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In this paper, the aim is to study the weakly singular integro-differential equations, 

typically its significance appears in various applications of engineering and science. 

The contributions of this paper have been presented through the study of existence, 

uniqueness, and different stability of solution of the weakly singular integro-differential 

equations, and solving this type of equations analytically. We propose an analytic 

method based on Laplace transform to solve the weakly singular integro-differential 

equations, whose advantages lie in simplicity application and obtaining exact solutions. 

Some suitable examples have been provided to better understand this work and the 

results of experiments exhibited the proposed method as a simple approach and 

superiority in accuracy and efficiency of solution. 
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1. INTRODUCTION

Weakly singular integro-differential equations (WSIDE) 

have been growing importance enormously as it plays a key 

role to represent many typically in phenomena of physics and 

engineering as mathematical modeling. For instance, diffusion 

of separated particles in turbulent fluids [1], elasticity and 

fracture in mechanics [2], biosciences [3], potential problems, 

thermal conductivity problems, materials, radiative 

equilibrium, the Dirichlet problems [4-6] and so on. 

So a variety works focused its interest to tackle the 

equations of this form which are usually numerical methods, 

including an operational method [7], Bernstein series [8], 

Block boundary value method [9], Partition of the interval and 

introduction of additional parameters [10], Smoothing 

transformation and spline collocation [11], The asymptotic 

estimations of the solution [12], Product integration [13], 

collocations methods as Spline, Piecewise Polynomial, and 

Spectral respectively [14-16], but it is well known that the 

results of numerical methods have an error rate. 

To address the WSIDE with different orders of derivatives 

without error rate in results, in this paper we propose analytic 

efficient and simple technique to yield exact solution which is 

Laplace transform method (LTM). Procedure of Laplace 

transform (LT) with differential equations and integral 

equations is changing them to polynomial equations and easily 

can be solved, and thus the solution of the considered equation 

is obtained by taking the inverse Laplace transform (LT) for it 

[17, 18]. Our motivation of this work is to present exact 

solution for many real-world problems are described as 

WSIDE by using efficient and simple method. 

The remainder of this paper is organized as follows. In 

Section 2, the definition of concept WSIDE is expressed. In 

Section 3, we discuss the existence and uniqueness of solution 

for WSIDE. Section 4 discusses the various stability of 

solution for WSIDE. In Section 5, we introduce the concept of 

Laplace transform and it is followed up implementation it to 

solve WSIDE. In Section 6, the exact solutions of the WSIDE 

are obtained using the Laplace transform by solving several 

examples. Finally, conclusions are drawn in Section 7. 

2. THE WEAKLY-SINGULAR INTEGRO-

DIFFERENTIAL EQUATIONS (WSIDE)

Consider the following standard form of 𝑚th-order linear 

integro-differential equation of the second kind: 

𝑦(𝑚)(𝑡) = 𝑔(𝑡) + ∫ 𝑘(𝑠, 𝑡)

𝑡

𝑎

𝑦(𝑠)𝑑𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏,

0 < 𝑚 < ∞ 

(1) 

with initial conditions 𝑦(𝑗)(𝑎) = 𝑦𝑗 , 𝑗 = 0, 1, … , 𝑚 − 1 ,

where 𝑦(𝑚)(𝑡) =
𝑑𝑚𝑦

𝑑𝑡𝑡 , 𝑚 < ∞, 𝑔(𝑡), 𝑘(𝑠, 𝑡) are given

functions and 𝑦(𝑡)  is the unknown function, also 𝑘(𝑠, 𝑡)  is 

denoted the kernel of the integro equation. We usually propose 

that the functions 𝑦(𝑡)  and 𝑔(𝑡)  are continuous or square 

integrable on [𝑎, 𝑏]. Furthermore, Eq. (1) is also denoted a 

singular integral equation if the kernel K(x, t) becomes infinite 

at one or more points in the domain of integration. 

Motivation of present work is the desire to obtain exact 

analytic solution by using LTM for a linear weakly singular 

Volterra integro-differential equation (WSVIDE) of 𝑚th order 

and the second kind, where the integrand is denote as a weakly 

singular in the sense that its integral is continuous at the 

singular point, that is, its kernel 𝑘(𝑠, 𝑡) =
1

(𝑡−𝑠)𝛼 is singular as 
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𝑠 → 𝑡, where, 0 < 𝛼 < 1 is positive real constant. 

 

 

3. EXISTENCE AND UNIQUENESS SOLUTION OF 

WSIDE 
 

This section discusses the existence and uniqueness of 

solution for the WSIDE and toward meeting that, it will be 

beneficial considering following procedure: 

Let 𝑦(𝑚)(𝑡) = 𝑓(𝑡), where 𝑓(𝑡) is a continuous real valued 

function defined on [𝑎, 𝑏] . Integrating both sides 𝑚 -times 

from 𝑎 to 𝑡 and using the initial conditions, yields to:  

 

𝑦(𝑡) = ∑
(𝑡 − 𝑎)𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗 ∫
(𝑡 − 𝑥)𝑚−1

(𝑚 − 1)!

𝑡

𝑎

𝑓(𝑥)𝑑𝑥 (2) 

 

Eq. (1) can be written as: 

 
𝑓(𝑡)

= 𝑔(𝑡) + ∫ 𝑘(𝑠, 𝑡)

𝑡

𝑎

 ∑
(𝑠 − 𝑎)𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗 (∫
(𝑠 − 𝑥)𝑚−1

(𝑚 − 1)!

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 

= 𝑔(𝑡) + ∫
𝑘(𝑠, 𝑡)

(𝑚 − 1)!

𝑡

𝑎

( ∑
(𝑠 − 𝑎)𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗) (∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 

(3) 

 

Suppose, 

 

𝑊(𝑡, 𝑠) =
𝑘(𝑠, 𝑡)

(𝑚 − 1)!
( ∑

(𝑠 − 𝑎)𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗) 

 

So that Eq. (3) is transformed into, 

 

𝑓(𝑡) = 𝑔(𝑡) + ∫ 𝑊(𝑡, 𝑠)

𝑡

𝑎

(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 (4) 

 

Now, having the existence theory of solution at our disposal, 

we discuss it. 

 

Theorem 1. Assume that 𝑓 ∈ 𝐶([𝑎, 𝑏], 𝑅), 𝑘 ∈ 𝐶([𝑎, 𝑏] ×
[𝑎, 𝑏], 𝑅) for 𝑎 ≤ 𝑠 < 𝑡 ≤ 𝑏  are continuous, where 𝛽1  upper 

bound of |𝑘(𝑡, 𝑠)|, ∀ (𝑡, 𝑠) ∈ [𝑎, 𝑏]2 , 𝛽2 =
(𝑡−𝑎)𝑚

𝑚!
 and 𝛽3 =

|∑
(𝑡−𝑎)𝑗

𝑗!
𝑦𝑗

𝑚−1
𝑗=0 | . Then the WSIDE in Eq. (1) satisfies the 

following: 

i. It has at least one continuous solution. 

ii. It has a unique continuous solution. 

 

Proof 1. Let 𝑇 be an integral operator defined by: 

 

𝑇𝑓(𝑡) = 𝑔(𝑡) + ∫ 𝑊(𝑡, 𝑠)

𝑡

𝑎

(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 (5) 

 

from Eqs. (4) and (5) we have: 

 
𝑓 = 𝑇(𝑓) 

 

consider the set Ω𝑟 = {𝑓 ∈ 𝐶([𝑎, 𝑏], 𝑅): ‖𝑓‖∞ =
𝑠𝑢𝑝𝑡∈[𝑎,𝑏]|𝑓| ≤ 𝑟}. The radius 𝑟 is the solution of an equation 

𝛽1(𝑡 − 𝑎)(𝛽2𝑟 + 𝛽3) + ‖𝑓‖∞ = 𝑟 , we have to prove the 

operator 𝑇 maps the set Ω𝑟  into itself, to observe that, let 𝑓 be 

any function in Ω𝑟 . Then: 

|𝑇(𝑓)(𝑡)| ≤ |𝑔(𝑡)| + ∫|𝑊(𝑡, 𝑠)|

𝑡

𝑎

(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 

≤ ‖𝑔(𝑡)‖∞ + ∫
𝑟(𝑡 − 𝑎)

𝑚
|𝑘(𝑡, 𝑠)|

𝑚!
| ∑

(𝑠 − 𝑎)
𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗|

𝑡

𝑎

𝑑𝑠 

 

since 𝑘(𝑡, 𝑠)  is continuous on [𝑎, 𝑏]2 , therefore, 𝑘(𝑡, 𝑠)  is 

bounded and hence |k(t, s)| ≤ 𝛽1, ∀ (𝑡, 𝑠) ∈ [𝑎, 𝑏]2, 𝛽1 > 0. 

 

|𝑇(𝑓)(𝑡)| ≤ ‖𝑔(𝑡)‖∞ + (𝑡 − 𝑎)𝛽1(
𝑟(𝑡 − 𝑎)𝑚

𝑚!
) | ∑

(𝑠 − 𝑎)
𝑗

𝑗!

𝑚−1

𝑗=0

𝑦𝑗| 

 

This implies that: 

 
|𝑇(𝑓)(𝑡)| ≤ ‖𝑔(𝑡)‖∞ + 𝛽1

(𝑡 − 𝑎)(𝑟𝛽2 + 𝛽3) 

=‖𝑔(𝑡)‖∞ + 𝑟 − ‖𝑔(𝑡)‖∞ = 𝑟 
(6) 

 

Thus, ‖𝑇(𝑓)‖∞ ≤ 𝑟 . Suppose 𝑡1, 𝑡2 ∈ [𝑎, 𝑏] , and without 

loss of generality, let 𝑡1 < 𝑡2. Assume 𝑓 ∈ Ω𝑟. 

 
|𝑇(𝑓)(𝑡2) − 𝑇(𝑓)(𝑡1)| ≤ |𝑔(𝑡2) − 𝑔(𝑡1)| 

+ ∫|𝑊(𝑡2, 𝑠) − 𝑊(𝑡1, 𝑠)|

𝑡

𝑎

(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥) 𝑑𝑠 
(7) 

 

But the functions 𝑔 and 𝑊 are continuous. So, we have: 

 

         |𝑔(𝑡2) − 𝑔(𝑡1)| → 0 

|𝑊(𝑡2, 𝑠) − 𝑊(𝑡1, 𝑠)| → 0 

 

When 𝑡2 → 𝑡1 and thus |𝑇(𝑓)(𝑡2) − 𝑇(𝑓)(𝑡1)| → 0. So, the 

operator 𝑇  maps the set Ω𝑟  into itself. Next, to prove the 

existence of fixed point of 𝑇 in Ω𝑟 , we may apply Schauder's 

fixed point theorem which is equivalent to solving Eq. (1), as 

follows. Let {𝑓𝑖}𝑖=1
∞  be a sequence with 𝑓𝑖 ∈ Ω𝑟  and suppose 

𝑓𝑖 → 𝑓 ∈ Ω𝑟 , when 𝑖 → ∞. Clearly that ‖𝑓𝑖‖∞ ≤ 𝑟, for all 𝑖 ∈
𝑁. 

 
|𝑇(𝑓𝑖)(𝑡) − 𝑇(𝑓)(𝑡)| ≤ 

∫|𝑊(𝑡, 𝑠)|

𝑡

𝑎

|(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓𝑖(𝑥)𝑑𝑥 − ∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥)| 𝑑𝑠 

≤ ∫|𝑊(𝑡, 𝑠)| (∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

|𝑓𝑖(𝑥) − 𝑓(𝑥)|𝑑𝑥) 𝑑𝑠

𝑡

𝑎

 

 

Hence by Arzela bounded convergence theorem gives: 

 

lim
 𝑖→∞

∫|𝑊(𝑡, 𝑠)| (∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

|𝑓𝑖(𝑥) − 𝑓(𝑥)|𝑑𝑥) 𝑑𝑠

𝑡

𝑎

 

= ∫|𝑊(𝑡, 𝑠)| (∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

lim
 𝑖→∞

|𝑓𝑖(𝑥) − 𝑓(𝑥)|𝑑𝑥) 𝑑𝑠 = 0

𝑡

𝑎

 

 

Thus, |𝑇(𝑓𝑖)(𝑡) − 𝑇(𝑓)(𝑡)| → 0, when 𝑖 → 0 and we can 

conclude the operator 𝑇  is continuous. Letting (𝑇(𝑓𝑖)) be a 

sequence for any 𝑓𝑖 ∈ Ω𝑟 . From Eq. (6), ‖𝑇(𝑓𝑖)‖∞ ≤ 𝑟, for all 

𝑖 ∈ 𝑁, we deduce the sequence (𝑇(𝑓𝑖)) is uniformly bounded 

on [𝑎, 𝑏]. Moreover, from inequality (7) that for any 𝜖 there 

exist 𝛿 such that |𝑇(𝑓𝑖)(𝑡2) − 𝑇(𝑓𝑖)(𝑡1)| < 𝜖  provided that 
|𝑡2 − 𝑡1| < 𝛿 for all 𝑖 ∈ 𝑁, we conclude the sequence (𝑇(𝑓𝑖)) 
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is an equicontinuous. By the Ascoli-Arzela theorem [19], there 

exist subsequence (𝑇(𝑓𝑖𝑘
)) ⊂ (𝑇(𝑓𝑖)), 𝑘 → ∞  is 

convergence uniformly. Consequently, the set 𝑇(Ω𝑟)  is 

compact, which implies 𝑇 is completely continuous operator. 

Hence by Schauder fixed point theorem [17], Eq. (4) has a 

fixed point in Ω𝑟  and implies that an integro-differential 

equation Eq. (1) possesses at least one solution. 

 

Proof 2. Let 𝑓 and 𝑓∗ be any two solutions of Eq. (4), then 

 
 

|𝑓(𝑡) − 𝑓∗(𝑡)| ≤ 

∫|𝑊(𝑡, 𝑠)|

𝑡

𝑎

|(∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓(𝑥)𝑑𝑥

− ∫(𝑠 − 𝑥)𝑚−1

𝑠

𝑎

𝑓∗(𝑥)𝑑𝑥)| 𝑑𝑠 

≤ 𝛽1𝛽2
(𝑡 − 𝑎)𝛽3 ‖𝑓(𝑡) − 𝑓

∗
(𝑡)‖

∞
 

≤ (𝑡 − 𝑎)𝛽1𝛽2𝛽
3

‖𝑓(𝑡) − 𝑓
∗

(𝑡)‖
∞

 

(8) 

 

by passing supremum with respect to 𝑡 ∈ [𝑎, 𝑏] for both side 

of inequality (8) gives: 

 

(1 − (𝑡 − 𝑎)𝛽1𝛽2𝛽3‖𝑓(𝑡) − 𝑓∗(𝑡)‖∞) < 0 

 

but we have (𝑡 − 𝑎)𝛽1𝛽2𝛽3 < 1.  Therefore, we must have 

‖𝑓(𝑡) − 𝑓∗(𝑡)‖∞ = 0 and this proves that 𝑓(𝑡) = 𝑓∗(𝑡).  

Hence the Eq. (1) has a unique solution on [𝑎, 𝑏]. 
 

 

4. STABILITY SOLUTION OF WSIDE  

 

In this section we investigate the stability of the solution for 

the WSIDE, for this using the idea of the variation of 

parameters formula for linear differential systems to obtain an 

integral equation for the solutions of Eq. (1). For this purpose, 

let 𝑋(𝑡) be a fundamental matrix solution of: 

 

𝑦(𝑚) = 𝐴𝑦, 
 

so that any solution of Eq. (1) with the initial functions 𝜓 on 

[𝑡0, 𝑟] is given by: 

 

 
𝑦(𝑡, 𝜏, 𝜓) = 𝑋(𝑡)𝑋−1( 𝜏)

+
1

(𝑚 − 1)!
∫ 𝑋(𝑡)𝑋−1( 𝑠)

𝑡

 𝜏

(𝑡

− 𝑠)𝑚−1[∫ 𝑘(𝑠, 𝑡)

𝑡

 𝑎

𝑦(𝑠)𝑑𝑠 + 𝑓(𝑡)]𝑑𝑠 

(9) 

 

and prove stability results for the system (1). We begin with 

giving a suitable definition of stability, then lemma and the 

theorems. 

 

Definition 1 [19]: The solution of Eq. (1) is said to be stable if 

there exists 𝜖 > 0 and 𝑡0 ∈ 𝑅+, given a 𝛿 = 𝛿(𝑡0, 𝜖) > 0 such 

that |𝜓|𝑡0
=  0<𝑠≤𝑡

𝑚𝑎𝑥 |𝜓(𝑠)| < 𝛿 implies |𝑦(𝑡)| < 𝜖, 𝑡 ≥ 0. 

 

Lemma 1 [20]: (Gronwall's inequality) Let 𝑦(𝑡), 𝑥(𝑡) ∈
𝐶([𝑎, +∞), 𝑅+), 𝐾 > 0 is constant and suppose that: 

𝑦(𝑡) ≤ 𝐾 + ∫ 𝑦(

𝑡

𝑎

𝑠)𝑥(𝑠)𝑑𝑠,       𝑠 ∈ [𝑎, +∞) 

then 

𝑦(𝑡) ≤ 𝐾 𝑒𝑥𝑝(∫ 𝑥(

𝑡

𝑎

𝑠)𝑑𝑠),       𝑠 ∈ [𝑎, +∞) 

 

Theorems 2: Assume that: 

 
|𝑋(𝑡)𝑋−1( 𝑠)| ≤ 𝐾,     0 ≤ 𝑠 ≤ 𝑡, 

 

∫ ∫ |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝐾(𝑠, 𝑡)|

𝑡

0

∞

0

𝑑𝑠𝑑𝑡 ≤ 𝑀1 

 

and  

∫ |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝑓(𝑡)|

∞

0

𝑑𝑡 ≤ 𝑀2 

 

Then the solution of Eq. (1) is uniformly stable. 

 

Proof: Set 𝛿(𝜖) <
𝜖

𝐾𝑒𝐾𝑀  and ‖𝜓‖𝑡0
<  𝛿(𝜖)  for any 𝜖 < 0. 

Assume that there exists 𝑡0 ≤ 𝑡1  such that |𝑦(𝑡1)| = 𝜖  and 

|𝑦(𝑡)| = 𝜖 on [𝑡0, 𝑡1). By using Eq. (9), we get: 

 
|𝑦(𝑡)| ≤ |𝑋(𝑡)𝑋−1( 𝑡0)||𝜓(𝑡0)|

+
1

(𝑚 − 1)!
∫|𝑋(𝑡)𝑋−1( 𝑠)|

𝑡

 𝑡0

|(𝑡

− 𝑠)𝑚−1| [∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

|𝑦(𝑠)|𝑑𝑢 + 𝑓(𝑡)] 𝑑𝑠 

then 
 

|𝑦(𝑡)| ≤ 𝐾 𝛿(𝜖) + 

𝐾 ∫
|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!

𝑡

 𝑡0

[∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

|𝑦(𝑠)|𝑑𝑢 + |𝑓(𝑡)|] 𝑑𝑠 

 

on [𝑡0, 𝑡1] and define 𝑟(𝑡) ≡  0<𝑠≤𝑡
𝑚𝑎𝑥 |𝑦(𝑠)| to obtain: 

 

𝑟(𝑡) ≤ 𝐾 𝛿(𝜖) + 

𝐾 ∫
|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!

𝑡

 𝑡0

[(∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

𝑑𝑢)𝑟(𝑠) + |𝑓(𝑡)|] 𝑑𝑠 

 

by Lemma 1 (Gronwall’s inequality), then we get: 
 

|𝑦(𝑡)| ≤ 𝑟(𝑡) ≤ 𝐾 𝛿(𝜖) 

𝑒𝑥𝑝 [𝐾 ∫
|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!

𝑡

 𝑡0

(∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

𝑑𝑢 + |𝑓(𝑡)|) 𝑑𝑠] 

 
|𝑦(𝑡)| ≤ 𝑟(𝑡) ≤ 𝐾 𝛿(𝜖)𝑒𝑥𝑝 [K(M1 +  M2)] 

 

|𝑦(𝑡)| ≤ 𝑟(𝑡) ≤ 𝐾 𝑒𝐾𝑀𝛿(𝜖) < 𝜖       on [𝑡0, 𝑡1] 
 

where, M = M1 + M2. 

Consequently |𝑦(𝑡1)| < 𝜖  which is a contradiction. Thus, 

the solution of Eq. (1) is uniformly stable, completing the 

proof. 
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Theorems 3: Assume that: 

 

∫|𝑋(𝑡)𝑋−1( 𝑠)|𝑑𝑠 ≤ 𝐿 ,       for  𝑡 ≥ 0,

𝑡

0

 (10) 

 

  𝑡≥0
𝑠𝑢𝑝

∫ |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝐾(𝑠, 𝑡)|

𝑡

0

𝑑𝑡 <
1

𝐿
 (11) 

 

and 

  𝑡≥0
𝑠𝑢𝑝

∫ |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝑓(𝑡)|

∞

0

𝑑𝑡 ≤ 𝑀 

 

Moreover, assume also that: 

 

  𝑠→∞
𝑙𝑖𝑚 ∫ |

(𝑡−𝑠)𝑚−1

(𝑚−1)!
𝐾(𝑡, 𝑢)|

𝑡

0
𝑑𝑢 = 0         for all  𝑡 ≥ 0 

 

Then the solution of Eq. (1) is asymptotically stable. 

 

Proof: We first show that stability of the solution. From Eq. 

(11), there exists a positive constant 𝛾 such that: 

 

 𝑡≥0
𝑠𝑢𝑝

∫ |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝐾(𝑠, 𝑡)|

𝑡

0

𝑑𝑡 < 𝛾 

 

where, 0 < 𝛾 <
1

𝐿
 

 

From inequality (10), there exists a positive constant 𝑁 such 

that: 

 
|𝑋(𝑡)| ≤ 𝑁   for all 𝑡 ≥ 0 

 

For any 𝜖 > 0   and 𝑡 ≥ 0 , let 𝛿 = 𝛿(𝜖, 𝑡0) <

min {
(

1

2
−𝛾𝐿)𝜖

(𝑁|𝑋−1(𝑡0)|)
 , 𝜖}. 

Consider the solution of Eq. (1) such that |𝜓|𝑡0
< 𝛿 . 

Suppose there exists 𝑡1 > 𝑡0 such that |𝑦(𝑡1)| = 𝜖, |𝑦(𝑡)| < 𝜖 

on [𝑡0 , 𝑡1) and 𝑀 ≤
𝜖

2𝐿
. For all 𝑡 ∈ [𝑡0 , 𝑡1], we have: 

 
|𝑦(𝑡)| ≤ |𝑋(𝑡)𝑋−1( 𝑡0)||𝜓(𝑡0)|

+
1

(𝑚 − 1)!
∫|𝑋(𝑡)𝑋−1( 𝑠)|

𝑡

 𝑡0

|(𝑡 − 𝑠)𝑚−1| 

[∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

|𝑦(𝑠)|𝑑𝑢 + |𝑓(𝑡)|] 𝑑𝑠 

 

leads to 

|𝑦(𝑡)| < 𝑁|𝑋−1(𝑡0)| 𝛿 + 𝐿 ∫
|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!

𝑡

 𝑡0

 

[∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

|𝑦(𝑠)|𝑑𝑢 + |𝑓(𝑡)|] 𝑑𝑠 

< (
1

2
− 𝛾𝐿) 𝜖 + 𝐿 (𝛾𝜖 +

𝜖

2𝐿
) = 𝜖 

 

Thus, |𝑦(𝑡1)| < 𝜖 , which is a contradiction. Thus, the 

solution of Eq. (1) is asymptotically stable. 

 

Theorems 4: Suppose that there exist positive constants 𝐾 ≥
1, 𝜆 and 𝜇 such that: 

 

|𝑋(𝑡)𝑋−1( 𝑠)| ≤ 𝐾𝑒−𝜆(𝑠−𝑡)      for  0 ≤ 𝑠 ≤ 𝑡 < ∞ (12) 

 

  𝑡≥0
𝑠𝑢𝑝

∫ 𝑒−𝜇(𝑠−𝑡) |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝐾(𝑠, 𝑡)|

𝑡

0

𝑑𝑡 <
𝜆

𝐾
 (13) 

 

and 

  𝑡≥0
𝑠𝑢𝑝

∫ 𝑒−𝜇(𝑠−𝑡) |
(𝑡 − 𝑠)𝑚−1

(𝑚 − 1)!
𝑓(𝑡)|

∞

0

𝑑𝑡 ≤ 𝑀 

 

Then the solution of Eq. (1) is exponentially asymptotically 

stable. 

 

Proof: For all 𝑡 ≥ 𝑡0 and |𝜓|𝑡0
<

1

𝐾
, we have 

 

|𝑦(𝑡)| ≤ 𝐾𝑒−𝜆(𝑡−𝑡0)|𝜓(𝑡0)|

+ 𝐾 ∫ 𝑒−𝜆(𝑠−𝑡)

𝑡

 𝑡0

|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!
 

[∫|𝑘(𝑠, 𝑡)|

𝑠

 𝑎

|𝑦(𝑠)|𝑑𝑢 + 𝑓(𝑡)] 𝑑𝑠 

(14) 

 

There exist positive constants 𝑣 <  µ and 𝜎 such that 𝜆 =

𝑣 + 𝜎  and  𝑡≥0
𝑠𝑢𝑝

∫ 𝑒𝑣(𝑠−𝑡) |
(𝑡−𝑠)𝑚−1

(𝑚−1)!
𝐾(𝑠, 𝑡)|

𝑡

0
𝑑𝑡 <

𝜎

𝐾
. Multiply 

both sides of inequality (14) by 𝑒𝑣𝑡 to obtain: 

 

𝑒𝑣𝑡|𝑦(𝑡)| ≤ 𝐾𝑒𝑣𝑡𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + 𝐾 ∫ 𝑒𝑣𝑡𝑒−𝜎(𝑠−𝑡)

𝑡

 𝑡0

 

|(𝑡 − 𝑠)𝑚−1|

(𝑚 − 1)!
[∫|𝑘(𝑠, 𝑢)|

𝑠

 𝑎

|𝑦(𝑢)|𝑑𝑢 + 𝑓(𝑡)] 𝑑𝑠 

= 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + 𝐾 ∫ 𝑒−𝜎(𝑠−𝑡)𝑡

 𝑡0

|(𝑡−𝑠)𝑚−1|

(𝑚−1)!
 

[∫ 𝑒𝑣(𝑠−𝑢)|𝑘(𝑠, 𝑢)|

𝑠

 𝑎

𝑒𝑣𝑢|𝑦(𝑢)|𝑑𝑢 + 𝑒𝑣𝑡𝑓(𝑡)] 𝑑𝑠 

 

Let denote   𝑡≥0
𝑠𝑢𝑝

𝑒𝑣𝑠|𝑦(𝑠)| by 𝑟(𝑡), it follows that: 

 

𝑒𝑣𝑡|𝑦(𝑡)| ≤ 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + (𝜎𝑟(𝑡)

+ 𝑀) ∫ 𝑒−𝜎(𝑡−𝑠)

𝑡

 𝑡0

𝑑𝑠 

≤ 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + 

𝜎𝑟(𝑡) ∫ 𝑒−𝜎(𝑡−𝑠)

𝑡

 𝑡0

𝑑𝑠 + 𝑀 ∫ 𝑒−𝜎(𝑡−𝑠)

𝑡

 𝑡0

𝑑𝑠 

≤ 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + 

(1 − 𝑒−𝜎(𝑡−𝑡0))𝑟(𝑡) + 𝑀𝑒−𝜎(𝑡−𝑡0) 

 

From above inequality, if 𝑒𝑣𝑠|𝑦(𝑠)| < 𝑒𝑣𝑡|𝑦(𝑡)|  for any 

𝑠 ∈ [0, 𝑡], we see that 𝑟(𝑡) = 𝑒𝑣𝑡|𝑦(𝑡)|, we get: 

 

𝑟(𝑡) ≤ 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡−𝑡0)|𝜓(𝑡0)| + (1 − 𝑒−𝜎(𝑡−𝑡0))𝑟(𝑡)

+ 𝑀𝑒−𝜎(𝑡−𝑡0) 
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Therefore, 𝑟(𝑡) ≤ 𝐾𝑒𝑣𝑡0|𝜓(𝑡0)|  for 𝑡 ≥ 𝑡0 . Then 𝑟(𝑡) =

𝑒𝑣𝑡|𝑦(𝑡)| implies |𝑦(𝑡)| ≤ 𝐾𝑒−𝑣(𝑡−𝑡0)|𝜓(𝑡0)| for 𝑡 ≥ 𝑡0. 

If there exists 𝑠 ∈ [0, 𝑡]  such that 𝑒𝑣𝑠|𝑦(𝑠)| > 𝑒𝑣𝑡|𝑦(𝑡)| , 

we have the following two further cases: 

(a) There exists 𝑡1 ∈ [𝑡0, 𝑡]  such that 𝑒𝑣𝑡1|𝑦(𝑡1)| = 𝑟(𝑡) . 

Then from equation (****) we have: 

 

𝑟(𝑡1) = 𝑒𝑣𝑡1|𝑦(𝑡1)| ≤ 𝐾𝑒𝑣𝑡0𝑒−𝜎(𝑡1−𝑡0)|𝜓(𝑡0)| + 

(1 − 𝑒−𝜎(𝑡1−𝑡0))𝑟(𝑡1) + 𝑀𝑒−𝜎(𝑡1−𝑡0) 

 

Thus 𝑟(𝑡1) ≤ 𝐾𝑒𝑣𝑡0|𝜓(𝑡0)| for 𝑡1 ≥ 𝑡0 . Then 𝑒𝑣𝑡|𝑦(𝑡)| <

𝑟(𝑡1) implies |𝑦(𝑡)| ≤ 𝐾𝑒−𝑣(𝑡−𝑡0)|𝜓(𝑡0)| for 𝑡 ≥ 𝑡0. 

(b) There exists 𝑡2 ∈ [0, 𝑡0) such that 𝑒𝑣𝑡2|𝑦(𝑡2)| = 𝑟(𝑡) . 

Then 𝑒𝑣𝑡|𝑦(𝑡)| < 𝑒𝑣𝑡2|𝑦(𝑡2)| < 𝑒𝑣𝑡0|𝜓|𝑡0
, we have |𝑦(𝑡)| ≤

|𝜓|𝑡0
𝑒−𝑣(𝑡−𝑡0). 

Thus from (a) and (b), the solution of Eq. (1) is 

exponentially stable.  

 

 

5. LAPLACE TRANSFORM METHOD (LTM) AND 

IMPLEMENTATION 

 

5.1 Laplace transform method (LTM)  

 

In general, the idea of a transformation is a very important 

in problem solving, where the difficult problem is changed in 

some way into an easier problem and then solve that easier 

problem to obtain solution and apply it to original problem. 

The Laplace transform method (LTM) aims to seek solve 

the differential equations and integral equations easily by 

changing it to polynomial, and then taking the inverse Laplace 

transform, which lead for the solution of intended equation. 

Here we present a basic concept of LTM, for a given function 

𝑦(𝑠) with respect 𝑠 ≥ 0, the Laplace transform method can be 

described as:  
 

𝑌(𝜌) = 𝐿{𝑦(𝑠)} = ∫ 𝑒−𝜌𝑠

∞

0

𝑦(𝑠)𝑑𝑠 

 

where, 𝜌 is real, and 𝐿 denotes the Laplace transform operator. 

Furthermore, a vanishment 𝑌(𝜌) as 𝜌 approaches infinity is an 

important and necessary condition for the existence of the 

Laplace transform 𝑌(𝜌). This means that: 

 

lim
𝜌→∞

𝑌(𝜌) = 0  

 

As well as, there are key properties of the Laplace 

transforms which are used in the proposed framework are 

given briefly as follows: 

1. Constant multiple: 

 

𝐿{𝛼 𝑦(𝑠)} = 𝛼 𝐿{𝑦(𝑠)},   𝛼 is constant. 

 

2. Linearity property: 𝛼, 𝛽 are constant. 

 

𝐿{𝛼 𝑦(𝑠)} + 𝐿{𝛽 𝑔(𝑠)} = 𝛼 𝐿{𝑦(𝑠)} 𝛽 𝐿{ 𝑔(𝑠)}, 
 

3. Multiplication by 𝑠: 

 

𝐿{𝑠 𝑦(𝑠)} =
𝑑

𝑑𝜌
 𝐿{𝑦(𝑠)} = −𝑌′(𝜌) 

 

4. Laplace transforms of derivatives: 

 

𝐿{ 𝑦′(𝑠)} = 𝜌𝐿{𝑦(𝑠)} − 𝑦(0), 
 

𝐿{ 𝑦′′(𝑠)} = 𝜌2𝐿{𝑦(𝑠)} − 𝜌𝑦(0) − 𝑦′(0), 
 

𝐿{ 𝑦′′′(𝑠)} = 𝜌3𝐿{𝑦(𝑠)} − 𝜌2𝑦(0) − 𝜌𝑦′(0)
− 𝑦′′(0), 

⋮ 

𝐿{ 𝑦(𝑛)(𝑠)} = 𝜌𝑛𝐿{𝑦(𝑠)} − 𝜌𝑛−1𝑦(0) ⋯

− 𝜌𝑦𝑛−2(0) − 𝑦𝑛−1(0), 
 

5. Inverse Laplace transform: 

 

𝐿−1{𝑌(𝜌)} = 𝑦(𝑠) 

 

6. Convolution theorem for Laplace transform: 

 

𝐿{(𝑦1 ∗ 𝑦2)(𝑠)} = 𝐿 {∫ 𝑦1(𝑠 − 𝑡)𝑦2(𝑡)𝑑𝑡

𝑠

0

}

= 𝑌1(𝜌)𝑌2(𝜌) 

 

There are also elementary Laplace transforms, some of 

which can be summarized briefly in Table 1. 

 

Table 1. Some of elementary Laplace transforms 

 

𝒚(𝒔) 𝒀(𝝆) = 𝑳{𝒚(𝒔)} = ∫ 𝒆−𝝆𝒔

∞

𝟎

𝒚(𝒔)𝒅𝒔 

𝑘 
𝑘

𝜌
,     𝜌 > 0 

𝑠 
1

𝜌2
,     𝜌 > 0 

𝑠𝑛 
𝑛!

𝜌𝑛+1
=

Γ(𝑛 + 1)

𝜌𝑛+1
,     𝜌 > 0,   𝑅𝑒 𝑛 > −1 

𝑒𝑎𝑠 
1

𝜌 − 𝑎
,     𝜌 > 𝑎 

𝛿(𝑠 − 𝑎) 𝑒−𝑎𝜌,     𝑎 ≥ 0 

 

5.2 Implementation 

 

We now describe the implementation of the LTM to solve 

the consider WSVIDE, we can rewrite the expression for Eq. 

(1). After 𝑘(𝑡, 𝑠) was consistently set to be 𝑘(𝑡, 𝑠) =
1

(𝑡−𝑠)𝛼, as 

follows:  

 

𝑦(𝑚)(𝑠) = 𝑓(𝑠) + ∫
1

(𝑡 − 𝑠)𝛼

𝑠

0

𝑦(𝑡)𝑑𝑡 (15) 

 

First, taking LT for both sides of Eq. (15), leading to: 

 

𝐿{𝑦(𝑚)(𝑠)} = 𝐿{𝑓(𝑠)} + 𝐿{∫
1

(𝑡 − 𝑠)𝛼

𝑠

0

𝑦(𝑡)𝑑𝑡} (16) 

 

by applying the convolution property of the LTM, Eq. (16) 

becomes: 

𝐿{𝑦(𝑚)(𝑠)} = 𝐿{𝑓(𝑠)} + 𝐿{𝑠−𝛼}𝐿{𝑦(𝑠)} 

 

so that: 
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𝜌𝑚𝑌(𝜌) − 𝜌𝑚−1𝑦(0) − ⋯ − 𝜌𝑦(𝑚−2)(0) − 𝑦(𝑚−1)(0)

= 𝐹(𝜌) +
Γ(1 − 𝛼)

𝜌1−𝛼
𝑌(𝜌) 

 

𝑌(𝜌) =
𝜌1−𝛼{𝐹(𝜌) + 𝜌𝑚−1𝑦0 + ⋯ + 𝜌𝑦0

(𝑚−2) + 𝑦0
(𝑚−1)}

𝜌𝑚−1−𝛼 − Γ(1 − 𝛼)
 

 

we take the inverse LT for both sides, 

 
𝐿−1{𝑌(𝜌)}

= 𝐿−1{
𝜌1−𝛼{𝐹(𝜌) + 𝜌𝑚−1𝑦0 + ⋯ + 𝜌𝑦0

(𝑚−2) + 𝑦0
(𝑚−1)}

𝜌𝑚−1−𝛼 − Γ(1 − 𝛼)
} 

 

hence, we find the solution of the Eq. (2) as: 
 

𝑦(𝑠) = 𝐿−1{
𝜌1−𝛼{𝐹(𝜌) + 𝜌𝑚−1𝑦0 + ⋯ + 𝜌𝑦0

(𝑚−2) + 𝑦0
(𝑚−1)}

𝜌𝑚−1−𝛼 − Γ(1 − 𝛼)
} 

 

 

6. ILLUSTRATIVE EXAMPLES 

 

Example 1. Consider the following linear first-order WSVID 

 

𝑦′(𝑠) = −2√𝑠 + ∫
1

√𝑠 − 𝑡

𝑠

0

𝑦(𝑡)𝑑𝑡 (17) 

 

with initial condition 𝑦(0) = 0, and exact solution 𝑦(𝑠) = 1. 

By taking LT on both sides of Eq. (17), we obtain: 

 

𝐿{𝑦′(𝑠)} = 𝐿{−2√𝑠} + 𝐿{∫
1

√𝑠 − 𝑡

𝑠

0

𝑦(𝑡)𝑑𝑡} 

 

by convolution theorem, give: 

 

𝐿{𝑦′(𝑠)} = 𝐿{−2√𝑠} + 𝐿{𝑠−
1
2}𝐿{𝑦(𝑠)} 

 

using elementary Laplace transform 

 

𝜌𝑌(𝜌) − 𝑦(0) =
Γ (

3
2

)

𝜌
3
2

+
Γ (

1
2

)

𝜌
1
2

𝑌(𝜌) 

 

substituting the given initial condition and simplistic: 

 

𝑌(𝜌)(
𝜌

3
2 − √𝜋

𝜌
1
2

) =
𝜌

3
2 − √𝜋

𝜌
3
2

 

 

solving for 𝑌(𝜌): 

 

𝑌(𝜌) =
1

𝜌
 

 

we take the inverse LT for both sides: 

 

𝐿−1{𝑌(𝜌)} = 𝐿−1{
1

𝜌
} 

 

thus, the solution is 𝑦(𝑠) = 1. 

 

Example 2. Consider the following linear second-order 

WSVID: 

𝑦′′(𝑠) = −
36

55
𝑠

11
6 + ∫

1

(𝑠 − 𝑡)
1
6

𝑠

0

𝑦(𝑡)𝑑𝑡 (18) 

 

with initial conditions 𝑦′(0) = 0,  𝑦(0) = 0 , and the exact 

solution 𝑦(𝑠) = 𝑠. Applying the LT on both sides of Eq. (18), 

we get: 
 

𝐿{𝑦′′(𝑠)} = 𝐿{−
36

55
𝑠

11
6 } + 𝐿{∫

1

(𝑠 − 𝑡)
1
6

𝑠

0

𝑦(𝑡)𝑑𝑡} 

 

by convolution theorem, give: 

 

𝐿{𝑦′′(𝑠)} = 𝐿{−
36

55
𝑠

11
6 } + 𝐿{𝑠

−1
6 }𝐿{𝑦(𝑡)} 

 

using elementary Laplace transform, this implies: 

 

𝜌2𝑌(𝜌) − 𝜌𝑦(0) − 𝑦′(0) = −
Γ (

5
6

)

𝜌
17
6

+
Γ (

5
6

)

𝜌
5
6

𝑌(𝜌) 

 

substitute the given initial conditions and simplistic: 
 

𝑌(𝜌)(
𝜌

17
6 − Γ (

5
6

)

𝜌
5
6

) =
𝜌

17
6 − Γ (

5
6

)

𝜌
17
6

 

 

solving for 𝑌(𝜌): 

 

𝑌(𝜌) =
1

𝜌2
 

 

we take the inverse LT for both sides: 

 

𝐿−1{𝑌(𝜌)} = 𝐿−1{
1

𝜌2
} 

 

thus, the solution is 𝑦(𝑠) = 𝑠. 

 

Example 3. Consider the following linear third-order WSVID: 

 

𝑦′′′(𝑠) = −
4

3
𝑠

3
2 + ∫

1

√𝑠 − 𝑡

𝑠

0

𝑦(𝑡)𝑑𝑡 (19) 

 

with initial conditions 𝑦′′(0) = 0, 𝑦′(0) = 1, 𝑦(0) = 0, and 

the exact solution 𝑦(𝑠) = 𝑠. By taking LT on both sides of Eq. 

(19), we obtain: 

 

𝐿{𝑦′′′(𝑠)} = 𝐿{−
4

3
𝑠

3
2} + 𝐿{∫

1

√𝑠 − 𝑡

𝑠

0

𝑦(𝑡)𝑑𝑡} 

 

Using convolution theorem, gives: 

 

𝐿{𝑦′′′(𝑠)} = 𝐿{−
4

3
𝑠

3
2} + 𝐿{𝑠

−1
2 }𝐿{𝑦(𝑡)} 

which becomes: 

 

𝜌3𝑌(𝜌) − 𝜌2𝑦(0) − 𝜌𝑦′(0) − 𝑦′′(0) = −
Γ (

1
2

)

𝜌
5
2

+
Γ (

1
2

)

𝜌
1
2

𝑌(𝜌) 
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substitute the given initial conditions and simplistic: 

 

𝑌(𝜌)(
𝜌

7
2 − √𝜋

𝜌
1
2

) =
𝜌

7
2 − √𝜋

𝜌
5
2

 

 

solving for 𝑌(𝜌): 

 

𝑌(𝜌) =
1

𝜌2
 

 

we take the inverse LT for both sides: 

 

𝐿−1{𝑌(𝜌)} = 𝐿−1{
1

𝜌2
} 

 

thus, the solution is 𝑦(𝑠) = 𝑠. 

 

Example 4. Consider the following linear fourth-order 

WSVIDE 

 

𝑦′′′′(𝑠) = −
128

45
𝑠

9
4 + ∫

1

(𝑠 − 𝑡)
3
4

𝑠

0

𝑦(𝑡)𝑑𝑡 (20) 

 

with initial conditions 𝑦′′′(0) = 0  𝑦′′(0) = 2 , 𝑦′(0) = 0, 
𝑦(0) = 0, and the exact solution 𝑦(𝑠) = 𝑠2. By taking LT on 

both sides of Eq. (20), we get: 
 

𝐿{𝑦′′′′(𝑠)} = 𝐿{−
128

45
𝑠

9
4} + 𝐿{∫

1

(𝑠 − 𝑡)
3
4

𝑠

0

𝑦(𝑡)𝑑𝑡} 

 

then using convolution theorem leads us to conclude that: 

 

𝐿{𝑦′′′′(𝑠)} = 𝐿{−
128

45
𝑠

9
4} + 𝐿{𝑠

−3
4 }𝐿{𝑦(𝑡)} 

 

this simplifies to: 
 

𝜌4𝑌(𝜌) − 𝜌3𝑦(0) − 𝜌2𝑦′(0) − 𝜌𝑦′′(0) − 𝑦′′′(0)

= −
2Γ (

1
4

)

𝜌
13
4

+
Γ (

1
4

)

𝜌
1
4

𝑌(𝜌) 

 

substitute the given initial conditions and simplistic: 

 

𝑌(𝜌)(
𝜌

17
4 − Γ (

1
4

)

𝜌
1
4

) =
2(𝜌

17
4 − Γ (

1
4

))

𝜌
13
4

 

 

solving for 𝑌(𝜌): 

 

𝑌(𝜌) =
2

𝜌3
 

 

we take the inverse LT for both sides: 

 

𝐿−1{𝑌(𝜌)} = 𝐿−1{
2

𝜌3
} 

 

thus, the solution is 𝑦(𝑠) = 𝑠3. 

 

7. CONCLUSIONS 

 

In this work, we have proposed a study for the weakly 

singular integro-differential equations by introducing a theory 

framework that has been achieved by proving the theorems of 

an existence, uniqueness, and stabilities of solution.  

Along with that, we have presented a simple and powerful 

tool to solve WSIDE which is the Laplace transform technique 

that was investigated to solve WSIDE for different orders. We 

have succeeded to obtain the exact solutions by testing our 

proposed method on different examples of different orders. 

Encouragingly for next work, the proposed method will be 

used to solve the system of WSIDE. 
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