
Cross-Platform Malware Classification: Fusion of CNN and GRU Models

Nagababu Pachhala1* , Subbaiyan Jothilakshmi1 , Bhanu Prakash Battula2

1 Department of Information Technology, Faculty of Engineering and Technology, Annamalai University, Annamalainagar

608002, India
2 Department of CSE, KKR & KSR Institute of Technology and Sciences, Guntur 522017, India

Corresponding Author Email: nagababupachhala2024@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140215 ABSTRACT

Received: 19 November 2023

Revised: 12 March 2024

Accepted: 25 March 2024

Available online: 26 April 2024

Effective cross-platform malware categorization techniques are becoming more and more

necessary as malware spreads across more systems. Conventional methods are primarily

concerned with the static or dynamic aspects of malware, which often restricts their ability

to identify and categorize malware on various operating systems. In this paper, we use

both static and dynamic characteristics to present a unique deep learning-based method

for cross-platform malware classification. Our work aims to identify the distinct features

of malware on different operating systems, such as Windows, macOS, Android, and iOS.

We provide a complete depiction of malware behavior by collecting both dynamic and

static data, such as system calls and network traffic patterns, as well as file properties, API

calls, and header information. Convolutional Neural Networks (CNN) and Gated

Recurrent Units (GRU) are two components of our deep learning architecture that we use

to address the inherent issues of cross-platform malware categorization. This fusion of

networks enables us to effectively capture both spatial and temporal patterns present in

malware samples, enhancing the accuracy of classification across platforms. To evaluate

the performance of our proposed model, we employ benchmark datasets encompassing

diverse malware families across different operating systems. The results demonstrate

superior classification accuracy, precision, recall, and F-score compared to traditional

machine learning approaches and single-feature-based models.

Keywords:

malware, cross-platforms, convolution neural

network, gated recurrent unit, classification

1. INTRODUCTION

With the proliferation of malware across various platforms,

it has become imperative to develop effective cross-platform

malware classification techniques [1]. Traditional methods

typically focus on either static or dynamic features, which

often restrict their ability to detect and classify malware across

diverse operating systems. The research work presented in this

paper introduces a novel deep learning-based approach for

cross-platform malware classification [2-6] that combines

both static and dynamic features to address these challenges.

The objective of this research is to capture the unique

characteristics of malware targeting Windows, macOS,

Android, and iOS platforms. To achieve this, the approach

involves the extraction of both static and dynamic features

from malware samples [7-9]. Static features encompass file

attributes [10]. Application Programming Interface (API) calls,

and header information, providing insights into the structural

properties of the malware.

In addition to static attributes, dynamic behaviors [11-15]

are analyzed by examining system calls and network traffic

patterns [16]. These dynamic features shed light on how

malware interacts with the underlying operating system and

external networks, offering valuable information about its

behavior [17-24].

To effectively tackle the complexities of cross-platform

malware classification, a deep learning architecture is

employed [25-32]. This architecture combines Convolutional

Neural Networks (CNN) and Gated Recurrent Unit (GRU)

networks [33, 34]. By utilizing this fusion of networks, the

approach can capture both spatial and temporal patterns

inherent in malware samples, thereby enhancing classification

accuracy.

The performance of the proposed model is evaluated

through experiments conducted on benchmark datasets

encompassing a wide range of malware families targeting

different operating systems. The results exhibit superior

classification accuracy, precision, recall, and F-score when

compared to traditional machine-learning approaches and

single-feature-based models.

2. LITERATURE SURVEY

Several studies have investigated state-of-the-art methods

for malware classification, with varying degrees of success.

An approach for Android malware classification using static

sensitive sub-graph characteristics was presented by Ou and

Xu [4]. Higher-level properties of Android applications were

collected by expanding function call graphs and identifying

relevant vertices. By calculating a malignant score for each

node, they were able to pinpoint those that were most

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 477-486

Journal homepage: http://iieta.org/journals/ijsse

477

https://orcid.org/0000-0001-6105-7631
https://orcid.org/0000-0001-6837-5624
https://orcid.org/0000-0002-1944-9727
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140215&domain=pdf

susceptible to attack. This model performed very well against

malware, with an F1-score of 97.04%.

Malware categorization was proposed by Vu et al. [7], who

suggested using the encoding and organization of binary file

bytes into pictures. These pictures were made from statistical

and syntactic elements, and they were decorated with space-

filling curves. When fed into a CNN model, these image-based

features led to an impressive Hilbert curve accuracy of 93.01%.

An Android malware detection method based on machine

learning was presented by Abusitta [12]. To extract API

information such API calls, frequency, and sequence, they

used Control Flow Graph (CFG) capabilities. The ensemble

model for malware classification that included these visual

cues achieved a remarkable detection accuracy of 98.98%.

Using CNNs to examine AndroidManifest.xml properties,

Arslan and Tasyurek [15] presented a graphical Android

malware detection tool. Their model accomplished real-time

inspection of mobile applications with a 96.2% malware

detection rate, 97.9% precision, 98.2% recall, and 98.1% F1-

score by encoding a one-or-zero vector from these variables in

two dimensions for CNN training.

Kumar et al. [16] described a technique for malware

classification using bitwise samples and visual cues. To extract

both local and global textural properties, they converted

Windows PEs into grayscale photographs. The visual

characteristics were then loaded into a bespoke deep CNN

model, obtaining a high-test accuracy of 98.34%. An approach

for assessing non-running Android applications using an app

similarity graph (ASG) was proposed by Frenklach et al. [17].

This method presupposed that functions and other generic,

reusable primary components form the basis for an app's

activity categorization. On standard datasets, the approach was

97.5% accurate and had an AUC of 98.7%.

PSI-Graph, a method for detecting IoT botnets by analyzing

function-call graphs in executable files, was proposed by

Nguyen et al. [18]. It achieved a remarkable accuracy of 98.7%

on a wide variety of samples. Pektaş and Acarman [19]

demonstrated possible malware operations using API call

charts. By using these graphs as low-dimensional embeddings

in deep networks, they were able to retain a high degree of

accuracy (98.86%) while also improving network

performance.

A deep transfer learning-based method for malware image

classification using CNN that has been trained on ImageNet

was proposed by Kumar and Janet [20]. By converting

Windows PE files to grayscale images, they were able to

achieve test accuracies of 93.19 percent on Microsoft datasets

and 98 percent on Malimg datasets [21-31]. The MCFT-CNN

model, developed by Wang and Gao [32], is a cutting-edge

application of deep transfer learning to the problem of

malware classification [33, 34]. This ResNet50-based model

performed very well, with an accuracy of 99.18% on MalImg

malware datasets, and consistently, with an accuracy of

98.63% on a bigger dataset.

3. PROPOSED MODEL

The methodology for cross-platform classification utilizing

the CNN-GRU model involves a comprehensive approach to

effectively capture static and dynamic features. This section is

structured to highlight the key steps shown in Figure 1, starting

with data pre-processing, followed by static feature

representation using CNN, dynamic feature representation

using GRU, and finally, an exploration of the synergistic

working of the combined CNN-GRU model.

3.1 Data pre-processing

Before model development, a rigorous data pre-processing

stage is undertaken. This involves cleaning, normalization,

and augmentation procedures to ensure the uniformity and

quality of the dataset. The objective is to enhance the

robustness of the model against variations in cross-platform

data, preparing it for subsequent feature extraction.

Figure 1. Cross-platform malware classification using CNN-

GRU

3.2 Feature representation

The first step in the cross-platform malware detection

process is feature representation. Malware samples are diverse

and can exhibit unique characteristics across different

platforms (e.g., Windows, macOS, Android, iOS). Therefore,

the model needs to capture both static and dynamic features

from these samples.

Static features include file attributes, header information,

and other characteristics that do not change during program

execution. On the other hand, dynamic features include system

calls, network traffic patterns, and other behaviors that vary

during runtime. By leveraging both static and dynamic

features, the model can gain a comprehensive understanding

of malware behavior on different platforms.

3.3 CNN for static features

The CNN architecture is well-suited for capturing spatial

patterns in data, making it an ideal choice for processing static

features. In the CNN operations, the static features (𝑋𝑠𝑡𝑎𝑡𝑖𝑐)

are extracted by convolutional layers, to generate a feature

map. An activation function, typically ReLU (Rectified Linear

Unit), introduces non-linearity to the model, enabling it to

learn complex relationships between features. Subsequent

pooling layers down-sample the feature map, reducing its

dimensions while retaining critical information. The fully

connected layer further processes the pooled output to learn

high-level representations.

3.4 GRU for dynamic features

The dynamic features (𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐) require a model capturing

temporal dependencies, as the order and timing of system calls,

and network activities are crucial in malware behaviour. The

GRU is a type of Recurrent Neural Network (RNN) that

introduces gating mechanisms to regulate information flow

over time. These gates, including the reset gate (rt) and update

gate (zt), control the flow of information from the previous

time step (ht-1) and the current input (Xdynamic).

During the GRU operations, the reset gate determines which

parts of the previous hidden state to forget, while the update

478

gate decides how much of the new information to incorporate

into the candidate hidden state (ℎ�̂�). The candidate's hidden

state is calculated as a combination of the reset gate and the

current input. Finally, the current hidden state (ht) is updated

using the candidate hidden state and the update gate.

Reset Gate (rt):

𝑟𝑡 = 𝜎(𝑊𝑟 × [ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏𝑟) (1)

Update Gate (zt):

𝑧𝑡 = 𝜎(𝑊𝑧 × [ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏𝑧) (2)

Candidate Hidden State (ℎ𝑡

⏜

):

ℎ𝑡

⏜

= 𝑡𝑎𝑛ℎ(𝑊𝑔𝑟𝑢 × [𝑟𝑡 × ℎ𝑡−1, 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐] + 𝑏ℎ) (3)

Current Hidden State (ht):

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡

⏜

 (4)

where, 𝑊𝑐𝑛𝑛 and 𝑏𝑐𝑛𝑛 represents the weights and biases of the

CNN layers, and 𝑊𝑔𝑟𝑢, 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧 , 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ represents the

weights and biases of the GRU layers.

3.5 Combining CNN and GRU

Once the static and dynamic features are processed

separately, the model combines them for cross-platform

malware detection. The outputs from the Fully Connected

layer (F) and the GRU (ℎ𝑡) are concatenated to form a

comprehensive representation of malware behavior across

different platforms. This combined output, referred to as

Combined_Output, represents a rich feature representation

that captures both spatial and temporal patterns present in the

malware samples.

3.6 Classification

The Combined_Output is passed through a fully connected

layer for classification. This layer maps the features to

different malware classes and computes the raw scores for

each class. The Sigmoid function is then applied to classify

whether the operating system contains malware or not.

By leveraging the strengths of both CNN for static features

and GRU for dynamic features, the proposed CNN-GRU

model achieves effective cross-platform malware detection

shown in Figure 2. The model's ability to capture unique

characteristics of malware across various platforms makes it a

robust and versatile solution for detecting and classifying

malware threats in diverse operating environments.

Let 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 represents the static features extracted from the

malware samples, and 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents the dynamic

features. Let 𝑊𝑐𝑛𝑛 and 𝑏𝑐𝑛𝑛 represent the weights and biases

of the CNN layers, and 𝑊𝑔𝑟𝑢 , 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧 , 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ represent

the weights and biases of the GRU layers.

Algorithm-1: Cross-Platform Malware Detection

Initialization: 𝑊𝑔𝑟𝑢, 𝑊𝑧 , 𝑊𝑟 , 𝑏𝑧, 𝑏𝑟 , 𝑎𝑛𝑑 𝑏ℎ

1. For each iteration

2. Extract static and dynamic features from malware

samples.

3. Compute 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 and 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐 from step 2.

#CNN Operations:

4. Apply convolutional layers to 𝑋𝑠𝑡𝑎𝑡𝑖𝑐 to get the

feature map.

5. Apply the ReLU activation function to the feature

map.

6. Perform max pooling to down-sample the feature

map.

7. Flatten the output and pass it through fully

connected layers to get F.

8. For Iterate over each time step t in 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐.

9. Calculate the {𝑟𝑡 , 𝑧𝑡 , ℎ𝑡

⏜

}.

10. Compute the ℎ𝑡 using the update gate and the

candidate hidden state.

11. Combine F and ℎ𝑡 to obtain the final combined

output.

12. Pass the combined output to a fully connected

layer for classification.

13. Use the Sigmoid function to classify whether the

input is Malware or Benign.

Figure 2. CNN-GRU architecture for cross-platform malware classification

479

The cross-platform malware detection algorithm leverages

both static and dynamic features of malware samples. The

CNN extracts spatial features from the static data, while the

GRU captures temporal dependencies from the dynamic data.

The combined output from the CNN and GRU is used to make

predictions about the malware class. Algorithm-1 can be

trained on diverse datasets containing malware samples from

different platforms, enabling effective cross-platform

detection and classification of malware threats.

Table 1. CNN-GRU model parameters

Layer Parameter Description

Input Input size (6248, 1087)

Convolutional

Layer

Input Size (64, 300, 1087)

Number of Filters 64, 128, 256

Filter size & Stride 3 & 1

Activation

function
ReLU

Pooling layer
Max Pooling with size 2,

stride 2

Output shape (64, 36, 256)

Flatten Layer
Input Shape (64, 36, 256)

Output Shape (589824,)

Fully

Connected

Layer for

CNN

Input Shape (589824,)

Output Shape (1,)

GRU Layer

Input Shape (32, 150, 128)

Number of LSTM

units
128

Activation

function
(tanh)

Output shape (32, 150, 128)

Flatten Layer
Input Shape (32, 150, 128)

Output Shape (614400,)

Fully

Connected

Layer for

GRU

Input Shape (614400,)

Output Shape (1,)

Combine

Features
(1,)

Concatenates static and

dynamic outputs

Activation

Function

(Sigmoid)

(1,)
Classifies into Malware or

Benign

Table 1 outlines the architecture and parameters of a neural

network model for cross-platform classification. The network

comprises several layers, starting with an input layer with a

size of (6248, 1087). Following this, a convolutional layer

with 64, 128, and 256 filters of size 3 and a ReLU activation

function is applied, along with max pooling. The output shape

after this convolutional layer is (64, 36, 256). Subsequently, a

flattened layer is introduced, reshaping the data to (589824,).

The fully connected layer for CNN follows, transforming the

input shape to (1,). A GRU layer with 128 GRU units is then

applied to the input shape (32, 150, 128), producing an output

shape of (32, 150, 128). Another flattens layer reshapes the

data to (614400,), and a subsequent fully connected layer

transforms it to (1,). The features from both the CNN and GRU

pathways are combined, and a Sigmoid activation function is

applied to classify the output into either malware or benign,

with a final output shape of (1,).

4. EXPERIMENTAL RESULTS

This section delves into the experimental analysis

conducted on the VxHeaven dataset for cross-platform

malware analysis. The dataset serves as a comprehensive

benchmark to evaluate the efficacy of the proposed CNN-

GRU model in comparison to existing models, including CNN,

GRU, and MCFT-CNN.

4.1 Dataset

The dataset used in this study is the "Malware static and

dynamic features VxHeaven and Virus Total3 datasets." It is a

multivariate dataset relevant to the field of computer science

and is primarily associated with classification tasks. The

dataset contains 2955 instances, where each instance

represents a unique sample or file. The attributes in the dataset

are of two types: integer and real values, and there are a total

of 1087 attributes for each instance. The dataset is divided into

three main files, each providing valuable insights into the

static and dynamic properties of files on different platforms.

The first file, "staDynBenignLab.csv," consists of data

extracted from 595 files on MS Windows 7 and 8, specifically

obtained from the Program Files directory. It encompasses

1087 features, which capture important information related to

the static and dynamic characteristics of benign files. The

second file, "staDynVxHeaven2698Lab.csv," contains data

from 2698 files obtained from the VxHeaven dataset. Like the

previous file, it comprises 1087 features for each instance,

providing valuable insights into the static and dynamic

features associated with malware samples. The third file,

"staDynVt2955Lab.csv," contains data extracted from 2955

files provided by Virus Total in 2018. It also includes 1087

features for each instance, representing both static and

dynamic properties of malware samples.

The primary objective of this dataset is to facilitate the

classification of files as either benign or malicious based on

their static and dynamic features. Researchers and

practitioners in the field of cybersecurity can utilize this

dataset to train and evaluate machine learning models for

effective cross-platform malware detection. The richness of

the dataset, with its comprehensive collection of features from

diverse sources, empowers the development of robust

classification algorithms. This dataset plays a crucial role in

advancing malware detection techniques in real-world

scenarios, contributing significantly to the enhancement of

cybersecurity practices, and ensuring the protection of critical

systems and sensitive data.

4.2 Results and discussion

The results obtained from the experimental analysis are

presented and discussed in this section. The proposed CNN-

GRU model is evaluated against baseline models, including

CNN, GRU, and MCFT-CNN (Malware Classification with

fine-tuned convolution Neural Networks), to assess its

superiority in cross-platform malware analysis. Comparative

analyses encompass key performance metrics such as

Accuracy, Precision, Recall, and F1-score. These metrics offer

insights into the model's ability to correctly classify malware

instances across diverse platforms while minimizing false

positives and negatives.

The discussion delves into the strengths and limitations of

each model, highlighting instances where the CNN-GRU

model outperforms its counterparts. Factors such as the ability

to capture both spatial and temporal features contribute to the

effectiveness of the proposed model in handling cross-

480

platform malware threats. Furthermore, the section explores

specific instances where the CNN-GRU model excels,

showcasing its robustness in handling dynamic and complex

cross-platform malware scenarios. Insights gained from the

analysis contribute to a nuanced understanding of the proposed

model's capabilities and its potential advancements for future

cross-platform malware detection and classification.

Figure 3. Accuracy

Figure 3 offers a compelling insight into the accuracy values

achieved by various models, with a specific focus on the

consistently superior performance of the proposed CNN-GRU

model compared to other models. Accuracy is a fundamental

metric in assessing classification models, measuring their

ability to correctly classify data points. The data presented in

Figure 3 unequivocally demonstrates that the CNN-GRU

model consistently outperforms three other models—CNN,

GRU, and MCFT-CNN—across all 100 epochs. At epoch 100,

the CNN-GRU model attains an impressive accuracy of 93%,

while the CNN, GRU, and MCFT-CNN models achieve 87%,

86%, and 89% accuracy, respectively. This remarkable

performance highlights the CNN-GRU model's capacity to

provide a more accurate and robust solution for cross-platform

malware detection. It excels in correctly classifying malware

samples, achieving a significantly higher accuracy rate

compared to existing models.

The key advantage of the CNN-GRU model lies in its ability

to create a comprehensive feature representation that captures

both spatial and temporal patterns within malware behavior.

By effectively incorporating both spatial and temporal

information, the CNN-GRU model gains a more profound

understanding of the intricate relationships between different

features. This holistic approach enables the model to achieve

higher accuracy by considering the full spectrum of

characteristics that define malware samples. In contrast, the

limitations of existing models, such as the CNN's focus on

spatial features and the GRU's restriction to capturing

sequential patterns, hinder their ability to achieve the same

level of accuracy. These models may miss critical information

or fail to uncover subtle relationships within the data,

ultimately impacting their performance in accurately

classifying malware samples.

Figure 4 provides a crucial insight into the precision

achieved by different models, including the proposed CNN-

GRU model, during their training phases. Precision is a vital

metric in the context of malware classification, as it measures

the model's capability to accurately identify true positives

while minimizing the occurrence of false positives. In our

comparative analysis, we evaluated the precision of the CNN-

GRU model alongside three other models: CNN, GRU, and

MCFT-CNN. The precision of the CNN-GRU model stands

out prominently with 94%. This result demonstrates the

model's exceptional ability to correctly identify and classify

positive malware samples among the predicted positives. A

precision of 94% signifies that the CNN-GRU model excels at

maintaining a high level of precision while avoiding the

inclusion of false positives in its classifications.

Figure 4. Precision

Comparatively, the CNN model achieves a precision of

89%, which is commendable but falls short of the CNN-GRU's

performance. The CNN model, while proficient at capturing

spatial patterns in data, may encounter limitations when it

comes to capturing temporal dependencies, which are crucial

for accurately assessing dynamic behaviors in malware. The

GRU model, on the other hand, achieves a precision of 87%,

demonstrating its effectiveness in precision-oriented tasks but

still slightly trailing behind the CNN-GRU model. GRU,

known for its focus on sequential patterns, exhibits a strong

performance but may not fully capture the intricacies of both

spatial and temporal features as effectively as the CNN-GRU

model. Lastly, the MCFT-CNN model achieves a precision of

92%, showcasing respectable performance but lagging behind

the CNN-GRU model. The MCFT-CNN model incorporates

convolutional neural networks and temporal fusion

mechanisms but still doesn't match the precision offered by the

CNN-GRU architecture.

The CNN-GRU model's advantage lies in its unique ability

to seamlessly capture both spatial and temporal patterns. This

comprehensive approach to feature extraction results in a more

precise representation of malware behavior. In contrast, the

limitations of existing models, such as the CNN's inability to

fully grasp temporal dependencies and the GRU's primary

focus on sequential patterns, may lead to less optimal

precision-recall trade-offs and imbalanced classification

performance.

Figure 5 provides a crucial perspective on the recall

performance of various models, including the proposed CNN-

GRU model, throughout their training phases. Recall, often

referred to as sensitivity or true positive rate, is a vital metric

in malware classification as it measures the model's capability

to correctly identify actual malware instances while

minimizing the occurrence of false negatives. A recall score of

94% for the CNN-GRU model signifies its exceptional ability

to capture a higher proportion of actual malware instances. In

other words, it excels at recognizing and correctly classifying

481

more instances of malware, thereby minimizing the likelihood

of false negatives. This is a crucial advantage in the context of

malware detection, as false negatives can result in undetected

security threats that can cause significant harm. Comparatively,

the CNN model achieves a recall of 90%, which is respectable

but falls short of the CNN-GRU model's performance. The

CNN model, which specializes in capturing spatial features,

may not fully exploit the capability to identify temporal

patterns that are critical for accurate malware detection.

Figure 5. Recall

The GRU model achieves a recall of 89%, demonstrating its

effectiveness in capturing true positives, but it still lags the

CNN-GRU model. GRU, with its primary focus on sequential

patterns, offers good recall performance but may not be as

versatile as the CNN-GRU model in capturing both spatial and

temporal features. Lastly, the MCFT-CNN model achieves a

recall score of 91%, showcasing a commendable performance

but still trailing behind the CNN-GRU model's recall

capabilities. The CNN-GRU model's distinct advantage lies in

its ability to seamlessly capture both spatial and temporal

patterns. This comprehensive approach to feature extraction

enables it to achieve higher recall values, which means it

identifies more actual malware instances and minimizes the

occurrence of false negatives. This capability is particularly

advantageous in the context of cross-platform malware

detection, where a diverse range of behaviors and features

must be considered.

Figure 6. Loss

Figure 6 provides a valuable perspective on the loss values

achieved by various models during their training phases, with

a particular focus on the consistently lower loss values of the

proposed CNN-GRU model compared to other models. In this

context, loss measures the dissimilarity between predicted

values and actual values, with lower loss values indicating

more accurate predictions and better model convergence. The

data presented in Figure 6 demonstrates that the CNN-GRU

model consistently achieves lower loss values compared to

three other models: CNN, GRU, and MCFT-CNN.

Specifically, the CNN-GRU model achieves a remarkably low

loss of 0.31, underscoring its outstanding performance in

terms of prediction accuracy and convergence.

A loss of 0.31 for the CNN-GRU model signifies its

exceptional ability to provide accurate predictions and achieve

superior model convergence. This indicates that the CNN-

GRU model excels in delivering precise and reliable

predictions, which is crucial in the context of cross-platform

malware detection. In contrast, the CNN model achieves a loss

value of 0.49. The CNN's specialization in capturing spatial

features may lead to less accurate predictions and slower

model convergence when temporal patterns are equally crucial.

The GRU model achieves a higher loss value of 0.51,

implying a larger dissimilarity between predicted and actual

values compared to the CNN-GRU model. While the GRU is

effective in capturing temporal patterns, its focus on sequential

data may result in higher loss values and slower model

convergence when spatial features are essential. Lastly, the

MCFT-CNN model achieves a loss value of 0.35, confirming

the CNN-GRU model's superior accuracy and convergence in

terms of loss values. The CNN-GRU model's advantage lies in

its unique ability to seamlessly capture both spatial and

temporal patterns, resulting in more precise feature

representations and better model convergence. The CNN-

GRU model's lower loss values reflect its capability to provide

more accurate and reliable predictions, enhancing its

effectiveness in cross-platform malware detection and

ensuring faster convergence during training.

Figure 7. F-score

Figure 7 provides a comprehensive view of the F-scores

achieved by various models, including the proposed CNN-

GRU model, during their training phases. The F-score is a vital

metric in evaluating classification models as it balances both

precision and recall, providing insight into a model's ability to

find a harmonious trade-off between correctly identifying

malware samples and minimizing misclassifications. The F-

score ranges between 0 and 1, with higher values indicating a

better balance between precision and recall. The CNN-GRU

model consistently achieves higher F-scores compared to three

other models: CNN, GRU, and MCFT-CNN. Specifically, the

482

CNN-GRU model achieves an F-score of 0.95, outperforming

the other models.

An F-score of 0.95 for the CNN-GRU model indicates its

exceptional ability to strike a balance between precision and

recall, resulting in a more accurate classification performance.

This means that the CNN-GRU model not only correctly

identifies malware samples but also minimizes the occurrence

of misclassifications or false positives and false negatives. In

comparison, the CNN model achieves an F-score of 0.89,

which is commendable but falls slightly short of the CNN-

GRU model's performance. The CNN model's specialization

in capturing spatial features may limit its capacity to achieve a

more balanced trade-off between precision and recall. The

GRU model achieves an F-score of 0.87, demonstrating its

effectiveness in achieving a balanced classification

performance. However, it still slightly trails behind the CNN-

GRU model in terms of F-score. The GRU's primary focus on

capturing temporal patterns may result in less optimal

classification when spatial features are also crucial.

Lastly, the MCFT-CNN model achieves an F-score of 0.93,

showcasing a solid performance but still not reaching the F-

score attained by the CNN-GRU model. The CNN-GRU

model's advantage lies in its unique ability to seamlessly

capture both spatial and temporal patterns. This

comprehensive approach to feature representation enables it to

achieve higher F-scores, indicating a more balanced and

accurate classification performance. The CNN-GRU model's

capacity to excel in both precision and recall reflects its ability

to maintain high accuracy while minimizing misclassifications.

This balanced performance is crucial in the context of cross-

platform malware detection, where both the accuracy of

detection and the minimization of false alarms are critical.

Figure 8. Mean squared error (MSE)

Figure 8 offers a valuable perspective on the Mean Squared

Error (MSE) values achieved by various models, including the

proposed CNN-GRU model, during their training phases. The

MSE is a critical metric used to assess the accuracy of

predictive models by quantifying the average of squared

prediction errors. Lower MSE values indicate more accurate

predictions and smaller prediction errors. The CNN-GRU

model consistently achieves lower MSE values compared to

three other models: CNN, GRU, and MCFT-CNN.

Specifically, the CNN-GRU model achieves an impressively

low MSE of 0.035, outperforming the other models.

An MSE of 0.035 for the CNN-GRU model indicates its

exceptional ability to make accurate predictions with minimal

prediction errors. This suggests that the CNN-GRU model

excels in providing precise and reliable predictions, which is

especially crucial in the context of cross-platform malware

detection.

In contrast, the CNN model achieves a higher MSE of 0.050,

indicating larger prediction errors compared to the CNN-GRU

model. The CNN's specialization in capturing spatial features

may result in less accurate predictions when temporal patterns

are equally important. The GRU model achieves an MSE of

0.055, which is also higher than that of the CNN-GRU model.

While the GRU is effective in capturing temporal patterns, its

focus on sequential data may lead to larger prediction errors

when spatial features are essential.

Lastly, the MCFT-CNN model achieves an MSE of 0.038,

falling short of the CNN-GRU model's impressive accuracy in

terms of prediction errors. The CNN-GRU model's advantage

lies in its unique ability to seamlessly capture both spatial and

temporal patterns. This comprehensive approach to feature

representation results in more precise representations of

malware behavior and minimizes prediction discrepancies.

The CNN-GRU model's lower MSE values reflect its

capability to provide more accurate and reliable predictions,

making it a highly effective solution for cross-platform

malware detection.

Figure 9. Mean absolute error (MAE)

Figure 9 offers valuable insight into the Mean Absolute

Error (MAE) values achieved by various models, including the

proposed CNN-GRU model, during their training phases.

MAE is a crucial metric used to assess the accuracy of

predictive models by quantifying the average of absolute

prediction errors. Lower MAE values indicate more accurate

predictions and smaller absolute prediction errors. The CNN-

GRU model consistently achieves lower MAE values

compared to three other models: CNN, GRU, and MCFT-

CNN. Specifically, the CNN-GRU model achieves a

remarkably low MAE of 0.12, outperforming the other models.

An MAE of 0.12 for the CNN-GRU model signifies its

exceptional ability to make accurate predictions with minimal

absolute prediction errors. This suggests that the CNN-GRU

model excels in providing precise and reliable predictions, a

critical aspect of cross-platform malware classification. In

contrast, the CNN model achieves a higher MAE of 0.13,

indicating larger absolute prediction errors compared to the

CNN-GRU model. The CNN's specialization in capturing

spatial features may result in less accurate predictions when

temporal patterns are equally important.

The GRU model achieves an MAE of 0.14, which is also

higher than that of the CNN-GRU model. While the GRU is

483

effective in capturing temporal patterns, its focus on sequential

data may lead to larger absolute prediction errors when spatial

features are essential. Lastly, the MCFT-CNN model achieves

an MAE of 0.13, further confirming the CNN-GRU model's

superior accuracy in terms of absolute prediction errors. The

CNN-GRU model's advantage lies in its unique ability to

seamlessly capture both spatial and temporal patterns. This

comprehensive approach to feature representation results in

more precise representations of malware behavior and

minimizes absolute prediction discrepancies. The CNN-GRU

model's lower MAE values reflect its capability to provide

more accurate and reliable predictions, enhancing its

effectiveness in cross-platform malware classification.

Figure 10. Mean absolute percentage error (MAPE)

Figure 10 provides valuable insight into the Mean Absolute

Percentage Error (MAPE) values achieved by various models,

with a special emphasis on the consistently lower MAPE

values of the proposed CNN-GRU model compared to other

models. MAPE is a critical metric used to assess the accuracy

of predictive models by quantifying the percentage of

prediction errors relative to the actual values. Smaller MAPE

values indicate more accurate predictions with lower

percentage prediction errors. CNN-GRU model consistently

achieves lower MAPE values compared to three other models:

CNN, GRU, and MCFT-CNN. Specifically, at epoch 100, the

CNN-GRU model achieves a remarkably low MAPE of 3%,

showcasing its outstanding performance in terms of prediction

accuracy.

A MAPE of 3% for the CNN-GRU model reflects its

exceptional ability to provide accurate predictions with

minimal percentage prediction errors. This indicates that the

CNN-GRU model excels in delivering precise and reliable

predictions, which is of utmost importance in the context of

cross-platform malware detection.

In contrast, the CNN model achieves a higher MAPE of

3.5%, implying a larger percentage of prediction errors

compared to the CNN-GRU model. The CNN's specialization

in capturing spatial features may lead to less accurate

predictions when temporal patterns are equally crucial. The

GRU model achieves a MAPE of 5%, which is also higher

than that of the CNN-GRU model. While the GRU is effective

in capturing temporal patterns, its focus on sequential data

may result in a larger percentage of prediction errors when

spatial features are essential. Lastly, the MCFT-CNN model

achieves a MAPE of 4.2%, further confirming the CNN-GRU

model's superior accuracy in terms of percentage prediction

errors. The CNN-GRU model's advantage lies in its unique

ability to seamlessly capture both spatial and temporal patterns.

This comprehensive approach to feature representation results

in more precise representations of malware behavior and

minimizes percentage prediction discrepancies. The CNN-

GRU model's lower MAPE values reflect its capability to

provide more accurate and reliable predictions, enhancing its

effectiveness in cross-platform malware detection.

5. CONCLUSIONS

Malware attacks pose a significant and growing threat in

today's digital landscape, targeting multiple operating systems

with increasingly sophisticated tactics. Detecting and

classifying malware that can operate across diverse platforms

has become a critical challenge for cybersecurity. In response

to this challenge, this part of the work introduces a pioneering

deep learning-based approach, known as the CNN-GRU

model, designed for cross-platform malware classification.

This model effectively harnesses both static and dynamic

features to capture the distinct characteristics of malware

behavior on platforms such as Windows, macOS, Android,

and iOS. Traditional methods of malware classification often

fall short in the face of evolving malware threats. These

methods typically rely on either static or dynamic features,

which alone may not provide a comprehensive understanding

of contemporary malware's multifaceted nature. The CNN-

GRU model presented in our study seeks to overcome these

limitations by combining the strengths of CNN and GRU

networks. This fusion allows the model to detect both spatial

and temporal patterns within malware samples, thereby

enhancing its accuracy and robustness.

The experimental results of our study validate the efficacy

of the CNN-GRU model. It achieves an impressive accuracy

rate of 93%, outperforming traditional methods by a

significant margin. This high level of accuracy is a testament

to the model's ability to adapt to the complexities of cross-

platform malware detection. By successfully integrating static

and dynamic features, the CNN-GRU model creates a

comprehensive feature representation of malware behavior

that enables it to excel in the face of sophisticated threats. The

CNN-GRU model's cross-platform capabilities are a key

feature that sets it apart from conventional methods. It can

effectively classify malware on a wide range of operating

systems, making it a versatile tool in the fight against malware

attacks that target multiple platforms. This adaptability is

crucial in today's digital landscape, where cyber threats are no

longer confined to a single operating system.

One of the primary advantages of the CNN-GRU model is

its ability to provide cybersecurity professionals with early

detection and mitigation capabilities. With an accuracy rate of

93%, it can swiftly identify malicious software, enabling rapid

response and containment of security risks. This proactive

approach is vital in safeguarding critical systems and sensitive

data from the ever-evolving landscape of malware threats.

REFERENCES

[1] Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.

(2011). A survey of mobile malware in the wild. In

Proceedings of the 1st ACM workshop on Security and

Privacy in Smartphones and Mobile Devices, pp. 3-14.

https://doi.org/10.1145/2046614.2046618

484

[2] Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro,

L. (2017). The evolution of android malware and android

analysis techniques. ACM Computing Surveys, 49(4): 1-

41. https://doi.org/10.1145/3017427

[3] Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J. (2019). A

combination method for android malware detection

based on control flow graphs and machine learning

algorithms. IEEE Access, 7: 21235-21245.

https://doi.org/10.1109/ACCESS.2019.2896003

[4] Ou, F., Xu, J. (2022). S3feature: A static sensitive

subgraph-based feature for android malware detection.

Computers & Security, 112: 102513.

https://doi.org/10.1016/j.cose.2021.102513

[5] Karbab, E.B., Debbabi, M. (2019). Maldy: Portable,

data-driven malware detection using natural language

processing and machine learning techniques on

behavioral analysis reports. Digital Investigation, 28:

S77-S87. https://doi.org/10.1016/j.diin.2019.01.017

[6] Zhang, M., Duan, Y., Yin, H., Zhao, Z. (2014).

Semantics-aware android malware classification using

weighted contextual API dependency graphs. In

Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, New York,

United States, pp. 1105-1116.

https://doi.org/10.1145/2660267.2660359

[7] Vu, D.L., Nguyen, T.K., Nguyen, T.V., Nguyen, T.N.,

Massacci, F., Phung, P.H. (2020). Hit4mal: Hybrid image

transformation for malware classification. Transactions

on Emerging Telecommunications Technologies, 31(11):

e3789. https://doi.org/10.1002/ett.3789

[8] Milosevic, N., Dehghantanha, A., Choo, K.K.R. (2017).

Machine learning aided android malware classification.

Computers & Electrical Engineering, 61: 266-274.

https://doi.org/10.1016/j.compeleceng.2017.02.013

[9] Egele, M., Scholte, T., Kirda, E., Kruegel, C. (2008). A

survey on automated dynamic malware-analysis

techniques and tools. ACM Computing Surveys, 44(2):

1-42. https://doi.org/10.1145/2089125.2089126

[10] Wang, P., Wang, Y.S. (2015). Malware behavioural

detection and vaccine development by using a support

vector model classifier. Journal of Computer and System

Sciences, 81(6): 1012-1026.

https://doi.org/10.1016/j.jcss.2014.12.014

[11] Wang, W., Zhao, M.C., Gao, Z.Z., Xu, G.Q., Xian, H.Q.,

Li, Y.Y., Zhang, X.L. (2019). Constructing features for

detecting android malicious applications: issues,

taxonomy and directions. IEEE Access, 7: 67602-67631.

https://doi.org/10.1109/ACCESS.2019.2918139

[12] Abusitta, A., Li, MQ., Fung, B.C. (2021). Malware

classification and composition analysis: A survey of

recent developments. Journal of Information Security

and Applications, 59: 102828.

https://doi.org/10.1016/j.jisa.2021.102828

[13] Mahindru, A., Singh, P. (2017). Dynamic permissions

based android malware detection using machine learning

techniques. In Proceedings of the 10th Innovations in

Software Engineering Conference, Jaipur, India, pp. 202-

210. https://doi.org/10.1145/3021460.3021485

[14] Alasmary, H., Abusnaina, A., Jang, R., Abuhamad, M.,

Anwar, A., Nyang, D., Mohaisen, D. (2020). Soteria:

Detecting adversarial examples in control flow graph-

based malware classifiers. In 2020 IEEE 40th

International Conference on Distributed Computing

Systems (ICDCS), Singapore, Singapore, pp. 888-898.

https://doi.org/10.1109/ICDCS47774.2020.00089

[15] Arslan, R.S., Tasyurek, M. (2022). AMD-CNN: Android

malware detection via feature graph and convolutional

neural networks. Concurrency and Computation Practice

and Experience, 34(23): e7180.

https://doi.org/10.1002/cpe.7180

[16] Kumar, S., Janet, B., Neelakantan, S. (2022).

Identification of malware families using stacking of

textural features and machine learning. Expert Systems

with Applications, 208: 118073.

https://doi.org/10.1016/j.eswa.2022.118073

[17] Frenklach, T., Cohen, D., Shabtai, A., Puzis, R. (2021).

Android malware detection via an app similarity graph.

Computers & Security, 109: 102386.

https://doi.org/10.1016/j.cose.2021.102386

[18] Nguyen, H.T., Ngo, Q.D., Le, V.H. (2020). A novel

graph-based approach for IoT botnet detection.

International Journal of Information Security, 19(5): 567-

577. https://doi.org/10.1007/s10207-019-00475-6

[19] Pektaş, A., Acarman, T. (2020). Deep learning for

effective android malware detection using API call graph

embeddings. Soft Computing 24: 1027-1043.

https://doi.org/10.1007/s00500-019-03940-5

[20] Kumar, S., Janet, B. (2022). DTMIC: Deep transfer

learning for malware image classification. Journal of

Information Security and Applications, 64: 103063.

https://doi.org/10.1016/j.jisa.2021.103063

[21] Gonzalez, H., Kadir, A.A., Stakhanova, N., Alzahrani,

A.J., Ghorbani, A.A. (2015). Exploring reverse

engineering symptoms in android apps. In Proceedings

of the Eighth European Workshop on System Security,

pp. 1-7. https://doi.org/10.1145/2751323.2751330

[22] Ullah, F., Naeem, M.R., Mostarda, L., Shah, S.A. (2021).

Clone detection in 5g-enabled social IoT system using

graph semantics and deep learning model. International

Journal of Machine Learning and Cybernetics, 12: 3115-

3127. https://doi.org/10.1007/s13042-020-01246-9

[23] Yan, J., Yan, G., Jin, D. (2019). Classifying malware

represented as control flow graphs using deep graph

convolutional neural network. In 2019 49th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Portland, OR, USA, pp.

52-63. https://doi.org/10.1109/DSN.2019.00020

[24] Gao, Z., Feng, A., Song, X., Wu, X. (2019). Target-

dependent sentiment classification with BERT. IEEE

Access, 7: 154290-154299.

https://doi.org/10.1109/ACCESS.2019.2946594

[25] Oak, R., Du, M., Yan, D., Takawale, H., Amit, I. (2019).

Malware detection on highly imbalanced data through

sequence modeling. In Proceedings of the 12th ACM

Workshop on Artificial Intelligence and Security, New

York, United States, pp. 37-48.

https://doi.org/10.1145/3338501.3357374

[26] Gálvez-López, D., Tardos, J.D. (2012). Bags of binary

words for fast place recognition in image sequences.

IEEE Transactions on Robotics, 28(5): 1188-1197.

https://doi.org/10.1109/TRO.2012.2197158

[27] Ullah, F., Ullah, S., Naeem, M.R., Mostarda, L., Rho, S.,

Cheng, X. (2022). Cyber-threat detection system using a

hybrid approach of transfer learning and multi-model

image representation. Sensors, 22(15): 5883.

https://doi.org/10.3390/s22155883

[28] Lee, W.Y., Saxe, J., Harang, R. (2019). SeqDroid:

Obfuscated android malware detection using stacked

485

convolutional and recurrent neural networks. Deep

Learning Applications for Cyber Security, Advanced

Sciences and Technologies for Security Applications,

Springer, Cham, 197-210. https://doi.org/10.1007/978-3-

030-13057-2_9

[29] Yerima, S.Y., Sezer, S. (2018). Droidfusion: A novel

multilevel classifier fusion approach for android malware

detection. IEEE Transactions on Cybernetics, 49(2): 453-

466. https://doi.org/10.1109/TCYB.2017.2777960

[30] Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S.,

Runeson, P. (2016). Automated bug assignment:

Ensemble-based machine learning in large scale

industrial contexts. Empirical Software Engineering, 21:

1533-1578. https://doi.org/10.1007/s10664-015-9401-9

[31] Taheri, L., Kadir, A.F.A., Lashkari, A.H. (2019).

Extensible android malware detection and family

classification using network-flows and API-calls. In

2019 International Carnahan Conference on Security

Technology (ICCST), Chennai, India, pp. 1-8.

https://doi.org/10.1109/CCST.2019.8888430

[32] Wang, A., Gao, X.D. (2021). A variable scale case-based

reasoning method for evidence location in digital

forensics. Future Generation Computer Systems, 122:

209-219. https://doi.org/10.1016/j.future.2021.03.019

[33] Arepalli, P.G., Naik, K.J. (2024). Water contamination

analysis in IoT enabled aquaculture using deep learning

based AODEGRU. Ecological Informatics, 79: 102405.

https://doi.org/10.1016/j.ecoinf.2023.102405

[34] Gopi, A.P., Gowthami, M., Srujana, T., Padmini, S.G.,

Malleswari, M.D. (2022). Classification of denial-of-

service attacks in IoT networks using AlexNet. In

Human-Centric Smart Computing, Springer, Singapore,

pp. 349-357. https://doi.org/10.1007/978-981-19-5403-

0_30

486

