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The COVID-19 pandemic, which originated in 2019, has caused a significant global 

number of fatalities. The economic and healthcare impacts of COVID-19 infection in 

survivors have become evident during this period. An important first step towards the 

effective management of COVID-19 is an effective screening of patients, which 

includes radiology examinations using chest radiography as one of the primary 

screening modalities. Early research has shown that patients with pneumonia and 

COVID-19 infection show different anomalies in chest radiography images. Classifying 

images of COVID-19 and pneumonia diseases has proven to be a challenging task for 

computers. Several classification systems were developed using different databases in 

order to determine the category to which the detected image belongs. The accuracy 

percentage was assessed using these systems. However, there are instances where the 

imaging techniques may produce distorted images, low contrast images, or fail to 

accurately depict the edges of the internal organs. These challenges can have an impact 

on the accuracy of a classification model's design. In this study, a new robust model 

called FPD-VGG-16 is introduced. This model combines the Visual Geometry Group 

(VGG-16) deep learning technique with the Fractional Partial Differential (FrPDA) 

mathematical method. The idea of using FrPDA is to improve edges, increase the 

visibility of texture details, and retain smooth areas in comparison to using only deep 

algorithms. The proposed model demonstrates accurate pneumonia detection and 

COVID-19 classification from chest X-ray images; the model recorded an impressive 

accuracy of 98.1%, along with equally remarkable precision and recall values 0.982 and 

0.980 respectively, as well as and f1-score score of 0.981. While 96.2% as an accuracy 

measure is achieved in this study without using the FrPDA algorithm. 
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1. INTRODUCTION

In early December 2019, there were reports of several 

patients in Wuhan City, China, who had pneumonia with 

unknown causes [1]. Some patients have exhibited severe 

acute respiratory syndrome (SARS) during the initial phases 

of this pneumonia, which has an unknown cause. However, it 

is important to note that only a small percentage of patients 

have exhibited symptoms of a rapid escalation in acute 

respiratory distress (ARD) disorder. Additionally, there have 

been reports of other worrisome complications as well. I'm 

sorry, but I need more context or information in order to 

provide a well-written response On January 7, 2020, the 

Chinese Centre for Disease Control and Prevention (CCDC) 

discovered a new strain of coronavirus (nCoV) from a throat 

swab sample collected from a patient in Wuhan. This virus was 

later designated as 2019-nCoV by the World Health 

Organisation (WHO) [2]. As of December 31, 2021, a global 

total of 284,992,606 cases of coronavirus infection have been 

reported, with 5,440,570 deaths and 252,735,264 recoveries 

[3]. The frontline experts used the real-time reverse 

transcription-polymerase chain reaction test as the first set for 

checking COVID-19 amid this tough time [4]. Reverse 

transcription method was applied to acquire the DNA from the 

individual infected. This DNA is subsequently subjected to 

PCR to amplify it before undergoing analysis. Hence, it is 

capable of detecting the coronavirus as this particular virus 

exclusively contains RNA patterns [5]. The results obtained 

from PCR kits for COVID-19 tests are currently being delayed 

due to increased demand. PCR kits are not considered reliable 

due to the presence of false-negative (FN) results [6]. 

Therefore, there is a need for alternative and robust diagnostic 

methods that can detect outbreaks of COVID-19 and 

pneumonia diseases at an early stage. Figure 1 illustrates a heat 

map showcasing the distribution of COVID-19 epidemic 

deaths, which have affected millions of people worldwide. 

Chest X-rays are effective and cost-efficient diagnostic 

techniques that can detect outbreaks of COVID-19 and 

pneumonia diseases at an early stage. However, due to the 

significant similarities between COVID-19, viral pneumonia, 

and tuberculosis, it presents a challenge for physicians to 

distinguish between them solely based on chest X-rays [7-9]. 

Numerous research studies have been conducted to classify 

cases as either COVID-19 or healthy [10], COVID-19 or 
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pneumonia [11], or COVID-19 or Tuberculosis (TB) [12]. 

However, these studies lacked the ability to accurately make a 

clear distinction between these diseases using chest X-rays. 

 

 
 

Figure 1. A heat map showcasing the distribution of 

COVID-19 over the worldwide [7] 

 

Medical image classification is the act of image analysis and 

determination of its appropriate "category". This can be 

likened to a virtual machine designed to mimic human 

behavior. Classifying medical images has proven to be a 

challenging task for computers, despite its seemingly 

straightforward nature. Multiple classification systems were 

developed using various databases to determine the category 

to which the detected image belongs. These systems were then 

used to assess the accuracy percentage [13, 14]. 

In classification models for COVID-19 and pneumonia, the 

imaging techniques occasionally produce images that contain 

artefacts, exhibit low contrast, or fail to clearly depict the 

boundaries of the visceral organs. As a result, these challenges 

can impact the accuracy of a classification model's design [15]. 

Therefore, it is necessary to do some preprocessing such as 

resizing, normalisation, and augmentation on these types of 

medical images [16-18]. 

Mathematical algorithms, such as integral differentials and 

reference-based methods, have been used to classify medical 

images. However, these algorithms did not achieve the optimal 

resolution [19]. Fractional partial differential algorithms 

(FrPDAs) have been used as a new image processing 

technique in the medical sector. Fractional differentials, a 

theory of arbitrary order, bear similarities to integral 

differentials [20]. The use of fractional differentials in the 

processing of images has been found to improve edges, 

increase the visibility of texture details, and retain smooth 

areas in comparison to conventional integral differential 

methods [21]. 

The contrast and clarity of images that have undergone 

fractional differential processing are mostly enhanced. The 

conventional fractional differentials manage edges, textures, 

and smooth areas in an image by using the same fractional 

order even though this strategy has some drawbacks. It is 

possible to use higher fractional orders to efficiently improve 

edges, but they frequently overlook smooth sections and weak 

textures. Regarding the lower fractional orders, they 

can weaken the edges while preserving smooth sections and 

weaker textures. Therefore, achieving image enhancement in 

practice is challenging and to address these challenges, 

researchers have developed both conventional and enhanced 

fractional differential (FD) frameworks for usage in the 

processing of digital images [22, 23]. In earlier research [24], 

the application of adaptive fractional derivatives to solve 

image denoising issues was investigated. Sharma et al. [21] 

proposed the operator YiFeiPu-2, which has shown to have 

greater convergence and precision, as well as six fractional 

differential masks. The mentioned differential operators have 

fixed fractional orders determined by humans. Consequently, 

modifying the area features of the image would not optimise 

image enhancement. 

Furthermore, numerous studies have classified COVID-19 

and related conditions using Convolutional Neural Networks 

(CNN) [25], Recurrent Neural Network - Long Short Term 

Memory (RNN-LSTM) [26], Visual Geometry Group (VGG-

16) [27]. VGG-16 is a highly regarded CNN model in the field 

of computer vision, widely recognised as one of the most 

effective models available. It is specifically designed for tasks 

involving classification and localization. The VGG-16 model 

is renowned for its utilisation of 16 layers with weights, 

making it one of the most highly regarded vision model 

architectures currently available. Like many other popular 

networks such as GoogleNet and AlexNet, there are several 

well-known networks in the field of computer vision [28]. 

This study introduces a new robust model called FPD-

VGG-16, which combines a deep learning technique known as 

VGG-16 with a mathematical method known as Fractional 

Partial Differential (FrPDA). The proposed model accurately 

detects and classifies pneumonia and COVID-19 from chest 

X-ray images. Fractional differentiation has started to play a 

very important role in various image and signal processing 

research fields. In image processing, fractional calculus can be 

rather interesting to improve edges, increase the visibility of 

texture details, and retain smooth areas in comparison to using 

only deep algorithms, which led the proposed model to high 

accuracy while maintaining the model's training complexity. 

The paper has been organized thus: the investigation of the 

previous works is presented in Section 2 while Section 3 of 

this study presents a comprehensive overview of both the 

fractional difference algorithm and the VGG-16 network. 

Furthermore, this section discusses the datasets that were 

utilized and the performance metrics used to evaluate the 

performance of the proposed model. In Section 4 of the paper, 

an in-depth discussion is presented regarding the experiments 

conducted and the subsequent comparisons made. Finally, in 

Section 5, the study’s conclusion is made. 

 

 

2. RELATED WORKS 

 

A COVID-19 epidemic was observed in Kumar et al. [29]. 

Medical experts conducted an investigation into the symptoms 

of the illness, which included fever, cough, muscle pain, and 

fatigue. Permanent diseases are uncommon. Influenza can lead 

to chest discomfort. COVID-19 is transmitted through 

particles or aerosols that are released when an infected 

individual coughs, talks, or sneezes. COVID-19 is different. 

The spread of variants can be rapid and pose a significant 

danger when they give rise to abnormal individuals. The 

results indicate that abnormalities are increasing in severity. 

The rapid progress in computing technology has driven the 

wide adoption of digital image processing in medicine. This 

includes various techniques such as image segmentation and 

augmentation. Deep Learning (DL) technologies, such as 

CNN [30], are utilized in the field of medical image processing. 

DL models have been shown to enhance the accuracy and 

effectiveness of various tasks such as forecasting, testing, and 

categorizing. 

Asif et al. [31] focused on digitally detecting COVID-19 
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pneumonia cases via analysis of X-ray images. The DL model 

effectively identifies the unique characteristics and effects of 

COVID-19, thereby enhancing its categorization capabilities. 

There were 864 cases of pneumonia, COVID-19, and normal 

X-rays. Despite being built on massive data, the system 

underwent pre-processing and enhancement. In their study, 

Qjidaa et al. [32] developed a clinical decision-support system 

specifically developed for the identification of COVID-19 

patients based on chest X-rays. Analysis was conducted on 

30% of the collection, which consists of three classes. The data 

from two streams was obtained in an inappropriate manner and 

underwent extensive processing. 

A study investigated by Khasawneh et al. [33] in which they 

identified chest X-rays using CNN. The initial photographs 

were captured at King Abdullah University Hospital in Jordan. 

I am 63.15 years old. From a 31-month-old child to a 96-year-

old individual. Clinics can cause harm. Data stores were 

employed for evaluation after the system underwent training 

and testing. The models used include CNN, Mobile Nets, and 

VGG-16. The models are overfitting the photographs and 

failing to generalise to additional details. The analysis of 

combined data showed a detection performance of 98.7%, 

which was slightly higher than the effectiveness of maximal 

techniques. The identification of COVID-19 was credited to 

Haiti et al. The images in the Ray dataset are resized to 80×80, 

resulting in a resolution of 6400 pixels. I would like assistance 

with resizing and vectorizing images. One way to address 

inequality is by utilising a dataset consisting of 135 images of 

normal patients and 135 images of patients diagnosed with 

COVID-19. COVID-19 is comprised of three groups: 135 

individuals with drug-induced blood clots, 135 healthy 

individuals, and 135 patients receiving intensive treatment. 

T2-weighted MRIs are an effective diagnostic tool. I would 

like to request MRIs with dimensions of 80x80. The image 

vectors are focused on X-rays with a resolution of 1:6400. The 

categorization strategies were unsuccessful on all three 

datasets. The prototype involved a comparison of DL and ML 

algorithms. 

Alhwaiti et al. [34] recommended utilising DL methods for 

the identification of COVID-19 cases in x-ray images. Since 

the release of COVID-19 in December 2019, there has been no 

publicly available scientific dataset. Hospitals are required to 

share data from multiple sources. CNN classifier, Google Net, 

ResNet18, and ResNet50 are examples of pre-trained models. 

Additionally, there is the option of using grid search. This 

approach has a global scope. The training at CNN has been 

modified. The upcoming features include ILR, L2 

regularisation, momentum, and minibatch size. Estimates are 

made for precision, accuracy, sensitivity, and F1-score. The 

prototype's ability to predict COVID-19 occurrences from 

records was objectively evaluated using various performance 

indicators. The prototypes of GS and ResNet50 have achieved 

significant breakthroughs. 

Abiyev et al. [35] are credited with creating COVID-19 and 

CNN. The procedures for image processing include analyzing 

normal pneumonia and X-ray image databases, splitting 

images into training set, testing set, and validation set, resizing 

images, extracting features, and resampling information. The 

error rate is determined by comparing the latest responses to 

the target classes. The error function and learning algorithm 

have a subsequent impact on CNN signals. Images can be 

categorized into four main groups: upcoming, scaling down, 

feature extraction, and picture restoration. The intended model 

is a subset of the network model that aims to identify whether 

X-rays indicate the presence of pneumonia, COVID-19, or a 

normal case. The learning algorithm updates the models of 

CNN. 

Elshennawy and Ibrahim [36] have developed assays 

specifically designed for detecting viral chest infections, 

including COVID-19. The collection consists of 5,856 X-rays, 

both positive and negative. Children between the ages of 1 and 

5 who have different health issues are involved. The files for 

training, validation, and testing. The image database accounts 

for 30% of the proposal testing. The training of the prototype 

included different ratios, such as 50:50, 60:40, 70:30, 80:20, 

and 90:10. They analyzed split ratios using an 80/20 

training/testing dataset. The algorithm was trained using 5740 

intercepts, over 20 epochs, with a 0.0001 learning rate. Later, 

a model based on CNN (Convolutional Neural Network) was 

able to accurately identify cases of viral pneumonia in x-ray 

images. The AlexNet model is composed of convolutional 

layers. Convolution, max pooling, and normalization are 

processes used in convolutional layers. The SoftMax function 

is applied to one of the two layers, resulting in their 

combination. A 70:30 ratio was found to be effective in 

categorization training. The specificity is 99.84% and the 

sensitivity is 98.59%. 

 

 

3. PRELIMINARIES 

 

This section covers the techniques and phases of the 

suggested methodology that will be used to achieve the main 

objectives of this study. The used datasets, as well as the 

experimental environment, have been indicated. 

 
3.1 An overview of the modified FrPDA 

 
Fractional calculus is a branch of mathematics that 

generalizes the standard definitions of integral and derivative 

operators in the same upper line as do fractional powers allow 

to generalize the concept of exponent for real numbers. 

Fractional differential equations have become more popular in 

recent years as a powerful and organized mathematical tool for 

investigating various phenomena in the fields of science and 

engineering. Research in fractional differential equations 

spans across multiple disciplines and finds applications in a 

wide range of fields. These include continuum mechanics fluid 

mechanics, control systems, circuit systems, heat transfer, 

elasticity, electric drives, signal analysis, quantum mechanics, 

biomathematics, biomedicine, and social systems, 

bioengineering [37, 38]. 

To date, a universally accepted formula for defining 

fractional calculus has not yet been developed. Different 

definitions of fractional calculus have been developed as a 

result of the thorough analysis of the issue from numerous 

angles by mathematicians. The three traditional definitions of 

fractional calculus are the R-L, Capotu, and G-L definitions 

[39]. For the processing of medical images, we used the G-L 

definition, as it is less complex and requires only one 

coefficient. First, second and third order derivatives of f(t) 

were obtained by means of the L’Hospital rule: 

 

𝑓′(𝑟) = 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+ℎ)−𝑓(𝑟)

𝑔
  (1) 

 

𝑓′′(𝑟) = [𝑓′(𝑡)]′ 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+2ℎ)−2𝑓(𝑟+ℎ)+𝑓(𝑟)

𝑔2   (2) 
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𝑓′′′(𝑟) = [𝑓′′(𝑟)]′ 𝑙𝑖𝑚
𝑔→0

𝑓(𝑟+3ℎ)−3𝑓(𝑟+2ℎ)+𝑓(𝑟)

𝑔3   (3) 

 

The n-th order derivative (denoted as n∈N) of function f(r) 

is derived mathematically as follows: 

 

𝑓(𝑛)(𝑟) = 𝑙𝑖𝑚
𝑔→0

𝑔−𝑛 ∑ (−1)𝑗(𝑗
𝑛𝑛

𝑗=0 ) 𝑓(𝑟 − 𝑗𝑔)  (4) 

 

The gamma function generates the fractional order, ranging 

from integer to fraction. The v-order FD of function f(t) is 

described as the derivative of order (n+1) on the interval [a, b], 

where function f(r) has (n+1)-order derivatives. 

 

𝑎𝐷𝑏
𝑣𝑓(𝑟) = lim

𝑔→0
𝑟−𝑣 ∑ (−1)𝑗( )𝑓(𝑟 − ℎ𝑔)𝑗

𝑣[(𝑏−𝑎)/𝑟]
𝑗=0   (5) 

 

where, the integer part of 
𝑏−𝑎

𝑟
 is [

𝑏−𝑎

𝑟
]  and  ( )𝑗

𝑣 =
𝑣𝑖

𝑓!(𝑣−𝑗)!  is 

binomial coefficient. 

 

3.2 An overview of VGG-16 networks 

 

One of the most heavily used deep learning CNN for vision 

tasks is the VGG-16 network [40]. VGG-16 is actually a 

specific implementation of the regular VGG network, but the 

difference is that if has a total of 16 layers (3 fully linked & 13 

convolutional layers). Yet, the VGG-16 network has a specific 

outline as architecture. Initially, the input to be received by a 

VGG-16 network is a 224×224 image, which was kept 

standard as a result of cropping a 224×224 section from the 

center of each image in the ImageNet dataset. The receptive 

field on VGG is 3×3 which is used by the convolution filter is 

the smallest. A 1×1 convolution filter is also used by VGG to 

linearly transform the input. Next, a distinct linear function is 

applied, which is known as Rectified Linear Unit Activation 

Function to return an identical response on the input; while on 

the other hand, it would be a zero output for negative inputs. 

As a result of the fact that AlexNet, could be a classic CNN 

architecture and a Local Response Normalisation increases the 

time taken for training and the amount of memory used, and 

on the other hand also, it is not used by the hidden layers of 

VGG: the activation function for the hidden layer VGG is 

ReLu. Following the Convolution Phases, additionally, a 

Pooling layer are appended, which is used to reduce the 

dimensionality of the feature map, and it is due to reasons to 

reduce the parameters amount present in feature maps. Hence, 

a pooling layer is necessary, considering there were increasing 

filters for 64, then 128, and 256, and in the posterior levels 512 

filters. You may also mention the fact that the VGG is made 

up of three interconnected layers with the first two combining 

4096 channels: 

In the l-th layer, we will consider transforming its inputs xl, 

which form an order 3 tensor 𝑥𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
. Where xl is the 

i-th row and j-th column and k-th depth of xl (in other words 

of xl is an element xi,j,k of xl), it'll be typically be useful for us 

to know the triplet index set ((i,j,k)); i.e., the triplet (il, jl, dl) 

with 0≤il<Hl, 0≤jl<Wl, and 0≤dl<Dl that locates this particular 

element in xl. Later in VGG training we'll use a kind of "mini-

batch" strategy where N>1, and so xl will typically become an 

order 4 tensor in ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙×𝑁 where N is the mini-batch size. 

But, for seriously issues sometimes it can be helpful to 

consider N=1. It turns out that in essentially all uses of our 

output tensor variables, we'll also use the zero-based indexing 

convention, so that a size Hl+1×Wl+1×Dl+1 output tensor is 

indexed by the triplets (il+1, jl+1, dl+1), 0≤il+1<Hl+1, 0≤jl+1<Wl+1, 

0≤dl+1<Dl+1. 

In the l-th layer, our goal will be to transform the input xl to 

an output y, where y and xl+1 will refer to the same object. Thus, 

we expect y to be of size Hl+1×Wl+1×Dl+1 (in other words, when 

we say that y is the output of the l-th layer, we mean that it’s 

the input to the (l+1)-st layer). An element in our output y will 

be indexed by a triplet (il+1, jl+1, dl+1), 0≤il+1<Hl+1, 0≤jl+1<Wl+1, 

0≤dl+1<Dl+1. 

 

3.2.1 The ReLU layer 

The input size in the ReLU layer remains unchanged, and xl 

and y have the same size. Additionally, there is no need for 

parameter learning. Sometimes, ReLU is considered a 

truncation that was performed separately for every component 

of the input: 

 

𝑦𝑖,𝑗,𝑑 = max{0, 𝑥𝑖,𝑗,𝑑
𝑙 }  (6) 

 

where, 0≤i<Hl=Hl+1, 0≤j<Wl=Wl+1, and 0≤d<Dl=Dl+1. 

From the above equation, it is obvious that: 

 
d𝑦𝑖,𝑗,𝑑

d𝑥𝑖,𝑗,𝑑
𝑙 = [[𝑥𝑖,𝑗,𝑑

𝑙 > 0]]  (7) 

 

where, [[𝑥𝑖,𝑗,𝑑
𝑙 > 0]] represents the indicator function (having 

a value of 1 or 0 if the argument is true or false respectively).  

Hence,  

 

[
∂𝑧

∂𝒙𝑙]
𝑖,𝑗,𝑑

= {
[

∂𝑧

∂𝒚
]

𝑖,𝑗,𝑑
if 𝒙𝑖,𝑗,𝑑

𝑙 > 0

0 otherwise

.  (8) 

 

Noting that y is an alias for xl+1. 

Note that the max (0, x) function cannot be differentiated at 

x=0, hence, Eq. (4) is somehow theoretically problematic. 

Therefore, it is not suitable in practice and as such, ReLU is 

safe to use. 

 

3.2.2 The convolution layers 

Using the following assumptions: 

An input to layer l in the convolutional layers is a tensor of 

order 3 having size Hl×Wl×Dl. 

A kernel of convolution is again a tensor of order 3 and its 

size is H×W×Dl. 

Overlapping of the kernel at spatial position (0, 0, 0) on the 

input tensor makes the kernel slide over the input tensor 

generating product of related elements at all Dl channels and 

adding up the HWDl products generates the result of 

convolution at the related spatial position; the kernel is moved 

to the bottom, left-to-right and alternated again to complete 

this process. 

A simple case is considered in this section where no padding 

is used and the stride is 1. Hence, we have y (or xl+1) in 

ℝ𝐻𝑙+1×𝑊𝑙+1×𝐷𝑙+1
, with Hl+1=Hl-H+1, Wl+1=Wl-W+1, and 

Dl+1=D. 

The mathematical expression of the convolution process is 

given thus: 

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 

= ∑  𝐻
𝑖=0 ∑  𝑊

𝑗=0 ∑  𝐷𝑙

𝑑𝑙=0 𝑓𝑖,𝑗,𝑑𝑙,𝑑 × 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙  
(9) 

 

A repeat of this equation is performed for all 0≤d≤D=Dl+1, 
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as well as for any other spatial location (il+1, jl+1) that satisfies 

the condition 0 ≤ 𝑖𝑙+1 < 𝐻‾ 𝑙 − 𝐻 + 1 = 𝐻𝑙+1, 0 ≤ 𝑗𝑙+1 <
𝑊𝑙 − 𝑊 + 1 = Wl+1. The notation 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙  in the 

equation describes the component of xl indexed by the triplet 

(il+1+i, jl+1+j, d1). 

Even though a bias term bd is often added to 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑, this 

term was omitted in this case for better presentation. 

 

3.2.3 The pooling layer 

Let’s now consider a pooling layer where the input to the l-

th layer is 𝑥𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙
. The pooling operation has no 

parameters, so it doesn’t need to worry about learn any w’s. 

So, the w’s are going to be 0, and in this layer what we need 

to specify is the shape of the pooling layer. So, in the 

architecture of a ConvNet the dimensionality of a volume goes 

through a series of changes and in the very end it is 

Ho×Wo×Do, where we C the depth dimension). Let’s say that 

the spatial extent of the pooling is H×W. More so, the pooling 

operates with a stride of S, where H divides Hl and W divides 

Wl, then the output of the pooling O(l) will be an order 3 tensor 

and the size will be Hl+1×Wl+1×Dl+1, with: 

 

𝐻𝑙+1 =
𝐻𝑙

𝐻
,  𝑊𝑙+1 =

𝑊𝑙

𝑊
,  𝐷𝑙+1 = 𝐷𝑙   (10) 

 

The operation of a pooling layer upon xl is independently 

channel-wise. The matrix with Hl×Wl elements in each channel 

is partitioned into Hl+1×Wl+1 sub-regions that cannot overlap, 

and the size of each of the sub-region is H×W. Then, a sub-

region is mapped by the pooling operator into a single number.  

Average pooling and max pooling are the two commonly 

used types of pooling operators. For the average pooling, a 

sub-region is mapped by the pooling operator to its average 

value while in the max pooling, a sub-region is mapped by the 

pooling operator to its maximum value.  

Mathematically, 

max: 

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = max
0≤𝑖<𝐻,0≤𝑗<𝑊

 𝑥
𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 , (11) 

 

Average: 

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑
1

𝐻𝑊
∑  0≤𝑖<𝐻,0≤𝑗<𝑊  𝑥

𝑖𝑙+1×𝐻+𝑖,𝑗𝑙+1×𝑊+𝑗,𝑑
𝑙 ,  (12) 

 

where, 0≤il+1<Hl+1, 0≤jl+1<Wl+1, and 0≤d<Dl+1=Dl. 

As a local operator, forward computation of pooling is a 

straightforward task; hence, attention is given to the back 

propagation and discussion is only focused on max pooling; 

let’s revisit the indicator matrix. For this indicator matrix, all 

that needs to be encoded is: for every element in y, where does 

it come from in xl. A triplet (il, jl, dl) is needed to identify one 

component in the input xl, while another triplet (il+1, jl+1, dl+1) 

is needed to find one component in y. The output 𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑𝑙+1  

of the pooling process is derivable from 𝑥
𝑖𝑙,𝑗𝑙,𝑑𝑙
𝑙 , if and only if: 

 

i. They are in the same channel; 

ii. The (il, jl)-th spatial entry belongs to the (il+1, jl+1)-th 

subregion; 

iii. The (il, jl)-th spatial entry is the largest one in that sub-

region. 

A translation of these conditions gives the following 

equations: 

⌊
𝑖𝑙

𝐻
⌋ = 𝑖𝑙+1, ⌊

𝑗𝑙

𝑊
⌋ = 𝑗𝑙+1  (13) 

 

𝑥𝑖𝑙,𝑗𝑙,𝑑𝑙 ≥ 𝑦𝑖+𝑖𝑙+1×𝐻,𝑗+𝑗𝑙+1×𝑊,𝑑𝑙 ,  

∀0 ≤ 𝑖 < 𝐻, 0 ≤ 𝑗 < 𝑊 
(14) 

 

where, the floor function is given as  ⌊⋅⌋. In the vertical or 

horizontal planes, if the stride is not H(W), Eq. (11) must 

accordingly be altered. 

Consider a given triplet (il+1, jl+1, dl+1) where only one (il, jl, 

dl) triplet can satisfy the whole of these conditions, the 

indicator matrix can then be defined as: 

 

𝑆(𝒙𝑙) ∈ ℝ(𝐻𝑙+1𝑊𝑙+1𝐷𝑙+1)×(𝐻𝑙𝑊𝑙𝐷𝑙). (15) 

 

where, S a row is specified by one triplet of indexes (il+1, jl+1, 

dl+1) while a column is specified by (il, jl, dl). Collectively, both 

triplets identify one component in S(xl) and that element is set 

to 0 if Eqs. (10) to (12) are not satisfied simultaneously, and 1 

if satisfied. One row and one column of S(xl) corresponds to 

one element in y and one element in xl, respectively.  

Considering this indicator matrix, it applies that: 

 

vec (𝒚) = 𝑆(𝒙𝑙)vec (𝒙𝑙)  (16) 

 

Then, it is obvious that: 

 
∂ vec(𝒚)

∂(vec(𝒙𝑙)
𝑇

)
= 𝑆(𝒙𝑙),  

∂𝑧

∂(vec (𝒙𝑙)
𝑇

)
=

∂𝑧

∂(vec (𝒚)𝑇)
𝑆(𝒙𝑙)  (17) 

 

and consequently, 

 
∂𝑧

∂vec (𝒙𝑙)
= 𝑆(𝒙𝑙)𝑇 ∂𝑧

∂vec (𝒚)
  (18) 

 

S(xl) is highly sparse and its entry in every row is exactly 

one non-zero entry. Hence, the entire matrix is not going to be 

used in the computation, rather, the locations of those nonzero 

entries are to be recorded - there are only Hl+1Wl+1Dl+1 such 

entries in S(xl). 

The meaning of these equations can be explained using a 

simple example. Assume a 2×2 max pooling with a stride 

value of 2; the spatial subregion for each given channel dl has 

4 elements in the input, where (i, j)=(0,0), (1,0), (0,1) and (1, 

1);also assume that the largest element among all the elements 

is the one at spatial location (0, 1). Then, in the forward pass 

of the input, the indexed value by (0, 1, dl), i.e., 𝑥
0,1,𝑑𝑙
𝑙 , is going 

to be allocated to the element occupying the (0, 0, dl)-th 

position in the output (i.e., 𝑦0,0,𝑑𝑙). 

It is expected that in S(xl) one column can only contain a 

maximum of one non-zero entry if the strides are H & W. In 

the considered case, the S(xl) columns indexed by (0, 0, dl), (1, 

0, dl) & (1, 1, dl) are all 0 vectors. The (0, 1, dl) column only 

contains one non-zero entry and the row index of this entry is 

only determined by (0, 0, dl). Therefore, the back-propagation 

process will give: 

 

[
∂𝑧

∂vec (𝒙𝑙)
]

(0,1,𝑑𝑙)
= [

∂𝑧

∂vec (𝒚)
]

(0,0,𝑑𝑙)
  (19) 

 

[
∂𝑧

∂ vec(𝒙𝑙)
]

(0,0,𝑑𝑙)

= [
∂𝑧

∂ vec(𝒙𝑙)
]

(1,0,𝑑𝑙)

= [
∂𝑧

∂vec (𝒙𝑙)
]

(1,1,𝑑𝑙)

= 0 (20) 

 

But if the pooling strides are comparatively less than H in 
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the y-axis and less than W in the x-axis, then, the largest 

element in most of the pooling sub-regions could be one 

element in the input tensor. Therefore, one column of S(xl) 

may have more than one non-zero entries. If the stride is 1 in 

both directions and a 2×2 max pooling is applied, the element 

9 will become the largest entry in 2 different pooling sub-

regions as follows: [
5 6
8 9

] & [
6 1
9 1

]. Hence, there are 2 non-

zero entries in the S(xl) column that corresponds to the element 

9 (indexed by (2, 2, dl) in the input tensor), with row indexes 

corresponding to (il+1, jl+1, dl+1)=(1, 1, dl) & (1, 2, dl). Therefore, 

this example provides that: 

 

[
∂𝑧

∂vec (𝒙𝑙)
]

(2,2,𝑑𝑙)

= [
∂𝑧

∂vec (𝒚)
]

(1,1,𝑑𝑙)
+ [

∂𝑧

∂vec (𝒚)
]

(1,2,𝑑𝑙)
  (21) 

 

3.3 Proposed methodology 

 

Image enhancement is a process that typically uses several 

algorithms to enhance the contrast and precise details of an 

image. The outcome of this research is going to be a new and 

effective model that will be FPD-VGG-16. The proposed 

model exhibits a high degree of accuracy in pneumonia and 

COVID-19 detection and classification using chest X-ray 

images. This goal will require the selection of a dataset 

appropriate for this activity before it can be achieved. To 

ensure the accurate identification of both pneumonia and 

COVID-19, two separate datasets are utilized in the new 

model. Each dataset corresponds to a specific disease infection 

and consists of chest X-ray data. Figure 2 illustrates the 

acquisition of two separate datasets: a pneumonia dataset and 

a COVID-19 dataset. Both datasets undergo a data pre-

processing stage to prepare them for input into the proposed 

FPD-VGG-16 model. Once the PD-VGG-16 model is created, 

it is trained using pre-processed data to learn how to accurately 

identify COVID-19 and Pneumonia. Following that, the FPD-

VGG-16 network undergoes testing using new data to assess 

its effectiveness in accurately classifying the infection.  

 

 
 

Figure 2. General diagram of the proposed FPD-VGG-16 

classification model 

 

3.3.1 Datasets description 

Two different datasets were chosen for this study, 

particularly one for Pneumonia and one for COVID-19. The 

Dataset containing Pneumonia images is actually called the 

"Chest X-ray" dataset, and it was obtained from the Mendeley 

Data repository, comprising 5856 images in total [41]. Chest 

X-ray datasets normally contain two types/classes of data, 

namely the normal class (NC) and the pneumonia class (PC), 

where each class contains several images that are partitioned 

into training, testing, and validation sets. The NC category 

contains 1341 training images, 8 validation images, and 234 

testing images, whereas the PC contains 3875 training images, 

8 validation images, and 390 testing images.  

On the one hand, the pictures in the “CovidX” dataset were 

utilized to train the FPD-VGG-16 model in detecting and 

classifying cases of COVID-19 infection from chest x-ray 

images. The CovidX dataset has 1300 images or 13975 chest 

X-ray images. These images assist in identifying whether the 

diagnosis of COVID-19 is accurate. This dataset is one of the 

most extensive chest X-ray datasets for diagnosing COVID-

19, and it is publicly available. The CovidX data is compiled 

from five data sets, all of which are publicly available [42]. 

Table 1 shows the summary of the distribution of the selected 

datasets. 

 

Table 1. The distribution of data in the chosen datasets 

 
Dataset Name Training Data Validation Data Testing Data Total 

Chest X-ray 
Normal Class 1341 8 234 

5856 
Pneumonia Class 3875 8 390 

CovidX  13975 

Furthermore, Figure 3 displays a compilation of chest X-ray 

images retrieved from selected databases. It demonstrates both 

normal chest X-ray images and a sample of a diseased chest 

X-ray, specifically from the COVID-19 class. 

 
3.3.2 Data pre-processing 

There are three main stages applied in these current studies 

before the implementation of any machine learning or deep 

learning model, and the first one is data pre-processing, and 

this is the most vital stage that must be conducted. The 

programmer should ensure that the data collected has a high 

quality to implement the model during the pre-processing. 

The first pre-processing step is the merging of the two 

datasets (Chest X-ray and COVIDX). The merging took place 

by appending the datasets and assigning labels to each image. 

Thus, the merged dataset would contain three labels: Normal, 

COVID-19, and Pneumonia. The following equation 

represents the merging procedure. Eq. (22) illustrates this 

action. 
 

𝑚𝑒𝑟𝑔𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 +
𝐶𝑂𝑉𝐼𝐷𝑥 𝑑𝑎𝑡𝑎𝑠𝑒𝑡  

(22) 

 

The second step involves resizing the images in order to 

achieve an identical dimension for all of them. The chosen size 

is 224×224 pixels. Image resizing is necessary because if the 

images have different sizes, it can have a negative impact on 

the performance of the deep learning model. Image resizing 

ensures that the inputs are consistent. Eq. (23) represents the 

procedure for image resizing. 

 

𝑟𝑒𝑠𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 =  𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑎𝑔𝑒, (224, 224))  (23) 

 

The final step involves data Normalization, which is 

924



 

necessary to ensure that the pixel values are within an 

equivalent range. During the normalization step, it is standard 

practise to ensure that the pixel values of the data have a mean 

value of zero and a standard deviation of one. Eq. (24) 

represents the normalization step. 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = (𝑖𝑚𝑎𝑔𝑒 − 𝑚𝑒𝑎𝑛)/
 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

(24) 

 

After the pre-processing procedure is finished, the data is 

ready to be fed to the model for training. 

 
 

Figure 3. Samples from the datasets showing normal and diseased X-rays 

 

3.3.3 Training environment 

The training of the model was done using the Adam 

Optimizer [43] and the categorical cross-entropy loss function 

[44]. During the training process of the model, recall, precision, 

accuracy, and F1-score are used as performance metrics to 

evaluate performance. In addition, callbacks like Model Check 

point [45], Early Stopping [46], and ReduceLROnPlateau [47] 

functions are employed to mitigate the issue of overfitting. The 

purpose of Model Check point is to save the model with the 

highest performance achieved during training. The Early 

Stopping function is responsible for continuously monitoring 

the training accuracy. If the accuracy does not show 

improvement over a specified number of epochs, the training 

process is halted. The ReduceLROnPlateau function is 

responsible for decreasing the learning rate if there is no 

improvement in accuracy after certain numbers of epoch. 

In this scenario, the patience parameter is set to 1. This 

means that if the accuracy does not improve after 1 epoch, the 

learning rate will decrease. Furthermore, the stop patience 

parameter is set to 3, indicating that the training will halt if the 

accuracy does not improve after 3 epochs. The factor 

parameter is now set to 0.5, which indicates a decline in the 

learning rate by a factor of 0.5 if there is no improvement 

observed after one epoch.  

 

 

4. RESULTS AND DISCUSSION 

 

This section discusses the achieved results using the 

datasets that were used, and also mentions the evaluation 

metrics. 

 

4.1 Equations 

 

The performance evaluation of the proposed model is based 

on the testing dataset outcomes. Some metrics are available to 

measure the model performance, which includes precision, 

recall, F1 score, and accuracy. Recall measures the model’s 

capability to identify all positive instances and is denoted as 

sensitivity. It estimates the number of correct positive 

classifications against the total number of true positive 

classifications. A high recall value implies low false-negative 

rates. In comparison, precision is the fraction of positive 

classifications which are correct. The number of true positive 

classifications divides the sum of true positive and false 

positive classifications. Precision is a measure of positive 

classification accuracy which has a high rate of false-positive. 

f-measure is also known as F1 score defined as the weighted 

harmonic mean of the precision and recall. It is a single 

number between 0 and 1 which does not capture the tradeoff 

one measure against the other. A high F1 score means you 

have a low false positive and low false negative; it has 

effectively reduced the cases of both types of error at the same 

time. That is, an F1 score may be a more useful measure when 

the VDR holds more importance than the false positive or false 

negative. Meanwhile, the accuracy is the ratio of the number 

of correct results to the total number of cases examined. It is 

most suitable where the entire data carries the same weight. 
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The values of these metrics, whether they are considered 

'good' or 'bad', depend on the specific context and application 

of the model. In certain situations, there may be instances 

where precision holds greater significance than recall, or 

conversely, where recall is more important than precision. The 

objective is to attain an equilibrium between these metrics in 

order to achieve the best possible performance for the model. 

Comprehending each of these metrics is essential for gaining 

a comprehensive understanding of the model's performance. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (25) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
  (26) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 

2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  
(27) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
  (28) 

 

where, TP=true positive; FP=false positive; TN=true negative; 

FN=false negative. 
 

4.2 Experimental outcomes 

 

Based on the results that have been obtained, it can be 

argued that the proposed FPD-VGG-16 model is an extremely 

reliable model for the automatic identification of pneumonia 

and COVID-19 cases in chest X-ray images. Performance was 

measured through training and testing before finally using the 

model. This part will first discuss the results that have been 

obtained then compare the model’s performance with that of 

other similar works. Evaluation is very crucial in the training 

phase to ensure the functionality of the model and make 

changes where applicable. 

 

 
 

Figure 4. The achievement of the training and validation 

accuracy metric 

 

Figure 4 shows the variation of the accuracy on the training 

and validation datasets, where the accuracy starts increasing 

rapidly after 2.5 epochs and reaches its maximum at 0.98 after 

17 epochs. 

Figure 5 illustrates how the loss changes during training and 

validation steps. Throughout validation, the loss starts 

decreasing yet achieves a small peak between 6 and 7.5 epochs 

before reaching 0.08. On the other hand, the loss during 

training decreases gradually until it reaches 0.05 after 

approximately 17 epochs. 

 
 

Figure 5. The achievement of the training and validation loss 

metric 
 

 
 

Figure 6. The achievement of the training and validation F1 

metric 
 

 
 

Figure 7. The achievement of the training and validation 

recall metric 

 

The variation of the F1-value is illustrated in Figure 6. In 

both training and validation, the F1 score starts its gradual 

increase and reaches its maximum after 17 epochs. Ultimately, 

the achieved F1 score in training is larger than that in 

validation. 

Figure 7 depicts that the recall in both training and 

validation starts increasing gradually as the number of epochs 

increases to 17. 
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Figure 8. Achievement of the training and validation 

precision metric 

 

Figure 8 illustrates that the precision value increases in the 

training and validation steps to reach its maximum at 17 

epochs. 

On the other hand, the precise metric values that were 

achieved during testing are summarized in Table 2. As 

illustrated, the proposed FPD-VGG-16 model achieved high 

scores for precision, recall, accuracy, and F1. More 

specifically, the achieved accuracy was 98.1%, the F1-score 

was 0.981, precision was 0.982, and recall was 0.980. The 

superior results can be attributed to the use of VGG16, a 

leading model in the field, which effectively distinguished 

between the three types. This underscores the model’s 

robustness and precision in classification tasks. 

 

Table 2. Performance metric during testing 

 
Metric Accuracy F1-score Recall Precision 

Value 98.1% 0.981 0.980 0.982 

 

4.3 Comparative study 

 

FPD-VGG-16 model was chosen for the present study 

because of its excellent features as well as its potential for 

good classification findings. However, there have been several 

studies that have utilized DL models to classify both 

pneumonia and COVID-19. Two studies are summarized, 

comparing their performances to those of the proposed FPD-

VGG-16 model. The first published article on the use of VGG 

model [28] monitored accuracy at different stages: during 

training, validation, and testing. The recorded values for these 

stages were 97.13%, 96.48%, and 96.89%, respectively. 

Regarding the specific results for each class, the accuracy 

achieved for COVID-19 was 97.67%, for the normal class it 

was 97.93%, and for bacterial pneumonia it was 98.19%. The 

results demonstrated that utilizing VGG-16 can be a highly 

effective approach for accurately classifying cases of 

pneumonia and COVID-19.  

The second study that used DL model [48] employed a CNN 

architecture and utilized pre-trained VGG-16 and 

DenseNet121 models. In this scenario, the CNN model 

outperformed the pre-trained networks in terms of precision, 

recall, and F1-score. Additionally, the CNN model exhibited a 

significantly higher accuracy rate of 91% compared to the pre-

trained networks' accuracy rate of 88%. When comparing the 

utilized VGG-16 model in this study to the two mentioned 

studies, Figure 8 demonstrates that the suggested model 

recorded the highest accuracy level of 98.10%. Figure 9 

illustrates a comparison analysis in terms of accuracy, 

precision, recall and f1 of references [28, 48] and the proposed 

FPD-VGG-16 model. 

 

 
 

Figure 9. A comparison analysis in terms of accuracy of 

references [28, 48] and the proposed FPD-VGG-16 model 

 

 

5. CONCLUSIONS 

 

Following the COVID-19 epidemic and the detrimental 

health impacts it caused, it was critical to quickly and readily 

identify COVID-19 infections. As the knowledge of COVID-

19 expanded, it became crucial to differentiate it from 

pneumonia, as each of these diseases necessitates distinct 

healthcare measures. Consequently, numerous studies have 

been conducted to develop models capable of differentiating 

normal cases from pneumonia and COVID-19 cases. In this 

work, an FPD-VGG-16 model was hybridized with a 

mathematical framework to create an FPD-VGG-16 model. 

The objective was to classify cases into three categories: 

pneumonia, COVID-19, and normal. The proposed model 

underwent comprehensive training, and the subsequent testing 

demonstrated its ability to perform classification with 

exceptional precision (0.982) and a high level of accuracy 

(98.1%). This feature has the potential to be very useful for 

diagnosing COVID-19 and pneumonia illnesses. Alternatively, 

clinicians can use this model to check the accuracy of their 

diagnosis by comparing it to the suggested model. 

Due to the dependency of many DL, as well as other AI 

methods, on training data, mainly on multiple types of medical 

data, such as both clinical data and medical images, 

abnormally large-scale training data is either unavailable or 

not available. The recognition that is the toughest part to detect 

and recognize the optimal models for the purpose of 

diagnosing COVID-19 due to the lack of access to an adequate 

amount of data. Further research is needed to rectify this 

situation. There is also the need for a benchmark dataset for 

COVID-19 diagnosis. 

Since the arrival of the COVID-19 virus, several variants 

have emerged as a result of mutations. Collecting data for 

various COVID-19 variants within a limited timeframe is a 

challenging task, and there is consistently a lack of up-to-date 

datasets specifically related to COVID-19. To address this 

issue, it is necessary to implement a comprehensive and 

efficient data gathering strategy. Additionally, it is important 

to note that modifying the variant could potentially impact the 

effectiveness of a model that was trained using a different 
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variant in the past. Therefore, further research is necessary. 

In fact, COVID-19 samples contain fewer CTs, MRIs, and X-

rays than pneumonia infection samples and healthy participant 

samples. This can be carried out using data augmentation, a 

technique weightlifting for generating new image samples by 

changing existing samples, such as flipping, rotating, zooming, 

or building noise in the complete images. Further study should 

be done to address criminal liability. Additionally, a definitive 

study identified the value of using imbalanced datasets. Data 

balancing is required in an upstream manner when it comes to 

dealing with imbalanced datasets. Finally, the efficiencies of 

provided models are compared before and after data balancing. 

Meanwhile, various individual types of data are available and 

may be combined, including demographics, MRI, X-ray, CT 

images, sound/auditory data, as well as clinical, laboratory, 

and blood test data. However, for the purpose of various 

studies related to COVID-19, it is required to combine several 

types of datasets and include organised and unstructured data 

on one level to execute further investigations. 
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