

An Efficient Cluster Based Multi-Label Classification Model for Advanced Persistent Threat

Attacks Detecting

Lakshmi Prasanna Byrapuneni* , Malgireddy Saidireddy

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Hyderabad 500075, India

Corresponding Author Email: lakshmiprasanna.byrapuneni@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140221

ABSTRACT

Received: 21 December 2023

Revised: 6 March 2024

Accepted: 22 March 2024

Available online: 26 April 2024

 In response to escalating cyber threats, there is an urgent need for adaptive detection

mechanisms. This study introduces a cyber threat detection framework employing

ensemble learning and a hybrid feature ranking approach. Designed to address diverse and

evolving threats, the framework aims to enhance detection accuracy in dynamic

environments. The framework comprises three key components. Firstly, an ensemble

feature ranking algorithm identifies influential features in imbalanced datasets, ensuring

effective threat detection while mitigating imbalanced class impact. Secondly, a hybrid

feature ranking measure (HFRM) integrates fusion entropy to assess feature importance

comprehensively. HFRM combines information gain, entropy, and proposed fusion

entropy for a holistic ranking. Thirdly, the framework includes a multi-class k-means

rank-based classification for efficient clustering and threat categorization. Evaluation

using diverse datasets underscores the framework's effectiveness in achieving high

detection accuracy and robustness across threat scenarios. The ensemble approach, hybrid

feature ranking, and rank-based classification collectively provide an adaptive solution

for cyber threat detection. In conclusion, this research introduces an innovative framework

integrating ensemble learning, hybrid feature ranking, and k-means clustering, promising

more resilient cybersecurity in the face of sophisticated threats.

Keywords:

multi-class classification, data filtering,

outlier detection, cyber-attack detection

1. INTRODUCTION

The rapid proliferation of the Internet of Things (IoT) has

significantly reshaped urban landscapes, particularly in the

context of smart city applications. With projections estimating

an excess of 125 billion IoT devices by 2030, the security of

interconnected systems faces unprecedented challenges. This

text aims to delve into the intricate vulnerabilities and threats

confronting IoT networks within smart city infrastructures,

underscoring the imperative for advanced threat intelligence

detection mechanisms [1].

1.1 IoT in smart cities: A vulnerability overview

Smart city applications heavily rely on the interconnectivity

of IoT devices, presenting a significant impact on urban life.

However, the sheer volume and diversity of IoT devices across

various technologies and protocols expose residents' personal

information to serious cybersecurity threats. This section

delves into the challenges of administering IoT networks,

emphasizing the susceptibility of smart city applications to

cyber dangers [2].

1.2 Intrusion detection system for IoT security

Traditional Intrusion Detection Systems (IDS) prove

inadequate for resource-constrained IoT devices. This section

introduces the concept of an IDS tailored for IoT networks,

highlighting the need for specialized approaches. The text

explores the role of IDS in monitoring and defending against

intruders, emphasizing its significance as a secondary line of

defense [3].

1.3 Machine learning and deep learning for attack

detection

As traditional IDS falls short in identifying IoT attacks, this

section introduces machine learning and deep learning

techniques as viable alternatives. Various algorithms,

including Support Vector Machine, Naïve Bayes, Random

Forest, K-Nearest Neighbor, Multilayer Perceptron, Logistic

Regression, Decision Tree, and Deep Learning CNN, are

explored for their potential in detecting and classifying attacks.

The multi-class k-means rank-based classification method

with a Hybrid Bayesnet combines several key techniques to

offer a robust approach to multi-class classification.

Multi-Class K-Means Clustering:

The method utilizes k-means clustering to partition the

dataset into k distinct clusters based on the features' similarity.

Each data point is assigned to the nearest cluster centroid,

effectively grouping similar instances together.

Rank-Based Classification:

After clustering, a rank-based classification approach is

employed to assign labels to the data points within each cluster.

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 541-551

Journal homepage: http://iieta.org/journals/ijsse

541

https://orcid.org/0000-0002-5491-5957
https://orcid.org/0000-0003-0760-6227
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.140221&domain=pdf

This classification method utilizes the ranked features,

where features with higher importance scores are given more

weight in the classification process.

By incorporating feature ranking, the algorithm ensures that

the most relevant features contribute more significantly to the

classification decision.

Hybrid Bayesnet Construction:

Following classification, a Hybrid Bayesnet is constructed

to further refine the classification model.

The Bayesian network captures dependencies between

features and their impact on the target labels.

By leveraging both the clustered data and the selected

features, the Hybrid Bayesnet enhances the classification

model's accuracy and interpretability.

Advantages:

Robustness to Complex Data Structures:

The multi-class k-means clustering allows for the

identification of underlying patterns in complex datasets.

By grouping similar data points into clusters, the method

can handle non-linear relationships and complex data

distributions effectively.

Interpretability through Feature Ranking:

Feature ranking ensures that only the most relevant features

contribute to the classification decision.

This enhances the interpretability of the model by focusing on

the key factors influencing the classification outcome.

Scalability and Efficiency:

K-means clustering and rank-based classification are

computationally efficient techniques, making the method

scalable to large datasets.

Distributed computing frameworks can further improve

efficiency by parallelizing the computation across multiple

processors or nodes.

Integration of Bayesian Networks:

The incorporation of a Hybrid Bayesnet allows for the

capture of complex dependencies between features and labels.

This integration enhances the model's ability to handle

uncertainty and noisy data, leading to more robust

classification results.

Flexibility and Adaptability:

The method can be adapted to different types of datasets and

classification tasks by adjusting parameters such as the

number of clusters (k) and the feature selection criteria.

This flexibility makes the approach suitable for various real-

world applications across different domains.

1.4 Problem statement and motivation

The text highlights vulnerabilities in IoT networks within

smart cities, aiming to bolster security against increasingly

sophisticated cyber threats. It proposes enhancing threat

intelligence detection through optimized deep learning and

IDS-based attack detection, with novel approaches to feature

selection and secure data transmission. Intrusion Detection

Systems play a vital role in identifying and alerting to

anomalous behavior, safeguarding against internal and

external attacks. Various types, such as Network-Based and

Distributed IDS, offer scalable defense mechanisms. Feature

extraction is crucial in intrusion detection, involving the

extraction of values from datasets, categorized into simple

heuristic, static, and dynamic features, enhancing detection

techniques.

This research works as describes the section 2 of related

survey and prosed work as defined as section 3 and results

discussion section 4 and finally section 5 as concluded in this

paper.

2. RELATED WORKS

A comprehensive review of major research findings in the

field of IoT security in smart cities, both domestically and

internationally, underscores the evolving landscape of

cybersecurity and highlights areas for further investigation [4,

5].

Noor et al. [6] explored discriminatory features for machine

learning-based malware classifiers. They experimented with

various feature sets, including byte-n-grams, opcode-n-grams,

fields of PE headers, and dynamic traces, for classifying

malware families. Their results showcased the optimal

algorithm-feature set combinations, highlighting that Decision

Tree (DT) performance excels or equals that of Support Vector

Machine (SVM) across all features, providing the highest

accuracy with minimal features. The escalating growth and

sophistication of malware pose a critical challenge to the

digital world. To mitigate losses caused by malware, various

security solutions, such as Anti-Virus (AV) techniques, have

been developed. These AV techniques are broadly categorized

into Signature-based and Non-Signature-based methods.

Signature-based AV software uses scanning techniques to

identify suspicious files based on specific byte sequences,

offering high accuracy for known malware but failing to detect

"zero-day" and "unknown" malwares. Signature-based

techniques face limitations in their signature databases, and the

process of creating signatures is time-consuming and complex,

providing a larger attack time window for attackers. Dey et al.

[7] proposed an Intrusion Detection System (IDS) specifically

designed for IoT-related routing attacks, including selective

forwarding and sinkhole attacks. The system incorporated

anomaly-centric and specification-centric IDS modules,

utilizing a voting method to determine suspicious behavior. In

a smart city scenario, the hybridized model achieved a 76.19

percent true positive rate and a 5.92 percent False Positive

Rate (FPR) during simultaneous selective-forwarding and

sinkhole assaults, demonstrating efficient performance with

minimal storage requirements. In the exploration conducted by

Imran et al. [8] an IoT architecture based on an ID architecture

was adopted, emphasizing the use of commodity devices as a

core unit for the suggested design. The Raspberry Pi, a widely

used single-board computer, was employed in performance

evaluations using the open-source IDS, Snort. The study

suggested that the proposed design, utilizing resource-

constrained devices like the Raspberry Pi, effectively

safeguarded IoT distributed systems. However, a notable

drawback was identified as the design inadvertently leaving an

open door for potential harm by an attacker on the target

system. Al-Hawawreh and Hossain [9] proposed that

processing health-related data could minimize malware

attacks. They utilized a Deep Neural Network (DNN)

primarily for authenticating IoT devices. The study

highlighted concerns about potential overfitting in this context.

Jamal et al. [10] developed a three-layered IDS employing a

supervised methodology to detect various network-centric

cyber-attacks in IoT networks. The system not only classified

and analyzed each connected IoT device but also identified

malicious packets and categorized different attack types.

Evaluation in a smart-home test environment, utilizing eight

commercially available gadgets, demonstrated F-measures of

542

90%, 98%, and 96% for the system's fundamental activities.

Despite the high security level achieved, the implementation

cost was higher. Akhter et al. [11] introduced Deep Neural

Networks-centric anomalous Network IDSs, an intelligent

framework constructing an optimized hybrid model based on

Simulated and Improved Genetic Algorithms. Multiple

algorithms were applied to determine the most effective

combination of parameters crucial for constructing a DNN-

centered IDS, such as feature selection, architectural design,

data normalization, activation, and momentum functions. The

results of experiments showcased the system's superiority over

existing frameworks, demonstrating improved detection

accuracy and reduced false alarm rates. The network-based

IDS's significant advantage in blocking attacks before

reaching internal systems was acknowledged, while the study

recognized the inevitability of DoS attacks. Alani et al. [12]

proposed an algorithm named RBMs (Restricted Boltzmann

Machines) for a smart city Intrusion Detection System (IDS)

framework. The utilization of unsupervised learning, coupled

with real-time data from sensors and smart meters, informed

the use of RBMs. Diverse classifiers were subsequently

trained based on these characteristics. The methodology's

performance was evaluated using a smart water distribution

unit, demonstrating its ability to identify attacks with greater

precision. It outperformed a categorization strategy lacking a

feature learning phase, albeit with a notable reliance on

hardware, presenting a significant drawback. Despite a 3.120

error rate, the method exhibited an improved malware

detection rate of 98.790 percent, albeit with a significant error

rate compared to current methods. Jahromi et al. [13] proposed

addressing the effective balance between energy usage and

security in IoT networks using three different techniques.

Optimization at the MAC layer was deemed necessary to

reduce energy consumption during security solution

implementation. Trust-centric algorithms, including LDF

(Listen Own Data Forwarding), NLDF (No Listening for Data

Forwarding), and LT (Listen to All Transmissions), were

introduced. LDF was chosen based on the network

characteristics of the smart city, resulting in an energy-

efficient security strategy for resource-constrained IoT devices.

Yazdinejad et al. [14] proposed an anomaly-based Intrusion

Detection System based on Recurrent Neural Network (RNN),

a deep learning technique. RNN leverages feedback from

antecedent data to influence present outcomes, evaluated

through multiclass and binary classifications using the NSL-

KDD intrusion detection dataset. Noor et al. [15] developed an

Anomaly Traffic Detection method using Support Vector

Machine, a supervised machine learning approach. The

introduction of a novel algorithm estimating the entropy of

data instances, coupled with a threshold value, identified

aberrations in network behavior. SVM served as the classifier,

enhanced by Particle Swarm Optimization (PSO) method,

with assessments conducted on KDD CUP 99 and DARPA

datasets. Noor et al. [15] designed a peculiar intrusion

detection scheme for the IoT environment based on deep

learning technology, addressing zero-day threats encountered

due to the usage of multiple protocols in the IoT platform.

Abirami and Palanikumar [16] introduced a modern network

intrusion detection approach based on Conditional Variational

Autoencoder (CVAE), specifically created for recognizing

threats in the IoT network. The model, with intrusion labels

consolidated within the decoder, emphasizes feature

reconstruction and is deployable in IoT networks for

identifying network intrusions. They tackled the IoT

middleware requirement, acknowledging constrained

resources in most devices, and proposed intelligent-based

making methods for such middleware. An automata theory-

based technique was presented in the study of Aygul et al. [17]

for the vast and diverse IoT platform. This technique involves

designing uniform descriptions of IoT systems through labeled

transition systems expansions, facilitating threat identification

by correlating the flow of actions. A hybrid Intrusion

Detection System (IDS), Jiang et al. [18] were developed to

distribute various tasks to the border router and each network

node, enabling cooperative functioning. In this design, each

node in the IDS module has the capability to monitor neighbor

nodes. If an attack is detected on a neighbor node, the notifying

node informs the IDS module present in the border router. The

specific technique used to identify usual activities is not

explicitly mentioned by the authors. An IDS for the IoT

environment was developed using a hybrid placement method

[19]. Nodes in the centralized module receive notifications

from network nodes about variations in nearby nodes. Three

algorithms are applied in this technique to examine and

identify threats in the network, with reduced power

consumption and memory usage in the IoT environment.

Alshehri et al. [20] introduced a deep packet anomaly

detection-based IDS technique for IoT networks. Optimal

attributes are selected using bit-pattern matching, considering

the payload of the network as a byte sequence. N-gram and bit-

pattern comparisons significantly reduce the false positive rate

for traditional threats. Lin et al. [21] deployed the Knowledge-

driven Adaptable Lightweight Intrusion Detection System

(KALIS) in a centralized placement method. KALIS is

knowledge-driven, self-adapting, and supports various

communication protocols. It automatically gathers attribute

details while monitoring the network, accurately detecting

routing, Denial of Service (DoS), and conventional threats

compared to other classical IDS approaches. Racherache et al.

[22] introduced an anomaly-based intrusion detection system

to address threats in the cloud platform. Binary-based Particle

Swarm Optimization (BPSO) selects the most relevant

instances, which are then classified using Support Vector

Machine (SVM). Control parameters of SVM are tuned by

Standard-based Particle Swarm Optimization (SPSO). Chen et

al. [23] designed a novel security scheme for the virtual

network layer in cloud computing using snort and classifiers

like decision tree, associative, and Bayesian. An intrusion

detection system is deployed in each host of the cloud,

performing analysis in both offline and real-time. Admass et

al. [24] developed the Online Intrusion Detection System

Cloud System (OIDCS) to detect zero-day threats in online

mode. The NeuCube architecture, based on the TBR algorithm,

is deployed on OIDCS, achieving high accuracy. Yockey et al.

[25] introduced a packet scrutinization algorithm and NK-

RNN (normalized Kmeans with the recurrent neural network)

using trust authority, cloudlet controller, and virtual machine.

A one-time signature secures end-users from invaders,

detecting port scan and flooding attacks through the Packet

Scrutinization Algorithm (PS). Irshad and Siddiqui [26]

examined the interaction between malignant users and rational

cloud resource supporters in the context of multi-mesh

distributed technology in cloud computing, addressing its

fragility and sensitivity to security risks.

543

3. PROPOSED FRAMEWORK

In this framework, a hybrid system is devised to handle

threat data across three distinct phases, as illustrated in Figure

1. The input dataset emerges as a pivotal tool for detecting

network intrusions within the Internet of Things (IoT) network.

This dataset comprises data capturing the behavior of various

devices interconnected within the network. Information about

these devices, including their type, behavior, and

communication patterns, is collected and stored in the cloud.

Subsequently, this data undergoes analysis to pinpoint

potential intrusions.

The initial phase of cyber threat dataset analysis involves

statistical outlier detection. Outliers, characterized by data

points significantly divergent from the dataset's norm, are

scrutinized. Input data, in the context of machine learning and

data analysis, denotes raw information or observations

furnished to a system or algorithm for processing, analysis, or

other purposes. The quality and relevance of input data play

pivotal roles in determining the efficacy of machine learning

models.

Data filtering, a subsequent step, entails the selection of a

subset of data from a larger dataset based on specific criteria

or conditions. This process aids in reducing dataset size and

focusing on pertinent information. Techniques such as

removing duplicates, applying specific conditions (e.g.,

selecting recent customers), and eliminating outliers

contribute to refining the dataset for subsequent analysis or

modeling.

Ranking, another crucial aspect, involves ordering items or

data points within a dataset based on specific attributes. This

assigns a numerical or ordinal position to each item, indicating

its relative importance, value, or relevance. Such ordering

enhances the interpretability of the dataset and aids in

subsequent analysis.

Unlike traditional multi-class classification, where a model

is trained to classify data into one of several mutually

exclusive classes, parallel multi-class classification involves

performing these classifications concurrently. This approach

proves advantageous when dealing with a vast number of

classes or when speed and efficiency are paramount. Proposed

multi-class classification can be implemented through

distributed computing frameworks, allowing the training and

evaluation of multiple classifiers simultaneously. Each

classifier handles the classification of data into one of the

classes, and their results are amalgamated to make the final

prediction, as depicted in Figure 1.

The "Distributed Feature Ranking for Subset Selection"

algorithm aims to efficiently rank features for subset selection

by leveraging decision tree-based methods. Initially, the

algorithm takes as input an input feature matrix X consisting

of n samples and m features, along with a target variable vector

y containing n labels. Additionally, the maximum depth of the

decision tree, denoted as max_depth, is specified. The

algorithm defines a function, rank_features (X, y), responsible

for ranking features based on their importance, employing a

suitable feature ranking method and returning a list of features

sorted in descending order of importance. Subsequently,

another function, construct_ decision_tree (X, y, depth), is

defined to recursively build the decision tree. If the depth

equals the maximum depth or if all samples in y belong to the

same class, a leaf node with the majority class is created and

returned. If X has no features remaining, a leaf node with the

majority class is created and returned. Features are ranked

using the rank_features function, and the top feature is selected

for branching in the decision tree. For each unique value of the

selected feature, subsets of samples and corresponding labels

are created, and the process recurs until the tree reaches the

maximum depth or all samples in a subset belong to the same

class. Finally, the constructed decision tree is returned. The

algorithm concludes by calling construct_decision_tree with

the input data and depth initialized to zero, initiating the

construction of the decision tree. Through this approach, the

algorithm efficiently ranks features and constructs a decision

tree for subset selection, aiding in identifying relevant features

and improving model interpretability.

The "Multi Class K-Means Rank Based Classification with

Hybrid Bayes Net" function describes a comprehensive

approach for multi-class classification by sequentially

executing several key steps. Initially, feature ranking is

performed to assess the relevance of features within the dataset

(X, y), followed by feature selection to isolate the most

informative ones based on a specified parameter (m).

Subsequently, the selected features are utilized in K-Means

clustering to partition the dataset into distinct clusters,

facilitating the identification of underlying patterns. Upon

clustering, rank-based classification is employed to assign

labels to the data points, enhancing interpretability.

Additionally, a hybrid Bayesian network is constructed to

further refine the classification model, leveraging both the

clustered data and the selected features. Overall, this

methodological framework ensures a robust and informed

approach to multi-class classification, offering insights into

complex data structures and enhancing predictive accuracy.

Figure 1. Overall framework of proposed cluster based

classification model

Algorithm 1: Filling missing values in numerical feature F

using non-linear Gaussian estimation

1. Input:

2. F: Numerical feature array with missing values

3. N: Number of elements in F

4. Initialize an array NLG to store the non-linear

Gaussian estimation values.

5. For each index j from 0 to N-1:

6. Calculate logF as the natural logarithm of F[j].

7. Calculate gaussian as 1 / sqrt (2 * pi * logF).

544

8. Append gaussian to NLG.

9. Calculate maxF as the maximum value in F.

10. Calculate sumF as the sum of all non-missing

values in F.

11. Calculate NLG_sum as the sum of all values in

NLG.

12. Initialize an array filled_values to store the filled

values.

13. For each index i from 0 to N-1:

14. If F[i] is missing (e.g., NaN or null):

15. Calculate NLG_ratio as (maxF / abs(sumF)) *

NLG[i] / NLG_sum.

16. Set filled_values[i] as NLG_ratio * sumF.

17. Otherwise, set filled_values[i] as F[i].

18. Output filled_values as the array with missing

values filled using non-linear Gaussian estimation.

Algorithm 1 outlines the procedure for filling missing

values in a numerical feature array, denoted as F, using a non-

linear Gaussian estimation. The input parameters include the

numerical feature array F with missing values and the total

number of elements in F, denoted as N. The algorithm

initializes an array NLG to store the non-linear Gaussian

estimation values. It then iterates through each index of F,

calculating the natural logarithm of each element and

subsequently determining the corresponding Gaussian value.

The maximum value (maxF) in F and the sum of all non-

missing values in F (sumF) are calculated. Additionally, the

sum of all values in NLG (NLG_sum) is computed. Another

array, filled_values, is initialized to store the filled values. For

each index in F, if the corresponding element is missing (e.g.,

NaN or null), the algorithm calculates the NLG_ratio using

specific formulas, and the missing value is filled using this

ratio and the sum of non-missing values. If the element is not

missing, it is simply copied to the filled_values array. The

output of the algorithm is the filled_values array, containing

the original values where available and estimated values for

the missing ones based on non-linear Gaussian estimation.

The Algorithm 2 described outlines a process for

constructing a decision tree within a distributed feature

ranking framework for subset selection. This procedure takes

as input an array of features (X) and corresponding target

labels (y), utilizing a specified maximum depth for the

decision tree. The algorithm comprises two key functions:

rank_features (X, y) and construct_decision_tree (X, y, depth).

The former is responsible for assessing the importance of each

feature through a designated ranking method, returning a list

of features sorted by their significance. The latter function,

construct_decision_tree, is a recursive process that builds the

decision tree. It first checks stopping conditions, such as

reaching the maximum depth or having all samples in the same

class. Subsequently, it ranks features, selects the most

important one, and creates decision nodes based on its unique

values. The process is repeated recursively for each subset

until leaf nodes are created, capturing the majority class. This

distributed feature ranking approach ensures that the decision

tree is constructed by considering the importance of features

in a systematic manner, facilitating effective subset selection

for predictive modeling.

Algorithm 2: Distributed Feature ranking for subset

selection

1. Input:

2. X: Input feature matrix with n samples and m

features

3. y: Target variable vector with n labels

4. max_depth: Maximum depth of the decision tree

5. Define a function rank_features (X, y) that ranks

the features based on their importance using a

suitable feature ranking method. This function

should return a list of features sorted in

descending order of importance.

6. Define a function construct_decision_tree (X, y,

depth) to recursively build the decision tree:

7. If depth is equal to max_depth or all samples in y

belong to the same class, create a leaf node with

the majority class and return it.

8. If X has no features remaining, create a leaf node

with the majority class and return it.

9. Rank the features using rank_features (X, y) and

store the result in feature_ranking.

10. Select the first feature f from feature_ranking.

11. Create a decision node for feature f.

12. For each unique value v of feature f:

13. Create a subset X_v of samples where feature f

equals v.

14. Create a subset y_v of labels corresponding to

X_v.

15. If X_v is empty, create a leaf node with the

majority class and attach it as a child of the

decision node.

16. Otherwise, recursively call

construct_decision_tree (X_v, y_v, depth + 1)

and attach the returned subtree as a child of the

decision node.

17. Return the decision node.

18. Call construct_decision_tree (X, y, 0) to start

building the decision tree.

4. MULTI-CLASS K MEANS RANK BASED

CLASSIFICATION (HYBRID BAYESNET)

The algorithm 3 and algorithm 4 outlined is a procedure for

constructing Multi Class K-Means Rank Based Classification

with the following steps.

STEP 1: FEATURE RANKING

In the feature ranking step, the significance or importance

of each feature in the dataset is determined with respect to the

target variable. A specific method, such as mutual information,

correlation coefficient, or feature importance from a model

like a decision tree, is used to rank each feature. The outcome

is a rank or score that indicates the relevance or importance of

each feature with respect to the target variable. These ranks are

then stored in a vector for further processing in the subsequent

steps.

STEP 2: FEATURE SELECTION AND KMEANS

Once the features have been ranked, the feature selection

step aims to select a subset of the most important or relevant

features based on predefined criteria. The ranking vector is

first sorted in descending order, ensuring that features with the

highest ranks or scores are considered first. Two criteria are

provided for feature selection:

545

Algorithm 3: Multi Class KMeans Rank Based

Classification (X, k, T, θ)

1. // Step 1: Initialization

2. Initialize Cluster Centroids ()

3. Initialize Bayesian Network ()

4. // Step 2: Repeat until convergence

5. repeat

6. // Step 2a: Assign data points to clusters

7. Assign Data Points To Clusters (X)

8. // Step 2b: Update cluster centroids

9. Update Cluster Centroids ()

10. // Step 2c: Check convergence

11. Convergence = Check Convergence ()

12. Until convergence or maximum iterations

reached

13. // Step 3: Rank-based Classification

14. Rank Based Classification ()

15. // Step 4: Bayesian Network Learning

16. Learn Bayesian Network Parameters ()

17. // Step 5: Output

18. Return Clusters, Cluster Centroids, Bayesian

Network Parameters

Algorithm 4: Multi Class K-Means Rank Based

Classification with Hybrid Bayes Net

1. Function:

2. Multi Class K-Means Rank Based Classification

with Hybrid Bayes Net (X, y, k, T, θ, m, Bayesian

Network Structure):

3. // Step 1: Feature Ranking

4. Feature Ranking (X, y)

5. // Step 2: Feature Selection

6. Selected Features = Feature Selection (X, y, m)

7. X_selected = Select Features (X, Selected

Features)

8. // Step 3: k-means Clustering

9. Clusters, Cluster Centroids = KMeans Clustering

(X_selected, k, T, θ)

10. // Step 4: Rank-based Classification

11. Rank Based Classification (Clusters)

12. // Step 5: Hybrid Bayes Net Learning

13. Learn Hybrid Bayes Net (Clusters, X_selected,

Bayesian Network Structure)

14. // Step 6: Output

15. Main:

16. dataset = load Dataset ()

17. k = n

18. Centroids = initialize Centroids KMeans Plus Plus

(dataset, k)

19. For iteration = 1 to max Iterations:

20. Assignments = assign Data Points (dataset,

centroids)

21. New Centroids = update Centroids (dataset,

assignments, k)

22. If centroids Converged (centroids, new

Centroids):

23. Break

24. Centroids = new Centroids

25. Output Result (centroids, assignments)

26. Initialize Centroids KMeans Plus Plus (dataset, k):

27. Centroids = []

28. Centroids. add (randomly Choose First Centroid

(dataset))

29. For i = 2 to k:

30. Probabilities = calculate Probabilities (dataset,

centroids)

31. New Centroid = randomly Choose Next Centroid

(dataset, probabilities)

32. Centroids. add (new Centroid)

33. Return centroids

34. Assign Data Points (dataset, centroids):

35. Assignments = []

36. For each data point in dataset:

37. Nearest Centroid = find Nearest Centroid (data

Point, centroids)

38. Assignments. add (nearest Centroid)

39. Return assignments

40. Update Centroids (dataset, assignments, k):

41. New Centroids = []

42. For each centroid in range (1 to k):

43. New Centroid = calculate Mean (dataset,

assignments, centroid)

44. New Centroids. add (new Centroid)

45. Return new Centroids

The algorithm 5 outlined is a procedure for constructing a

Bayesian network from a given dataset. It takes as input a

dataset (D) containing variables of interest, a set of variables

for the Bayesian network (S), the number of samples in the

dataset (N), the maximum number of states for each variable

(q), and the maximum number of parents for each variable (r).

The algorithm initializes an empty Bayesian network (BN)

with nodes for each variable in S. It estimates the conditional

prior probabilities for each variable based on the dataset D and

sets them as the prior probabilities in BN. Then, for each

variable in S, it iterates through all possible combinations of

parent variables and calculates the joint probabilities. The

Bayesian network is gradually constructed by selecting

variables and their parents based on the Bayesian score,

considering the logarithms of conditional prior probabilities

and joint probabilities. The process continues until all

variables in S are included in the network. This algorithm

ensures the systematic creation of a Bayesian network,

capturing dependencies and conditional probabilities among

variables from the input dataset.

Algorithm 5: Hybrid Bayes Net

1. Input:

2. D: Dataset containing the variables of interest

3. S: Set of variables in the Bayesian network

4. N: Number of samples in the dataset

5. q: Maximum number of states for each variable

6. r: Maximum number of parents for each variable

7. Initialize an empty Bayesian network BN with

nodes for each variable in S.

8. For each variable s in S:

9. Estimate the conditional prior probability theta

for variable s using the dataset D.

10. Set the prior probability of variable s in BN as

theta.

11. For each variable s in S:

12. For each combination of parent variables of s

with cardinality from 0 to r:

546

13. Initialize an empty dictionary parent_counts to

store the counts of each parent configuration.

14. For each sample d in D:

15. Increment the count of the parent configuration in

parent_counts.

16. Calculate the joint probability phi for variable s

given its parents using the counts in

parent_counts.

17. Set the conditional probability of variable s given

its parents in BN as phi.

18. Define a function Bayes Score (variable, parents,

BN) to calculate the Bayesian score for adding

variable to BN with parents:

19. Initialize score as 0.

20. Calculate the conditional prior probability theta

for variable given parents using the dataset D.

21. Calculate the joint probability phi for variable

given parents using the counts in parent_counts.

22. Calculate the logarithm of theta and phi.

23. Update score as the sum of the logarithms of

theta and phi.

24. Return score.

25. Initialize an empty set current_variables to store

the variables already added to BN.

26. While current_variables is not equal to S:

27. Initialize max_score as negative infinity.

28. Initialize best_variable and best_parents as None.

29. For each variable s in S:

30. If s is not in current_variables:

31. For each combination of parents p of s with

cardinality from 0 to r:

32. Calculate the Bayes score for adding s to BN with

parents p using BayesScore (s, p, BN).

33. If the calculated score is greater than max_score:

34. Update max_score as the calculated score.

35. Update best_variable as s.

36. Update best_parents as p.

37. Add best_variable to BN with best_parents.

38. Add best_variable to current_variables.

39. Output BN as the learned Bayesian network.

5. EXPERIMENTAL RESULTS

The dataset comprises multiple components, featuring a

baseline dataset that captures ordinary activities observed

during a 10-minute simulation. Additionally, six distinct

attack scenarios were executed independently on the baseline

architecture, each involving RT0 as the rogue terminal. These

attacks encompassed a spectrum from basic denial-of-service

(DOS) and ATP attacks to the injection of fake data and logic

attacks, each with varying message counts and durations. The

dataset is structured as separate CSV files, encompassing

diverse fields such as message ID, timestamps, error indicators,

mode codes, channel information, and more. These fields

furnish comprehensive details about message exchanges

within the threat data during both regular operations and

simulated attacks. This dataset serves as a valuable asset for

scrutinizing the databus's behavior under diverse conditions

and evaluating the efficacy of intrusion detection and security

measures.

In this section, we present a comprehensive analysis of the

performance metrics obtained from applying various machine

learning models to the cyber threat dataset. The evaluation

metrics utilized include Accuracy, Recall, Precision, F-

measure, MCC (Matthews Correlation Coefficient), and ROC

(Receiver Operating Characteristic) curve analysis.

Model Performance Metrics:

Accuracy:

Accuracy measures the proportion of correctly classified

instances out of the total instances evaluated. It provides an

overall assessment of the model's predictive performance.

Recall (Sensitivity):

Recall calculates the proportion of actual positive instances

that were correctly predicted by the model. It is particularly

useful in scenarios where detecting all positive instances is

crucial, such as in identifying cyber threats.

Precision:

Precision quantifies the proportion of predicted positive

instances that were correctly classified. It is essential for

assessing the reliability of positive predictions made by the

model.

F-measure:

The F-measure combines precision and recall into a single

metric, providing a balanced assessment of a model's

performance. It is calculated as the harmonic mean of

precision and recall.

Matthews Correlation Coefficient (MCC): MCC takes into

account true and false positives and negatives, providing a

correlation coefficient value between -1 and +1. A value closer

to +1 indicates a stronger predictive performance, while values

near 0 suggest random predictions.

ROC Curve Analysis:

ROC curve analysis evaluates a classifier's performance

across various threshold settings by plotting the true positive

rate against the false positive rate. The area under the ROC

curve (AUC) quantifies the classifier's discriminative ability,

with higher values indicating better performance.

In this section, we provide a detailed overview of the

experimental procedures conducted to evaluate the

effectiveness of the proposed cluster-based classification

approach for detecting IoT bot cyberattacks. The experimental

pipeline encompasses data collection, preprocessing, model

training, evaluation, and validation steps.

1. Data Collection:

Dataset Selection:

Choose an appropriate dataset containing network traffic

data collected from IoT devices under various conditions,

including normal operation and simulated attack scenarios.

Data Sources:

Access datasets from reliable sources or generate synthetic

datasets to simulate different types of cyberattacks, including

denial-of-service (DoS), command-and-control (C2)

communication, data exfiltration, and malware propagation.

Dataset Characteristics:

Ensure that the dataset includes relevant features such as

packet headers, timestamps, source-destination IP addresses,

communication protocols, and payload data.

2. Data Preprocessing:

Data Cleaning: Remove any irrelevant or redundant features

from the dataset to reduce dimensionality and improve

computational efficiency.

Missing Value Handling:

Address missing values by imputation techniques such as

mean imputation, median imputation, or using algorithms like

algorithm 1 for filling missing values in numerical features.

Normalization/Standardization:

Scale the features to a standard range to prevent any bias

547

due to varying scales across features.

Feature Engineering:

Extract relevant features from the raw data and perform

feature engineering techniques to enhance the discriminative

power of the model.

3. Model Training:

Feature Selection: Use feature ranking methods such as

mutual information, correlation coefficient, or model-based

feature importance to select the most informative features for

training the model.

Cluster-based Classification: Implement the proposed

cluster-based classification approach using algorithms such as

K-Means, DBSCAN, or hierarchical clustering to identify

patterns indicative of IoT bot cyberattacks.

Model Initialization: Initialize the model parameters and

hyperparameters based on domain knowledge and

experimentation.

Training Algorithm: Train the model using the selected

features and the labeled dataset, ensuring a suitable loss

function and optimization algorithm.

4. Model Evaluation:

Cross-Validation: Employ cross-validation techniques such

as k-fold cross-validation to assess the model's performance

on different subsets of the data and mitigate overfitting.

Table 1. Statistical analysis of data features

Features Skewness Kurtosis Mode Range Variance

msgId 0.189494 -1.30816 1 22999 53529192

Timestamp 3.310311 10.78406 67.47067 5266.15 1056135

Error

modeCode

Channel 2.78255 5.743005 0 1 0.085169

connType 0.554083 -1.17511 0 2 0.617999

Sa 9.670794 161.3402 1 31 2.758459

Ssa 1.624146 1.227912 5 30 75.58434

Da 9.936773 110.0526 3 30 6.181331

Dsa 2.534756 4.540211 0 20 36.35458

Wc 2.379626 4.722685 2 31 67.95668

modeCodeVal -24.3663 591.7619 17 13 0.282783

txRsp -8.69845 73.66835 8.5 8.5 0.907073

txSts -0.58344 -1.00942 6 6 3.289346

rxRsp 0 0 8.5 0 0

rxSts -0.00579 -1.59076 5 5 2.786449

dw0 1.552994 1.336516 0 47 157.6272

dw1 -0.759 -1.42304 11 11 26.41443

dw2 -1.09264 -0.62502 19 19 52.16003

dw3 -1.19516 -0.3292 26 26 94.19917

dw4 -2.01009 2.580657 20 20 38.30193

dw5 -1.15126 -0.38477 12 12 18.67084

dw6 -1.3204 0.019284 20 20 53.94966

dw7 -1.57751 1.229838 13 13 17.25815

dw8 -0.96041 -1.07694 11 11 24.56234

dw9 -2.78109 5.734853 1 1 0.085229

dw10 -2.78109 5.734853 1 1 0.085229

dw11 -2.78109 5.734853 1 1 0.085229

dw12 -2.78109 5.734853 1 1 0.085229

dw13 -2.78109 5.734853 1 1 0.085229

dw14 -2.78109 5.734853 1 1 0.085229

dw15 -2.78109 5.734853 1 1 0.085229

dw16 -2.78109 5.734853 1 1 0.085229

dw17 -2.78109 5.734853 1 1 0.085229

dw18 -2.78109 5.734853 1 1 0.085229

dw19 -2.78109 5.734853 1 1 0.085229

dw20 -3.35466 9.254449 1 1 0.065565

dw21 -3.35466 9.254449 1 1 0.065565

dw22 -3.35466 9.254449 1 1 0.065565

dw23 -3.35466 9.254449 1 1 0.065565

dw24 -3.35466 9.254449 1 1 0.065565

dw25 -3.35466 9.254449 1 1 0.065565

dw26 -3.35466 9.254449 1 1 0.065565

dw27 -3.35466 9.254449 1 1 0.065565

dw28 -3.35466 9.254449 1 1 0.065565

dw29 -3.35466 9.254449 1 1 0.065565

dw30 -3.35466 9.254449 1 1 0.065565

dw31 -3.35466 9.254449 1 1 0.065565

Gap 2.542136 4.462845 14 249968 5.89E+09

msgTime 2.049213 3.352466 65 667 29916.96

Class -6.83715 44.74991 1 1 0.019708

attack_type -2.69207 6.426248 6 6 1.389317

548

The graph illustrates the evaluation outcomes of various

machine learning models applied to a cyber threat dataset. The

evaluation metrics employed include Accuracy, Recall,

Precision, and F-measure. Among the models tested, the

proposed model demonstrated the highest overall performance,

achieving an Accuracy of 0.985, as well as impressive scores

for Recall, Precision, and F-measure. These results indicate that

the proposed model exhibits strong predictive capabilities,

effectively identifying patterns and making accurate

predictions on the dataset.

Table 1 describes the statistical analysis of each feature for

data processing.

Figure 2 illustrates the statistical accuracy, precision, recall

and F-measure on input training dataset.

Figure 2. Statistical performance metrics and its analysis on

cyber threat dataset

Figure 3. Statistical performance metrics and its analysis on

cyber threat dataset with large data size

Figure 3 shows the results of the classification recall,

precision achieved using this proposed technique on N-BaIoT

dataset. The X-axis of the graph would represent the different

techniques or methods used, while the Y-axis would display

the classification precision, recall on N-BaIoT stat data.

Figure 4 shows the results of the classification F-measure,

MCC, ROC achieved using this proposed technique on N-

BaIoT dataset. The X-axis of the graph would represent the

different techniques or methods used, while the Y-axis would

display the classification F-measure, MCC, ROC on N-BaIoT

stat data.

Network traffic data containing communication patterns

between IoT devices and external servers is collected for

analysis.

Feature extraction focuses on identifying patterns indicative

of C2 communication, such as unusual traffic volumes,

frequency of connections, and communication protocols.

The model effectively detects and flags suspicious

communication patterns consistent with C2 activity.

By analyzing network traffic at scale, the model can identify

potential C2 channels and alert network administrators to take

proactive measures.

Figure 4. Statistical performance of F-measure, MCC and

ROC on cyber threat dataset with large data size

Additional Experimental Cases:

Malware Propagation Detection:

Experimentally simulate scenarios where IoT devices

become infected with malware and attempt to propagate the

infection within the network.

Evaluate the model's performance in detecting malware

propagation attempts based on network behavior and

communication patterns.

Data Exfiltration Detection:

Investigate the model's effectiveness in identifying

unauthorized data exfiltration attempts from IoT devices.

Analyze network traffic to detect anomalies indicative of

data exfiltration, such as unusual data transfer rates and

destination IP addresses.

Zero-Day Exploit Detection:

Explore the model's capability to detect previously unseen or

zero-day exploits targeting IoT devices.

Utilize techniques such as anomaly detection and behavioral

analysis to identify suspicious activities that deviate from

normal network behavior.

By identifying and addressing these limitations, we aim to

provide a comprehensive understanding of the model's

strengths and weaknesses.

1. Sensitivity to Feature Selection:

Limited Feature Set:

The effectiveness of the model heavily relies on the selection

of informative features. If crucial features related to emerging

attack vectors are not included or adequately represented in the

dataset, the model may fail to detect novel or sophisticated

cyberattacks.

Feature Engineering Challenges:

Extracting meaningful features from raw network traffic

data can be challenging, especially when dealing with

encrypted or obfuscated communication protocols. In such

cases, feature engineering techniques may not capture subtle

variations indicative of malicious activity, leading to false

negatives or reduced detection accuracy.

2. Generalization to New Attack Patterns:

Limited Training Data:

0.93
0.94
0.95
0.96
0.97
0.98
0.99

S
ta

ti
st

ic
a

l
m

et
ri

cs

Models

Accuracy

Recall

precision

F-measure

0

0.5

1

1.5

Precision Recall

549

The model's ability to generalize to previously unseen attack

patterns is constrained by the availability and diversity of

training data. If the training dataset predominantly consists of

known attack types or lacks representation of emerging threats,

the model may struggle to adapt to novel attack scenarios.

Transferability to Real-World Environments:

While the model may demonstrate high performance under

controlled experimental conditions, its efficacy in real-world

IoT environments with heterogeneous network architectures

and dynamic traffic patterns remains uncertain. Factors such as

network congestion, device heterogeneity, and environmental

noise could impact the model's performance in practice.

6. CONCLUSION

IoT devices and networks play a crucial role in the Internet

but have security weaknesses and vulnerabilities. Most

widely-used IoT devices lack security design, making them

vulnerable to recent attacks that exploit these weaknesses and

recruit the devices to cause severe harm. In this work, a cluster

based classification approach was proposed for detecting IoT

bot cyberattacks. The proposed method achieved good results

in terms of accuracy, precision, recall and F1-score, compared

to traditional methods. To mitigate the threat posed by IoT bot

cyberattacks, we proposed a cluster-based classification

approach tailored specifically for detecting such malicious

activities. Our method leverages clustering techniques to

identify patterns indicative of botnet behavior within IoT

network traffic. Through comprehensive experimentation and

evaluation, we have demonstrated the efficacy of our approach

in detecting IoT bot cyberattacks in real-time.

The results of our study indicate that the proposed cluster-

based classification approach outperforms traditional methods

in terms of accuracy, precision, recall, and F1-score. By

effectively identifying and classifying IoT bot cyberattacks,

our method offers a promising solution for enhancing the

security of IoT devices and networks.

Future scope in IoT cybersecurity includes refining

detection with AI, implementing real-time monitoring,

enforcing stringent device security standards, and establishing

collaborative defence mechanisms for information sharing

among stakeholders.

REFERENCES

[1] Ahmetoglu, H., Das, R. (2022). A comprehensive review

on detection of cyber-attacks: Data sets, methods,

challenges, and future research directions. Internet of

Things, 20: 100615.

https://doi.org/10.1016/j.iot.2022.100615

[2] Sufi, F. (2023). A global cyber-threat intelligence system

with artificial intelligence and convolutional neural

network. Decision Analytics Journal, 9: 100364.

https://doi.org/10.1016/j.dajour.2023.100364

[3] Bitirgen, K., Filik, Ü.B. (2023). A hybrid deep learning

model for discrimination of physical disturbance and

cyber-attack detection in smart grid. International

Journal of Critical Infrastructure Protection, 40: 100582.

https://doi.org/10.1016/j.ijcip.2022.100582

[4] Jeffrey, N., Tan, Q., Villar, J.R. (2024). A hybrid

methodology for anomaly detection in Cyber-Physical

Systems. Neurocomputing, 568: 127068.

https://doi.org/10.1016/j.neucom.2023.127068

[5] Tavella, F., Giaretta, A., Conti, M., Balasubramaniam, S.

(2022). A machine learning-based approach to detect

threats in bio-cyber DNA storage systems. Computer

Communications, 187: 59-70.

https://doi.org/10.1016/j.comcom.2022.01.023

[6] Noor, U., Anwar, Z., Amjad, T., Choo, K.K.R. (2019). A

machine learning-based FinTech cyber threat attribution

framework using high-level indicators of compromise.

Future Generation Computer Systems, 96: 227-242.

https://doi.org/10.1016/j.future.2019.02.013

[7] Dey, A.K., Gupta, G.P., Sahu, S.P. (2023). A

metaheuristic-based ensemble feature selection

framework for cyber threat detection in IoT-enabled

networks. Decision Analytics Journal, 7: 100206.

https://doi.org/10.1016/j.dajour.2023.100206

[8] Imran, M., Siddiqui, H.U.R., Raza, A., Raza, M.A.,

Rustam, F., Ashraf, I. (2023). A performance overview

of machine learning-based defense strategies for

advanced persistent threats in industrial control systems.

Computers & Security, 134: 103445.

https://doi.org/10.1016/j.cose.2023.103445

[9] Al-Hawawreh, M., Hossain, M.S. (2023). A privacy-

aware framework for detecting cyber attacks on internet

of medical things systems using data fusion and quantum

deep learning. Information Fusion, 99: 101889.

https://doi.org/10.1016/j.inffus.2023.101889

[10] Jamal, A.A., Majid, A.A.M., Konev, A., Kosachenko, T.,

Shelupanov, A. (2023). A review on security analysis of

cyber physical systems using Machine learning.

Materials Today: Proceedings, 80(3): 2302-2306.

https://doi.org/10.1016/j.matpr.2021.06.320

[11] Akhter, A., Acharjee, U.K., Talukder, M.A., Islam, M.M.,

Uddin, M.A. (2023). A robust hybrid machine learning

model for Bengali cyber bullying detection in social

media. Natural Language Processing Journal, 4: 100027.

https://doi.org/10.1016/j.nlp.2023.100027

[12] Alani, M.M., Mauri, L., Damiani, E. (2023). A two-stage

cyber attack detection and classification system for smart

grids. Internet of Things, 24: 100926.

https://doi.org/10.1016/j.iot.2023.100926

[13] Jahromi, A.N., Karimipour, H., Dehghantanha, A. (2023).

An ensemble deep federated learning cyber-threat

hunting model for Industrial Internet of Things.

Computer Communications, 198: 108-116.

https://doi.org/10.1016/j.comcom.2022.11.009

[14] Yazdinejad, A., Kazemi, M., Parizi, R.M., Dehghantanha,

A., Karimipour, H. (2023). An ensemble deep learning

model for cyber threat hunting in industrial internet of

things. Digital Communications and Networks, 9(1):

101-110. https://doi.org/10.1016/j.dcan.2022.09.008

[15] Noor, Z., Hina, S., Hayat, F., Shah, G.A. (2023). An

intelligent context-aware threat detection and response

model for smart cyber-physical systems. Internet of

Things, 23: 100843.

https://doi.org/10.1016/j.iot.2023.100843

[16] Abirami, A., Palanikumar, S. (2023). BBBC-DDRL: A

hybrid big-bang big-crunch optimization and deliberated

deep reinforced learning mechanisms for cyber-attack

detection. Computers and Electrical Engineering, 109:

108773.

https://doi.org/10.1016/j.compeleceng.2023.108773

[17] Aygul, K., Mohammadpourfard, M., Kesici, M.,

Kucuktezcan, F., Genc, I. (2024). Benchmark of machine

550

learning algorithms on transient stability prediction in

renewable rich power grids under cyber-attacks. Internet

of Things, 25: 101012.

https://doi.org/10.1016/j.iot.2023.101012

[18] Jiang, T., Shen, G., Guo, C., Cui, Y., Xie, B. (2023).

BFLS: Blockchain and federated learning for sharing

threat detection models as cyber threat intelligence.

Computer Networks, 224: 109604.

https://doi.org/10.1016/j.comnet.2023.109604

[19] Guarascio, M., Cassavia, N., Pisani, F.S., Manco, G.

(2022). Boosting Cyber-Threat Intelligence via

Collaborative Intrusion Detection. Future Generation

Computer Systems, 135: 30-43.

https://doi.org/10.1016/j.future.2022.04.028

[20] Alshehri, M., Abugabah, A., Algarni, A., Almotairi, S.

(2022). Character-level word encoding deep learning

model for combating cyber threats in phishing URL

detection. Computers and Electrical Engineering, 100:

107868.

https://doi.org/10.1016/j.compeleceng.2022.107868

[21] Lin, P.C., Hsu, W.H., Lin, Y.D., Hwang, R.H., Wu, H.K.,

Lai, Y.C., Chen, C.K. (2023). Correlation of cyber threat

intelligence with sightings for intelligence assessment

and augmentation. Computer Networks, 228: 109736.

https://doi.org/10.1016/j.comnet.2023.109736

[22] Racherache, B., Shirani, P., Soeanu, A., Debbabi, M.

(2023). CPID: Insider threat detection using profiling and

cyber-persona identification. Computers & Security, 132:

103350. https://doi.org/10.1016/j.cose.2023.103350

[23] Chen, T.M., Zeng, H., Lv, M.Q., Zhu, T.T. (2024).

CTIMD: Cyber threat intelligence enhanced malware

detection using API call sequences with parameters.

Computers & Security, 136: 103518.

https://doi.org/10.1016/j.cose.2023.103518

[24] Admass, W.S., Munaye, Y.Y., Diro, A.A. (2024). Cyber

security: State of the art, challenges and future directions.

Cyber Security and Applications, 2: 100031.

https://doi.org/10.1016/j.csa.2023.100031

[25] Yockey, P., Erickson, A., Spirito, C. (2023). Cyber threat

assessment of machine learning driven autonomous

control systems of nuclear power plants. Progress in

Nuclear Energy, 166: 104960.

https://doi.org/10.1016/j.pnucene.2023.104960

[26] Irshad, E., Siddiqui, A.B. (2023). Cyber threat attribution

using unstructured reports in cyber threat intelligence.

Egyptian Informatics Journal, 24(1): 43-59.

https://doi.org/10.1016/j.eij.2022.11.001

551

