-00475-6 

[19] Pektaş, A., Acarman, T. (2020). Deep learning for 

effective android malware detection using API call graph 

embeddings. Soft Computing 24: 1027-1043. 

https://doi.org/10.1007/s00500-019-03940-5 

[20] Kumar, S., Janet, B. (2022). DTMIC: Deep transfer 

learning for malware image classification. Journal of 

Information Security and Applications, 64: 103063. 

https://doi.org/10.1016/j.jisa.2021.103063 

[21] Gonzalez, H., Kadir, A.A., Stakhanova, N., Alzahrani, 

A.J., Ghorbani, A.A. (2015). Exploring reverse 

engineering symptoms in android apps. In Proceedings 

of the Eighth European Workshop on System Security, 

pp. 1-7. https://doi.org/10.1145/2751323.2751330 

[22] Ullah, F., Naeem, M.R., Mostarda, L., Shah, S.A. (2021). 

Clone detection in 5g-enabled social IoT system using 

graph semantics and deep learning model. International 

Journal of Machine Learning and Cybernetics, 12: 3115-

3127. https://doi.org/10.1007/s13042-020-01246-9 

[23] Yan, J., Yan, G., Jin, D. (2019). Classifying malware 

represented as control flow graphs using deep graph 

convolutional neural network. In 2019 49th Annual 

IEEE/IFIP International Conference on Dependable 

Systems and Networks (DSN), Portland, OR, USA, pp. 

52-63. https://doi.org/10.1109/DSN.2019.00020 

[24] Gao, Z., Feng, A., Song, X., Wu, X. (2019). Target-

dependent sentiment classification with BERT. IEEE 

Access, 7: 154290-154299. 

https://doi.org/10.1109/ACCESS.2019.2946594 

[25] Oak, R., Du, M., Yan, D., Takawale, H., Amit, I. (2019). 

Malware detection on highly imbalanced data through 

sequence modeling. In Proceedings of the 12th ACM 

Workshop on Artificial Intelligence and Security, New 

York, United States, pp. 37-48. 

https://doi.org/10.1145/3338501.3357374 

[26] Gálvez-López, D., Tardos, J.D. (2012). Bags of binary 

words for fast place recognition in image sequences. 

IEEE Transactions on Robotics, 28(5): 1188-1197. 

https://doi.org/10.1109/TRO.2012.2197158 

[27] Ullah, F., Ullah, S., Naeem, M.R., Mostarda, L., Rho, S., 

Cheng, X. (2022). Cyber-threat detection system using a 

hybrid approach of transfer learning and multi-model 

image representation. Sensors, 22(15): 5883. 

https://doi.org/10.3390/s22155883 

[28] Lee, W.Y., Saxe, J., Harang, R. (2019). SeqDroid: 

Obfuscated android malware detection using stacked 

485



 

convolutional and recurrent neural networks. Deep 

Learning Applications for Cyber Security, Advanced 

Sciences and Technologies for Security Applications, 

Springer, Cham, 197-210. https://doi.org/10.1007/978-3-

030-13057-2_9 

[29] Yerima, S.Y., Sezer, S. (2018). Droidfusion: A novel 

multilevel classifier fusion approach for android malware 

detection. IEEE Transactions on Cybernetics, 49(2): 453-

466. https://doi.org/10.1109/TCYB.2017.2777960 

[30] Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S., 

Runeson, P. (2016). Automated bug assignment: 

Ensemble-based machine learning in large scale 

industrial contexts. Empirical Software Engineering, 21: 

1533-1578. https://doi.org/10.1007/s10664-015-9401-9 

[31] Taheri, L., Kadir, A.F.A., Lashkari, A.H. (2019). 

Extensible android malware detection and family 

classification using network-flows and API-calls. In 

2019 International Carnahan Conference on Security 

Technology (ICCST), Chennai, India, pp. 1-8. 

https://doi.org/10.1109/CCST.2019.8888430 

[32] Wang, A., Gao, X.D. (2021). A variable scale case-based 

reasoning method for evidence location in digital 

forensics. Future Generation Computer Systems, 122: 

209-219. https://doi.org/10.1016/j.future.2021.03.019 

[33] Arepalli, P.G., Naik, K.J. (2024). Water contamination 

analysis in IoT enabled aquaculture using deep learning 

based AODEGRU. Ecological Informatics, 79: 102405. 

https://doi.org/10.1016/j.ecoinf.2023.102405 

[34] Gopi, A.P., Gowthami, M., Srujana, T., Padmini, S.G., 

Malleswari, M.D. (2022). Classification of denial-of-

service attacks in IoT networks using AlexNet. In 

Human-Centric Smart Computing, Springer, Singapore, 

pp. 349-357. https://doi.org/10.1007/978-981-19-5403-

0_30 
 

486




