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 Effectively managing strategic risks within the realm of Internal Security of 

Establishments (ISE) is crucial for safeguarding data and preserving a company's 

information assets. The construction industry is notably one of the riskiest sectors, 

susceptible to diverse risks that can adversely impact the three crucial aspects of projects: 

time, cost, and quality. In the context of construction projects, inherent risks and the 

susceptibility to data loss are intricately linked, primarily stemming from the prevalent 

utilization of computerized project management systems. Throughout the project 

lifecycle, tasks are significantly reliant on sophisticated software tools and integrated 

packages. The increasing reliance on technology renders projects vulnerable to 

information security threats, including cyberattacks, human errors, technical failures, or 

natural disasters, thereby disrupting managerial processes and resulting in substantial data 

losses. Consequently, risk management has emerged as a pivotal area of study, demanding 

increased attention and focus from professionals within the construction industry. This 

study aims to delve into how different stakeholders perceive various types of risks, 

including risk information specific to construction projects. An artificial neural network 

(ANN) was employed to predict risk. The study identified four categories of 

responsibility: shared responsibility, contractor responsibility, client responsibility, and 

data loss responsibility. The ANN topology was optimized based on changes in mean 

square errors (MSE) and correlation coefficients (R2). The numerical results demonstrated 

the model's strong performance, with a low MSE of 0.0029 and a high R2 value of 0.9666, 

indicating its reliability and effectiveness in risk prediction. The findings indicated that 

the model suggested could serve as a viable approach to the most efficient methods of 

preventative risk management. By using an ANN model, the study offered a novel 

approach to risk management in construction projects and ISE, suggesting avenues for 

further research and application in similar contexts. 
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1. INTRODUCTION 

 

Owing to its intrinsic complexity, the construction industry 

confronts a multitude of risks capable of significantly 

influencing the outcomes of its projects. Throughout each 

phase, spanning from initial development to final delivery, a 

construction project remains susceptible to unpredictable 

factors, including adverse weather conditions, fluctuations in 

costs, schedule delays, and other variables that can potentially 

affect the aspects of quality and safety. Consequently, the 

adoption of proactive risk management becomes imperative to 

guarantee the seamless advancement of construction projects 

[1]. 

In order to mitigate these risks, professionals in project 

construction industry employ various risk management 

methods. Factors that need to be considered include risk 

identification, risk analysis, the current state of risk 

management systems within organizations, and obstacles to 

effective risk management from the viewpoint of key 

stakeholders. Financial and economic factors are deemed to be 

the most crucial risks, followed by quality, and the industry 

typically endeavours to either avoid or transfer these risks [2]. 

The challenges within the construction industry are 

numerous and diverse, posing potential threats to the success 

of projects. These challenges include the increasing number of 

stakeholders involved, the complexity of resource 

coordination, and the continuous advancements in technology 

which elevate the importance of risk information, as projects 

inevitably rely on software and/or tools for risk management. 

It is crucial to adopt a proactive approach to risk 

management, addressing financial, material, and human 

aspects, as well as safeguarding project data. Our approach 

aims to offer a comprehensive and practical perspective for 

anticipating risks in the context of construction projects. In 

risk management, having a clear perception of potential risks 

is crucial for effective decision-making and proactive 

measures. 

Perception, understood, interpreted, or sensed by an 

individual's mind, particularly through the use of the senses, 

involves the awareness and recognition of information 
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received through sight, sound, touch, taste, or smell. It also 

refers to the way individuals evaluate and interpret the risks 

surrounding them. Influenced by cognitive, emotional, 

cultural, and social factors, perception plays a crucial role in 

decision-making, adaptive behaviors, and attitudes towards 

risk [3]. 

Researchers in social sciences and psychology have 

identified several cognitive biases that can influence risk 

perception, such as the availability heuristic (evaluating the 

likelihood of an event based on how easily we can recall 

similar examples), the representativeness heuristic (making 

judgments based on superficial similarities), and vulnirability 

(underestimating risks for oneself compared to others) [4]. 

Risk perception has implications in various domains, such 

as public health, environment, finance, and security. 

Understanding how individuals perceive and evaluate risks 

can help develop effective communication strategies, design 

risk management policies, and promote informed decision-

making for responsible risk behaviors. The analysis of hazard 

perception indicates that different cognitive processes are 

involved, among them vulnerability, which refers to the extent 

to which an asset (a person or property) is likely to experience 

negative consequences due to its situation, intrinsic 

characteristics, or location. Risk perception and vulnerability 

are closely related concepts when it comes to understanding 

how individuals perceive and react to potential risks [5]. These 

vulnerable assets, such as project stockholders, may be more 

sensitive to risks and less capable of protecting themselves due 

to their specific circumstances [6]. 

Therefore, risk perception must be studied in a more 

appropriate context; specifically, a recurrent context such as 

state construction projects, considering both measurable and 

repetitive aspects of risk, the objective involvement of 

stakeholders, in addition to a consistent and recognizable 

aspect: costs and timelines. Moreover, risk management in the 

construction industry remains a major challenge for 

practitioners, and many studies have been conducted to find 

effective solutions. Among innovative approaches, the use of 

artificial neural networks (ANN) is increasingly considered a 

promising solution for risk management in the construction 

industry [7]. Indeed, artificial neural networks (ANN) are 

mathematical structures and their software- or hardware-based 

models that compute or process signals. The network's 

structure and mode of operation are based on the brain and 

learning phenomenon, although neural networks are a highly 

simplified model. The theory of neural networks is extensively 

discussed in literature. The primary applications of artificial 

neural networks include: prediction, approximation, control, 

association, classification and pattern recognition, data 

association, data analysis, signal filtering, and optimization. 

The employment of artificial neural networks in construction 

project management began in the early 1990s. 

Since then, numerous attempts have been made to leverage 

artificial neural networks in engineering construction 

processes, addressing issues such as implementation time 

analysis, efficiency and productivity in construction projects, 

predicting maintenance costs of construction equipment, 

forecasting the potential adoption or acceptability of new 

construction technologies, construction company management, 

and facilitating decision-making processes in construction 

projects [8].  

ANN is capable of modeling risks more accurately than 

traditional methods, considering numerous variables and 

learning from historical data [9, 10]. It can be employed to 

predict risks in construction projects, assisting industry 

professionals in making more informed decisions and 

minimizing risks. This study will explore the integration of 

artificial neural networks (ANN) in risk management within 

construction industry, including ISE risks, and evaluate the 

benefits of their use [11]. 

 

 

2. LITERATURE REVIEW 

 

Machine learning, a subset of artificial intelligence, has 

emerged as a powerful method for extracting insights from 

extensive datasets and constructing predictive models [12]. 

Within this domain, the application of artificial neural network 

(ANN), particularly Multilayer Perceptrons (MLP), has shown 

significant promise in construction risk modelling. These 

models are capable of performing tasks such as classification 

and regression, which are essential for predicting complex risk 

scenarios in construction projects [13]. This technology 

empowers the exploration of vast datasets, revealing diverse 

patterns [14] that encompass association, classification, 

prediction, clustering, estimation, and sequence-related 

structures. Specifically, the utilization of a Multilayer 

Perceptron (MLP) can facilitate tasks of classification and 

prediction. In the context of classification, an MLP employs 

inductive training datasets to discern the underlying 

relationship between a "target" and a "label".  

The utilization of MLP in construction risk analysis is 

particularly relevant due to its ability to handle non-linear 

relationships and adapt to diverse data patterns. This is crucial 

in the construction industry, where risks are multifaceted and 

influenced by a range of unpredictable factors [14]. However, 

while the literature acknowledges the potential of ANN in 

general machine learning applications, its specific application 

in construction risk management, especially in integration 

with information security (ISE) risks, remains underexplored. 

These training datasets comprise well-established target-label 

pairs, enabling the MLP to initially grasp the connections 

between targets and labels. Subsequently, these learned 

relationships are extended to predict labels for previously 

unlabeled targets [15]. Essentially, machine learning lies in 

acquiring rules from instances, exemplified by examples 

within a training dataset. These acquired rules can then be 

harnessed to construct a classifier, capable of categorizing 

novel instances [16]. Machine learning methodologies are 

divided into two main categories: supervised learning and 

unsupervised learning. Supervised learning involves the 

utilization of a labeled training dataset to construct models for 

classification or regression, enabling the prediction of 

unknown labels. This process entails inputting distinct features 

of a sample into the model, which subsequently produces the 

corresponding label for that specific sample. On the contrary, 

unsupervised learning operates without the necessity of 

labeled samples. Instead, the learning algorithm generates 

predictions based on the features it has extracted from the 

input samples. 

Additionally, the training process for unsupervised learning 

doesn't require labeled training data, allowing the developed 

algorithm to autonomously cluster the input data. Due to the 

absence of a need for labeled training data, this approach is 

particularly suitable for identifying optimal eigenvectors used 

in data classification [17]. Nonetheless, it is important to note 

that machine learning as a whole demands a substantial 

volume of labeled data to perform effectively [12]. 
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The primary objective of supervised learning is to construct 

a model or function that can accurately anticipate uncertain 

outcomes for upcoming instances [14]. Supervised learning 

models are categorized into two main types: classification 

models and regression models. Classification models are 

utilized when the outputs are discrete, while regression models 

are used for predicting continuous outputs. Both types of 

models serve the purposes of prediction, classification, and the 

identification of unknown data patterns. 

A variety of algorithms are employed in classification tasks, 

such as decision trees, Naïve Bayes classifiers, Bayesian 

networks, and logistic regression. For regression tasks, 

algorithms like linear regression, K-nearest neighbors, and 

AdaBoost are commonly utilized. Depending on the nature of 

the desired output data, sophisticated techniques like 

Multilayer Perceptron (MLP), Support Vector Machines 

(SVM), Random Forests, and Classification and Regression 

Trees (CART) can be applied to execute either classification 

or regression models. 

On the other hand, unsupervised learning involves tasks like 

clustering and association rule mining. Notable unsupervised 

learning algorithms in these areas include K-means clustering 

and the Priory algorithm for mining association rules. 

Numerous studies have utilized machine learning 

algorithms within construction projects. For example, Gondia 

et al. [18] and Farag et al. [19] demonstrated the application of 

decision trees, Naïve Bayes classifiers, and genetic algorithm-

based clustering in identifying and analyzing construction 

risks. However, these studies primarily focused on 

conventional risk factors, such as delays and cost overruns, 

rather than the comprehensive risk landscape that includes ISE 

risks. 

Our research aims to fill this gap by specifically focusing on 

the application of ANN, particularly MLP, in modelling the 

broader spectrum of risks in construction projects, including 

ISE risks. This approach is expected to provide a more holistic 

understanding and management of risks, transcending the 

limitations of traditional methods [20, 21]. 

De Klerk et al. [22] turned to random forests to forecast 

risks linked to contractual changes within early-stage 

architectural improvement projects. In a different endeavor, 

Kifokeris and Xenidis [17] employed Support Vector 

Machines (SVM) to effectively pinpoint and evaluate potential 

risk sources within projects. This endeavor resulted in a 

classification model capable of accurately predicting a 

project's constructability type. Moreover, the integration of 

ANN models into existing risk management frameworks in 

construction has not been adequately addressed in existing 

literature. Our study intends to contribute to this area by 

exploring how ANN can be integrated with traditional risk 

management practices to enhance decision-making and risk 

mitigation strategies [22, 23]. 

In conclusion, while machine learning, and specifically 

ANN, has been recognized for its potential in various domains, 

its application in construction risk management, particularly in 

relation to ISE risks, represents a novel and necessary 

advancement. This research builds upon existing studies by 

extending the application of ANN to a wider range of risk 

factors and by integrating these models into conventional risk 

management frameworks, thereby filling a crucial gap in the 

field. 

It is important to recognize that traditional machine learning 

techniques might encounter challenges when attempting to 

provide precise predictions for data characterized by high 

levels of volatility and uncertainty [12]. Utilizing a Multilayer 

Perceptron (MLP) model can be a valuable approach for 

creating models that capture the complexities of nonlinear 

variables, effectively addressing challenges related to random 

variables and forecasting intricate, highly nonlinear functions. 

MLPs are particularly well-suited to handling incomplete or 

noisy data and tackling intricate, uncertain problems by 

incorporating human intuition into the decision-making 

process [24]. 

In the past, practical applications of machine learning 

heavily relied on descriptive data or features engineered by 

experts. The quality of these features played a critical role in 

determining the generalization performance of a machine 

learning model. However, MLPs, leveraging the power of 

neural network technology, have the capacity to learn specific 

features autonomously, enabling them to proficiently handle 

complex learning tasks. 

Initially, Multilayer Perceptrons (MLPs) were primarily 

used in the domain of pattern recognition [25]. Their robust 

learning capabilities and ability to capture nonlinear 

relationships have led to their application across various fields, 

serving as robust tools for solving numerical simulation 

problems [26]. Ashtari et al. [21] conducted pioneering 

research on neural network applications in civil and structural 

engineering. This marked the beginning of widespread 

adoption of neural networks in the civil engineering sector. 

They have been effectively employed to address concerns 

related to construction safety [27], predict construction project 

costs [28, 29], and forecast the strength of concrete materials 

[30, 31]. Thanks to their potent nonlinear fitting ability, MLPs 

can accurately represent intricate relationships. 

Scholars have successfully harnessed MLPs to predict risks 

in construction projects. For example, Debalina Banerjee 

Chattapadhyay et al. [32] utilized an MLP model to forecast 

the severity of project risks. Shi and O'Brien [33] employed an 

MLP to assess potential risks in the vicinity of underground 

box structures. Liang et al. [34] conducted sample-based 

learning and prediction using a Back propagation Neural 

Network (BPNN) model to establish risk scores for 

construction projects. In the present study, our focus is on 

exploring the integration of artificial neural networks (ANN) 

in risk management within the construction industry, 

specifically addressing ISE (Information Security and 

Environment) risks. We aim to evaluate the benefits that their 

implementation can bring to the field. 

 

 

3. RESEARCH METHODOLOGY 

 

The importance of identifying and managing risks in the 

construction industry, as well as the various models of risk 

assessment used in construction projects, are discussed in the 

studies of Jordan and Mitchell [12], and Singh et al. [13]. The 

aim of this study is to examine the primary risks faced by 

construction projects and the strategies implemented to 

minimize them, with a particular emphasis on the use of 

artificial neural networks (ANN) for risk prediction. The 

reasons of choosing (ANN) are multiple; first, its ability to 

learn from new data makes it a valuable tool for ongoing risk 

management. As new information becomes available during a 

project, ANN can adapt its predictions and recommendations, 

contributing to a more dynamic and responsive risk 

management approach. Also utilizing ANN in risk 

management allows for more accurate risk assessments and 
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predictions. It can process and analyze vast amounts of data, 

including historical project performance, external factors, and 

stakeholder perceptions, to predict potential risks and their 

impacts. 

This approach involves identifying, analyzing, evaluating 

(weighing), and mitigating two major risks families of that we 

have respectively labelled as physical risks (such as theft, 

sabotage, etc.) and information-related risks (encompassing 

both the information itself and its support within the project). 

These types of risks, often underestimated by project risk 

management professionals involving various stakeholders, 

significantly impact measurable project parameters, such as 

costs (and associated resources) and timelines. Consequently, 

they directly influence the success or failure of any project. 

The data for this study were collected through a three-part 

survey administered to prominent industries in Algeria, such 

as SONATRACH, GICA, and COCIDER CONSTRUC–

TION, encompassing over 135 projects. The survey focused 

on the significance of risks, the responsibility of various 

stakeholders (vulnerability), and the effectiveness of risk 

management techniques [14-27]. These survey data form the 

foundation for the development of the ANN model. The ANN 

model was designed to assess various parameters of 

construction projects, including the significance of risks, 

assigned responsibilities (asset vulnerability), and risk 

management methods, with the aim of effectively predicting 

construction project risks. 

The initial step in this process involves identifying risks, 

which includes creating a list of the two risk categories 

submitted to various stakeholders for each of the 135 projects. 

Risks are assessed and rated intrinsically to establish the initial 

value for each risk based on multiple rating criteria, such as 

severity and probability of occurrence. The assessment is 

represented by the formula:  

 

R=(P×G) / R 

 

where, R is the risk, P is the probability, and G is the severity.  

Because the values of probabilities vary significantly within 

the same analysis, so the logarithmic approach is necessary. 

 

P= 1 / 105-NP; NP = 5 – log(1/P) 

NP=5: P=100%; NP=4: P=10%; NP=3: P=1% … 

 

The levels are associated with a "common" estimation of 

probabilities. Refer to Table 1. 

 

Table 1. Levels of probabilities 

 
Level Description Probability  

5 Systematic 100% 

4 Very frequent  10% 

3 Frequent 1% 

2 Infrequent  1/1’000 

1 Rare 0.1/1’000 

 

Severity characterizes the significance of damages induced 

by the risk, and the levels are used to estimate severities, with 

the values employed for calculations. 

NG=5: Total project failure,  

NG=4: Significant additional budget,  

NG=3: Significant project delay,  

NG=2: Project delay,  

NG=1: Optimized project. 

Estimating a single risk: R=P×G=P×10NG, 

NR=log(R). 

This evaluation treats the risk as a raw or unmitigated risk, 

meaning a risk without any form of protection or prevention. 

In reality, each risk has preventive and protective measures. 

To calculate these measures, we refer to the risk weighting. 

The weighting of the Initial or Raw Risk is determined 

based on existing preventive measures, yielding a value for 

Residual or Net Risk [35]. Several factors are considered to 

ensure the highest level of relevance: the number of existing 

preventive measures, the number of preventive measures to be 

implemented, the typology and nature of these measures (refer 

to Table 2). 

 

Table 2. Risk weighting 

 
Means of Protection and Prevention Risk Weighting 

Prevision of additional budget 0.5 

Extended deadline 0.2 

Cyber security protection 0.7 

Transportation insurance contract 0.5 

Legal protection (contracts and transactions) 0.9 

Equipment protection 0.5 

Project information protection 0.5 

 

The assessment of the weighted risk involves evaluating the 

risk by taking into account the factual adherence to all 

available prevention and protection measures. These 

weightings have been assigned to each of the two risk 

categories, and the result of this multiplication is referred to as 

the Risk Prediction, as depicted in Tables 3 and 4. 

The second step in this approach involves developing the 

neural network model. The input data for the model comprises 

the two risk categories (physical risks and informational risks). 

The learning process for the different layers is structured as 

follows: measurable project parameters (resources and 

timelines), the evaluation of the net project risks, and their 

criteria. Additionally, it includes measures of protection and 

prevention, detailing their nature and type. The risk weighting 

and the parameters for weighting, stakeholder categories, and 

their roles in the projects are also part of the learning process. 

Moreover, the vulnerability of projects in terms of stakeholder 

feedback and experience is considered in the model and the 

output is risk prediction. 

The two risk families are assessed in this study through the 

same questionnaire related to Internal Security of 

Establishment (ISE) risks, commonly referred to as malicious 

risks. To precisely delineate Internal Security of Establishment 

(ISE) risks in construction projects, we have identified a list of 

two risk families by collecting answers to this question: 

'Which types of malicious acts are most likely to have a 

significant impact on the project?' The first stage of the work 

revealed that, alongside the specific risks associated with 

construction projects, there are other risks that have a 

significant impact on these projects. These are Internal 

Security of Establishment (ISE) risks (see Figure 1), 

particularly risks of malicious activities that target project 

information, such as cyber espionage, hacking, and 

information theft. These risks can lead to irreversible damages 

on these projects. 
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Figure 1. Internal Security Establishment (ISE) risks related to project information in construction projects 

 

 
 

Figure 2. Perception of specific risks related to construction projects by different stakeholders 

 

Table 3. Percentage of obtained score for physical threat 

 
Type of Physical Threat RP Impact on Project Cost Impact on Project Schedules Risk Prediction  

1 On-site material theft RP1 2% 1.3% 14.63% 

2 Sabotage RP2 1% 8% 10.12% 

3 Piracy on the high seas RP3 45% 62% 0.1% 

4 Hold-up RP4 4% 2.4% 2.5% 

5 Misappropriation of funds RP5 7% 5.5% 31.25 

6 Attack RP6 1.6% 0.5% 79% 

7 Abduction RP7 0.1% 0.6% 82.5% 

8 Assault RP8 0.4% 0.2% 80% 

9 Armed attack on site RP9 0.5% 0.8% 89% 

10 Intrusion RP10 20% 1% 64% 

11 Vandalism/ destruction RP11 13% 16% 44% 

12 Unknown shrinkage RP12 0% 0% 91% 

13 Intentional fire RP13 6% 1.7% 63% 

 

Table 4. Percentage of obtained score for cyber threat 

 
Type of Cyber Threat  RI Impact on Project Cost Impact on Project Schedules Risk Prediction 

1 Theft of computer equipment RI1 7% 25% 16% 

2 Project data violation RI2 45% 79% 5% 

3 Data destruction RI3 12% 91% 0.01% 

4 Data dissemination RI4 0.2% 5% 23% 

5 Compromise RI5 0% 0% 47% 

6 Intrusion RI6 13% 26.5% 14% 

7 Infiltration RI7 1% 4% 68% 

8 Phishing RI8 0% 0% 73%% 

9 Online account hacking RI9 0.1% 0.3% 38% 

10 Denial of service attack RI10 0% 0% 63% 

11 False payment instructions RI11 0% 0% 47% 

12 Fake tech support scam RI12 0% 0% 85.26% 

13 Virus RI13 0.2% 0.6% 53% 

14 Identity theft RI14 0% 0.4% 65% 
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Figure 1 clearly illustrates that Internal Security of 

establishment risks (ISE) risks related to project information 

in construction projects are substantially more prevalent than 

other risks. Information theft constitutes 71.4%, while 

espionage and computer hacking stand at 57.1% each. Thus, 

the cumulative total of these rates exceeds 84%. The second 

step of this work involved assigning weights to all the risks 

inherent in the construction project. The weighted risk is 

estimated according to this definition: The residual risk is 

calculated by considering the actual effectiveness of all current 

prevention and protection measures.  

The risks were categorized into physical threats (as shown 

in Table 3) and cyber threats (as detailed in Table 4), with their 

impacts on project cost, schedules, and Risk Predictions 

quantified. This categorization and quantification of risks 

serve as inputs for the ANN model, and its output is risk 

prediction. 

This table categorizes various types of physical threats RP 

(R - risk, P - Physical) encountered in construction projects 

and assesses their impact in terms of three key parameters: 

project cost, project schedules, and Risk Prediction or risk 

weighting. Each threat type, such as on-site material theft, 

sabotage, and piracy, is assigned a risk percentage value. 

These values reflect the perceived impact of each threat on the 

project’s cost, schedule, and the margin of safety. For instance, 

'Piracy on the high seas' might have a higher percentage impact 

on project schedules compared to 'On-site material theft', 

indicates its greater potential to disrupt timelines. 

In this table, the focus shifts to cyber threats. Similar to 

Table 3, it evaluates the impact of various types of cyber 

threats, such as theft of computer equipment, project data 

violation, and data destruction, on the same three parameters: 

project cost, project schedules, and Risk Prediction. Each 

cyber threat is assigned a risk index (RI: R - risk, I - 

Information) value. These values provide insights into how 

each cyber threat could potentially affect the project's cost and 

timeline, as well as the Risk Prediction (risk weighting). For 

example, 'Data destruction' might have a significant 

percentage impact on project schedules, highlighting its 

criticality in terms of project timeline disruption. 

These data consist of estimations presented as percentages. 

The risks most perceived by the different stakeholders are 

financial cost risks, which account for 71.4% of the responses. 

The second most perceived risks are those related to security 

risks, including malicious activities, also at a rate of 71.4% 

Figure 2. 

 

 

4. ANN MODELING AND EVALUATION  

 

The artificial neural network (ANN) model for risk analysis 

in construction projects involves a structured and precise 

approach. A database was established from the collection of 

data from 135 projects, organized around two main variables: 

'Type of physical threat' and 'Type of cyber threat.' To ensure 

a balanced and representative distribution, this database was 

divided into segments for training, validation, and testing. 

Specifically, 70% of the projects (i.e., 95 projects) were 

allocated for the training phase, while the remaining 15% (i.e., 

20 projects for each category) were reserved for the testing and 

validation phases. The analysis of this data (refer to Tables 3 

and 4) informed the ANN model regarding the frequency and 

severity of different risk types. 

The training phase of the model is a key process, requiring 

precise determination of the network architecture to match the 

specific dual inputs of the project. This phase includes several 

important steps: Dividing the data, selecting the network 

architecture and training parameters, and repetitive 

evaluations with the validation and testing sets to refine the 

model [24]. The model's performance is measured through the 

test base, and our proposed approach to identifying the optimal 

parameters can be found in Figure 3. 

 

 
 

Figure 3. Training program flowchart 

 

 
 

Figure 4. A typical layer neural network 

 

After various experiments, an optimized ANN model was 

developed, using a multilayer perceptron (MLP) with a single 

hidden layer of 20 neurons (see Figure 4). The network was 

trained until the maximum epoch limit of 10,000 was reached, 

while utilizing a learning rate of 0.01 and a momentum 

constant of 0.9 [36]. To train the database, a BP (Back 

Propagation) neuronal network algorithm is utilized, which 

involves the training, test, and validation bases, as well as 

optimal architecture parameters like the number of layers and 

neurons and transfer function type [27]. 

Preliminary results using this data indicated that the ANN 

model could effectively categorize and predict the level of risk 

associated with various factors in construction projects. These 

initial findings demonstrate the feasibility of using ANN in 

this context and support further development and refinement 

of the model. 

To assess the effectiveness of the artificial neural network 

that was developed, various metrics were employed. These 

included mean square errors (MSE), Correlation Coefficient 
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(R2) and Mean Absolute Error (MAE), which are indicators of 

the average level of error in the model's predictions [28]. 

Meanwhile, R2 is commonly utilized to assess the correlation 

between repeated outcomes [28]. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑐𝑎𝑙𝑐

𝑖 − 𝑦𝑒𝑥𝑝
𝑖 )

2𝑛
𝑖=1   (1) 

 

𝑅2 = 1 −
∑ (𝑦𝑐𝑎𝑙𝑐

𝑖 −𝑦𝑒𝑥𝑝
𝑖 )

2𝑛
𝑖=1

∑ (𝑦𝑐𝑎𝑙𝑐
𝑖 −�̅�)

2
𝑛
𝑖=1

  (2) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑒𝑥𝑝

𝑖 |
𝑛

𝑖=1
  (3) 

 

where: 

xi is the absolute differences between output values in Eqs. 

(1), (2) and (3), 

x represents the mean, 

n is the number of subjects, 

𝑦𝑒𝑥𝑝
𝑖  are the observed values, 

𝑦𝑐𝑎𝑙𝑐
𝑖  are the calculated [28]. 

 

 

5. RESULTS AND DISCUSSION 

 

When constructing an artificial neural network (ANN) 

model, selecting the proper topology is of utmost importance. 

To determine the best topology for the model, the present 

investigation used MSE and R2 values as criteria. A total of 20 

neurons were organized in the ANN and scrutinized [22], with 

the outcomes of the assessment summarized in Table 5. 

 

Table 5. The results of the artificial neural network model 

assessment 

 
Number of the Neurons MSE R MAE 

01 0.0352 0.7729 0.1369 

02 0.0317 0.7959 0.134 

03 0.0249 0.8485 0.0089 

04 0.0173 0.8949 0.0137 

05 0.0159 0.9039 0.0098 

06 0.0124 0.9258 0.0297 

07 0.0108 0.9366 0.0116 

08 0.0104 0.9383 0.0334 

09 0.009 0.9466 0.0280 

10 0.004 0.9505 0.0308 

15 0.0035 0.9793 0.0076 

20 0.0029 0.9832 0.0062 

 

To enhance the performance of the neural network, the 

number of neurons in the hidden layer was adjusted to 

optimize R2 values and minimize MSE values. The study 

found that the R2 and MSE values varied independently of the 

number of neurons used, until 10 neurons were utilized. 

However, when 15 and 20 neurons were incorporated in the 

hidden layer, they yielded the same R2 value of 0.966. The 

correlation coefficient, which gauges the degree of correlation 

between two variables that are measured continuously, is a 

useful tool for evaluating the strength of the relationship 

between the two variables [23]. To eliminate the possibility of 

random weight initialization by the software, each topology 

was replicated 10 times, and the mean MSE was calculated. 

The network's performance in terms of MSE and MAE was 

graphed against the number of nodes in the hidden layer, as 

depicted in Figures 5 and 6. It was observed that the network's 

error rate decreased and stabilized when the number of nodes 

in the hidden layer reached 10. Consequently, 10 neurons were 

utilized in the hidden layer for further development of the 

network. 

 
Figure 5. The network MSE vs the number of neurons in the 

hidden layer 

 
Figure 6. The network MAE vs the number of neurons in the 

hidden layer 

 
Figure 7. Predicted vs Obtained score plot obtained by 

developed ANN the optimum network with 1 hidden layer 

and 20 neurons per hidden layer was used 

 

Using a network with 20 neurons in the hidden layer, the 

network was able to predict the Risk prediction, risk 

management, and obtained scores of various construction 
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projects. After evaluating the performance of the developed 

ANN model, the values of MSE, R2, MAE were found to be 

0.0029, 0.966, and 0.0062, respectively. These performance 

metrics indicate that the developed ANN model was 

successful and met the performance criteria, showing a high 

degree of agreement between the predicted values and the 

observed data, as shown in Figure 7. 

 

 

6. CONCLUSIONS 

 

The construction industry is integral to economic growth, 

yet it is vulnerable to various risks that may hinder project 

success. Effective risk management is, therefore, essential in 

mitigating these risks to foster sustainable growth in the 

industry. This study has identified three primary categories of 

risk responsibility - client, contractor, and shared 

responsibility. Furthermore, it introduced an artificial neural 

network (ANN) model as a promising adjunct to traditional 

risk management methods in construction projects. 

Utilizing the ANN model, the study demonstrated the 

potential for improved decision-making through more precise 

risk assessments and a reliable method for risk prediction and 

prevention. However, it is important to note that these findings, 

while encouraging, are based on a specific dataset and scenario, 

suggesting the feasibility of ANN models rather than 

providing conclusive evidence of their effectiveness across all 

construction projects. 

The study's results should be considered as initial insights, 

highlighting the importance of effective risk management in 

construction and the potential contributions of ANN models to 

these practices. Stakeholders in the construction industry may 

find value in adopting ANN models as part of their risk 

management strategies. Yet, this should be approached as a 

complement to, rather than a replacement for, traditional 

techniques, considering the current study's limited scope. The 

integration of innovative methods like ANN models could 

bolster the success and growth of the construction industry, but 

further research is necessary to validate these findings more 

broadly and to explore the integration of these models into 

existing risk management frameworks. 

 

 

REFERENCES  

 

[1] Abbasianjahromi, H., Rajaie, H. (2012). Developing a 

project portfolio selection model for contractor firms 

considering the risk factor. Journal of Civil Engineering 

and Management, 18(6): 879-889. 

http://doi.org/10.3846/13923730.2012.734856 

[2] Calveras, A., Ganuza, J.J., Llobet, G. (2007). Regulation, 

corporate social responsibility and activism. Journal of 

Economics & Management Strategy, 16(3): 719-740. 

http://doi.org/10.1111/j.1530-9134.2007.00155.x 

[3] Choi, M.J., Abduzukhurov, T., Park, D.H., Kim, E.J., 

Hong, G.P. (2018). Effects of deep freezing temperature 

for long-term storage on quality characteristics and 

freshness of lamb meat. Korean Journal Food Science of 

Animal Resources, 38(5): 959-969. 

http://doi.org/10.5851/kosfa.2018.e28  

[4] Chang, R., Soebarto, V., Zhao, Z., Zillante, G. (2016). 

Facilitating the transition to sustainable construction: 

China's policies. Journal of Cleaner Production, 131: 

534-544. http://doi.org/10.1016/j.jclepro.2016.04.147 

[5]  Li, T.H.Y., Ng, S.T., Skitmore, M. (2012). Public 

participation in infrastructure and construction projects 

in China: From an EIA-based to a whole-cycle process. 

Habitat International, 36(1): 47-56. 

https://doi.org/10.1016/j.habitatint.2011.05.006 

[6] Ortiz-Avram, D., Domnanovich, J., Kronenberg, C., 

Scholz, M. (2018). Exploring the integration of corporate 

social responsibility into the strategies of small- and 

medium-sized enterprises: A systematic literature review. 

Journal of Cleaner Production, 201: 254-271. 

https://doi.org/10.1016/j.jclepro.2018.08.011 

[7] Wang, B., Kong, B., Li, F., Liu, Q., Zhang, H., Xia, X. 

(2020). Changes in the thermal stability and structure of 

protein from porcine longissimus dorsi induced by 

different thawing methods. Food Chemistry, 316: 

126375. 

https://doi.org/10.1016/j.foodchem.2020.126375 

[8]  Al-Kharashi, A., Skitmore, M. (2009). Causes of delays 

in Saudi Arabian public sector construction projects. 

Construction Management and Economics, 27(1): 3-23. 

https://doi.org/10.1080/01446190802541457 

[9] Hameed, B.A., Woo, S. (2007). Risk importance and 

allocation in the Pakistan construction industry: A 

contractors’ perspective. KSCE Journal of Civil 

Engineering 11(2): 73-80. 

http://doi.org/10.1007/BF02823850 

[10] Iqbal, S., Choudhry, R.M., Holschemacher, K., Ali, A., 

Tamošaitienė, J. (2015). Risk management in 

construction projects. Technological and Economic 

Development of Economy, 21(1): 65-78. 

https://doi.org/10.3846/20294913.2014.994582 

[11] López-Alonso, M., Ibarrondo-Dávila, M.P., Rubio-

Gámez, M.C., Garcia, T. (2013). The impact of health 

and safety investment on construction company costs. 

Safety Science, 60: 151-159. 

https://doi.org/10.1016/j.ssci.2013.06.013  

[12] Jordan, M.I., Mitchell, T.M. (2015). Machine learning: 

Trends, perspectives, and prospects. Science, 349(6245): 

255-260. https://doi.org/10.1126/science.aaa8415  

[13] Singh, K.P., Basant, N., Gupta, S. (2011). Support vector 

machines in water quality management. Analytica 

Chimica Acta, 703(2): 152-162. 

https://doi.org/10.1016/j.aca.2011.07.027 

[14] Witten, I.H., Frank, E. (2011). Data Mining: Practical 

Machine Learning Tools and Techniques. A Volume in 

The Morgan Kaufmann Series in Data Management 

Systems, Book Third Edition . 

[15] Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep 

Learning. Cambridge: MIT Press. 

[16] Huang, S., Huang, Y., Bu, Y., Lu, W., Qian, J. (2022). 

Fine-grained citation count prediction via a transformer-

based model with among-attention mechanism. 

Information Processing & Management, 59(5): 1-16. 

http://doi.org/10.1016/j.ipm.2021.102799 

[17] Kifokeris, D., Xenidis, Y. (2017). Constructability: 

Outline of past, present, and future research. Journal of 

Construction Engineering and Management, 143(8): 1-

23. http://doi.org/10.1061/(ASCE)CO.1943-

7862.0001331 

[18] Gondia, A., Siam, A., El-Dakhakhni, W., Nassar, A.H. 

(2020). Machine learning algorithms for construction 

projects delay risk prediction. Journal of Construction 

Engineering and Management, 146(1): 1-16. 

http://doi.org/10.1061/(ASCE)CO.1943-7862.0001736 

560



[19] Farag, M., El-Shorbagy, M., El-Desoky, I., El-Sawy, A.,

Mousa, A. (2015). Genetic algorithm based on K-means-

clustering technique for multi-objective resource

allocation problems. Current Journal of Applied Science

and Technology, 8(1): 80-96.

http://doi.org/10.9734/BJAST/2015/16570

[20] Sousa, R.L., Einstein, H.H. (2012). Risk analysis during

tunnel construction using Bayesian networks: Porto

metro case study. Tunnelling and Underground Space

Technology, 27(1): 86-100.

https://doi.org/10.1016/j.tust.2011.07.003

[21] Ashtari, M.A., Ansari, R., Hassannayebi, E., Jeong, J.

(2022). Cost overrun risk assessment and prediction in

construction projects: A Bayesian network classifier

approach. Buildings, 12(10): 1660.

http://doi.org/10.3390/buildings12101660

[22] De Klerk, R., Duarte, A.M., Medeiros, D.P., Duarte, J.P.,

Jorge, J., Lopes, D.S. (2019). Usability studies on

building early stage architectural models in virtual reality.

Automation in Construction, 103: 104-116.

https://doi.org/10.1016/j.autcon.2019.03.009

[23] Shalev-Shwartz, S., Ben-David, S. (2014).

Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press.

[24] Adeli, H., Park, H.S. (1995). Optimization of space

structures by neural dynamics. Neural Networks, 8(5):

769-781. https://doi.org/10.1016/0893-6080(95)00026-

V

[25] Ruan, X., Zhu, Y., Li, J., Cheng, Y. (2020). Predicting

the citation counts of individual papers via a BP neural

network. Journal of Informetrics, 14(3): 101039.

https://doi.org/10.1016/j.joi.2020.101039

[26] Haykin, S. (1994). A Comprehensive Foundation.

Cambridge University Press.

[27] Fang, D.P., Xie, F., Huang, X.Y., Li, H. (2004). Factor

analysis-based studies on construction workplace safety

management in China. International Journal of Project

Management, 22(1): 43-49.

https://doi.org/10.1016/S0263-7863(02)00115-1

[28] Murat Günaydın, H., Doǧan, S.Z. (2004). A neural

network approach for early cost estimation of structural

systems of buildings. International Journal of Project

Management, 22(7): 595-602.

https://doi.org/10.1016/j.ijproman.2004.04.002 

[29] Sonmez, R. (2008). Parametric range estimating of

building costs using regression models and bootstrap.

Journal of Construction Engineering and Management,

134(12): 915-927. https://doi.org/10.1061/(ASCE)0733-

9364(2008)134:12(1011)

[30] Li, X., Tang, X., Cheng, Q. (2022). Predicting the clinical

citation count of biomedical papers using multilayer

perceptron neural network. Journal of Informetrics, 16(4):

101333. https://doi.org/10.1016/j.joi.2022.101333

[31] Kaloop, M.R., Roy, B., Chaurasia, K., Kim, S.M., Jang,

H.M., Hu, J.W., Abdelwahed, B.S. (2022). Shear

strength estimation of reinforced concrete deep beams

using a novel hybrid metaheuristic optimized SVR

models. Sustainability, 14(9): 5238.

https://doi.org/10.3390/su14095238

[32] Chattapadhyay, D.B., Putta, J., Rama Mohan Rao, P.

(2021). Risk identification, assessments, and prediction

for mega construction projects: A risk prediction

paradigm based on cross analytical-machine learning

Model. Buildings, 11(4): 172.

https://doi.org/10.3390/buildings11040172

[33] Shi, Z., O’Brien, W. (2019). Development and

implementation of automated fault detection and

diagnostics for building systems: A review. Automation

in Construction, 104: 215-229.

https://doi.org/10.1016/j.autcon.2019.04.002

[34] Liang, X., Qi, T., Jin, Z., Qin, S., Chen, P. (2020). Risk

assessment system based on fuzzy composite evaluation

and a backpropagation neural network for a shield tunnel

crossing under a river. Advances in Civil Engineering,

2020: 8840200. https://doi.org/10.1155/2020/8840200

[35] Klimek, P., Jovanovic, A.S., Egloff, R., Schneider, R.

(2016). Successful fish go with the flow: Citation impact

prediction based on centrality measures for term–

document networks. Scientometrics, 107(3): 1265-1282.

https://doi.org/10.1007/s11192-016-1926-1

[36] Liu, G.F., Feng, X.T., Feng, G.L., Chen, B.R., Chen, D.F.,

Duan, S.Q. (2016). A method for dynamic risk

assessment and management of rockbursts in drill and

blast tunnels. Rock Mechanics and Rock Engineering,

49(8): 3257-3279. https://doi.org/10.1007/s00603-016-

0949-5

561




