
Minimizing the Cache Memory Miss Ratio Using Modified Replacement Algorithm (M-

CAR)

Salam Ayad Hussein1* , Mohsin Raad Kareem2 , Dena Nader George1

1 Department of Computer Science, College of Education, Mustansiriyah University, Baghdad 10052, Iraq
2 Department of Computer Science, College of Basic Education, Mustansiriyah University, Baghdad 10052, Iraq

Corresponding Author Email: salamayad.77@uomustansiriyah.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290231 ABSTRACT

Received: 13 November 2023

Revised: 20 March 2024

Accepted: 25 March 2024

Available online: 25 April 2024

Caching is a key method used to close the latency gap between memory and the CPU by

using locality in memory accesses. varied cache replacement algorithms have radically

varied effects on system performance because they choose which blocks to evict from cache

memory in the event of a cache miss. The goal of these replacement strategies is to move

closer to the ideal scenario by making the greatest use of the entire cache area, reducing the

miss ratio as much as feasible, and obtaining the maximum system performance possible.

In this paper, based on clock with adaptive replacement algorithm (CAR), a simple and

effective modified algorithm is proposed, namely, modified clock with adaptive

replacement (M-CAR), which achieved 91% and 76% hit ratio higher (compared with the

conventional CAR method) with datasets that contained 245 and 270 items, respectively.

Which is considered to be the most important cache performance criteria. Which means, by

default, minimizing the cache miss ratio. As well as the dynamical behavior that has been

improved and gained the (M-CAR) that makes it more reliable.

Keywords:

cache memory, replacements algorithms,

cache miss, hit ratio, M-CAR

1. INTRODUCTION

Cache memory was developed to close the gap between

memory access time and CPU performance speed. Even

modern memory technologies remain unable to address this

gap, because the computer CPU runs at a high speed, leading

to the issue known as the wait state. A wait state is experienced

by a computer processor in the case of accessing an external

memory or any device which has slow response. This wait

state manifests as additional clock cycles allowing the device

the time needed for completing a process [1-3]. During this

delay, the CPU is unable to perform any operations on data it

has not yet received from the memory. M. V. Wilkes created

cache memory in 1965, and initially referred to it as the “slave

memory”, describing it as the second level of a high-speed

unconventional memory which produces a zero-wait state [4].

As shown in Figure 1, cache memory is a fast, extremely

tiny, zero-wait state memory, placed between the M.M and

CPU to act as a bridge for data exchange and storage. Due its

small size, a major problem in cache memory is the “cache

miss”, which took place if the CPU requests an item of data

that is not available in the cache. Conversely, a ''cache hit'' took

place if the CPU re-quests an item of data that is available in

the cache [5].

Replacement algorithms are required when a cache miss

took place and there is no space in the cache to load memory

blocks. A replacement algorithm selects the existing block in

the cache. Replacement policies/algorithms are used to

achieve optimized cache usage. When the cache is full,

replacement policies decide what data is replaced to make

room for new data currently in use. An efficient algorithm is

an algorithm that can take less time, the number of cache

misses is low and also balances the cost. In modern embedded

systems, applications have become very large and the presence

of caches is inevitable. Therefore, newer embedded processors

have cache architectures that are just as complex as those of

general-purpose processors. Integrated processor caches,

especially for mobile devices, have complicated architectures

because all three metrics (performance, power and area) must

be satisfied simultaneously within certain constraints.

When a cache miss took place, a replacement algorithm is

needed if the space demanded to load the memory blocks is

not available in the cache. The algorithm searches M.M to

identify the required data item and transfer it to the cache, and

makes a decision to strategically swap blocks. Such algorithms

are referred to as the replacement algorithms [6, 7]. Since

replacement algorithms choose a candidate block in the cache

for replacement, they need to be implementable in hardware to

achieve high operational speed. Based on the principle of

replacement, these techniques may be categorized as [6-8]:

A. Optimal: This technique replaces the block least likely to

be required in the future. Although this policy of re-placement

isn’t feasible, it is frequently utilized as a benchmark to assess

the effectiveness of other replacement plans.

B. Random: This technique may choose the replacement

cache block candidate in a completely arbitrary order that

ignores the memory references.

C. First-In, First-Out (FIFO): This technique selects the

oldest available block for replacement.

D. Least Recently Used (LRU): This technique is based

Ingénierie des Systèmes d’Information
Vol. 29, No. 2, April, 2024, pp. 697-703

Journal homepage: http://iieta.org/journals/isi

697

https://orcid.org/0000-0001-5922-0954
https://orcid.org/0000-0002-5694-812X
https://orcid.org/0000-0002-0126-605X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290231&domain=pdf

upon the idea that a block that has recently been referred has a

high likelihood of being referred again in the future.

E. Least-Frequently-Used (LFU): This technique uses the

software counter related to each cache block to identify and

replace the least frequently used block.

F. Second chance algorithm: When a replacement is

required, the data exists at the top of the queue (with the

longest dwell time) is inspected; if it was referenced while in

the cache, it is pushed to the end of the queue and given

another opportunity. If not, you'll be evicted.

G. Working set algorithm (WS): The Working Set

Replacement technique replaces old data in cache memory

using the working set concept, which is defined as the set of

blocks used by a process at any given time.

H. Aging algorithm: A method that employs a bit

presentation of a zero-counter for each data item in cache, with

this counter adding zero for unreferenced blocks per clock tick.

When a block has to be replaced, the block with the lowest

counter is deleted.

Figure 1. Cache and M.M data transfer

2. RELATED WORK

Numerous studies have developed sophisticated cache

replacement algorithms that reduce the miss ratio and speed

disparity between the (CPU) and (M.M) access time. Below

are some of these algorithms.

2.1 CLOCK algorithm

The page cache entries in this algorithm are structured as a

circular buffer (list) resembling a clock, with each data page

having an associated reference bit. The hand of the clock scans

the clock structure in a circular motion examining the

reference bit of each entry until it identifies the buffer’s oldest

data page. The reference bit of the data is marked in an event

where certain data page was referenced. Cache replacement

policy is invoked when a page fault is encountered, and the

data page is pointed to (identified) by the inspecting hand as

the oldest data page [4]. In an event where marking a reference

bit of data page, the bit value will be reset to 0, and the next

oldest data page is pointed to by the hand. This process

continues until a data page with reference bit of 0 is found, in

which case that data page is taken away from the buffer, and a

new data page is inserted instead and its reference bit value is

set to 0 [9-11]. This technique suffers from few disadvantages,

including its impracticality (the evicted block may be needed

in a short time later), low hit ratio in the presence of unrepeated

sequence of data pages, and lack of scan resistance (which

means that the entire memory must be searched to choose the

best eviction candidate), which makes this technique slow.

2.2 Dueling CLOCK

This represents a policy of adaptive replacement that

functions based on the CLOCK method. To achieve a scan-

resistant CLOCK, the single necessary modification is for the

clock hand to point to the buffer’s latest rather than oldest data

page [11, 12]. This may be viewed as a method of adaptive

replacements using CLOCK structure. The cache will be split

into 3 groups: (M1), (M2) and (M3), each to carry out a

specific task. This algorithm is commonly implemented as an

approach to substitute a small set of (M1), whereas scan-

resistant CLOCK is always utilized by small sets (M2 and M3),

which are the large sets that may be applied between the scan-

resistant CLOCK and traditional CLOCK according to the

comparative performance associated with the two former sets

(M2 and M3). For specifying the replacement policy that must

be applied for (M3), a (10-bit) policy select counter (PSEL) is

implemented [12, 13].

The disadvantages of this technique include its technical

complexity, its performance efficiency that is only achieved

when applied inmulti-level caches (level2 specifically), and its

low hit ratio when data pages reside in level1 or level3.

2.3 CLOCK-Pro

The CLOCK-Pro algorithm utilizes CLOCK for the

approximation of the reuse distance. A page that is accessed is

viewed as “hot” if it has little reuse distance, and “cold” if it

has a massive reuse distance. The data items are accessed in a

list in which data items that have slight recency level are

placed at the top of the list, whereas those that have a larger

recency level are placed at end of that list. The circular list is

utilized to keep the entries of the cache page [13, 14]. There

are three status bits that are associated with these pages; cold

or hot indicator, referencing bit, and indicator for every one of

the cold pages to specify whether or not a page is in the test

phase. The CLOCK-Pro approach has 3-hands [14]. The

HANDcold is viewed as the first one that indicates to the last

resident cold page, or cold page that is substituted after that.

During the process of page substitution, the page which is

chosen via the HANDcold will be evicted when the reference

bit that is associated with the page is 0. HANDhot is the 2nd

hand pointing to the hot page with the maximum recency. If a

reference bit associated with the page which has been chosen

by HANDhot is 0, the page is considered a cold page [15, 16].

The disadvantages of this technique are its mathematical

complexity, and the fact that it only captures the “recency”

factor.

2.4 Two queue (2Q)

2Q maintains two detached lists. One of them is managed

as a list (LRU), which is named (Hot). And the other as (FIFO),

F. The list (F) is divided into two parts (F-in) and (F-out). The

list (F-in) comprises data items in (M.M), while the list (F-out)

only contains information about data items, but not the actual

content. When the data item is accessed for the first time, it is

placed data item at the top of the list (F-in). The data item

position in the list (F-in) is not changed as long as it remains

there. As new data items are used, the list fills up (F-in). In this

situation, the final data item in the list (F-in) is fetched next,

but the data item information is placed at the beginning of the

list (F-out). When the data item is utilized in the list (F-out),

space is reclaimed and put at the beginning of the current list.

If the list (F-in) is not full, the claim begins at the end of the

active list. The data item taken from the active list is not added

into any lists since it has not been utilized for a long time.

698

2.5 LOW inter-reference recency set (LIRS)

(LIRS) dismisses data items based mostly on their Inter-

Reference Recency (IRR). The (IRR) of a data item specifies

the precise number of other data items transferred between two

sequential references to any data item. It is assumed that if the

current (IRR) of a data item is considerable, the next (IRR) of

the data item may likewise be considerable. It is worth noting

that a data item with a high IRR that was picked for deletion

may have recently been used.

This method distinguishes between data items of greater

IRR (HIR) and data items of lower IRR (LIR). The numbers

of data items of (LIR) and (HIR) are chosen so that all (LIR)

data items and just a few numbers off (HIR) data items are

retained.

2.6 Adaptive replacement cache (ARC)

ARC algorithm links the LFU solution with regulates

between the two solutions dynamically. It is an easy to

implement with low overhead on systems such as LRU. It

employs ‘4’ double linked lists (K1, K2) as the factual cache

content. (N1, N2) is an actor as a second level. N1 and N2

contain the data items that have been thrown out from K1 and

K2 respectively. thus, an overall number of data items of (2 *

C) is required for these lists. (C) would be the number of data

items that are present in the then cache. Both lists use LRU

replacements, where the data item removed from K2 is placed

into N2. (K1, N1) and N2 work in a similar way, except in case

of a hit in K1 or N1, the data item is moved to K2. The adaptive

nature of this policy makes it possible to change the sizes of

lists.

The size of K1 and S2 always adds up to the total number

of data items. Whenever there is a hit in N1, the size of K1

increases by ‘1’ and decreases of K2 by ‘1. In the opposite

direction, a hit in N2 will increase the size of K2 by ones,

resulting in a decrease of K1 by one. This allows cache to

adjust and have more or less frequency or recency depending

on the workload.

2.7 CLOCK with adaptive replacement (CAR)

The CAR directory structure is depicted in Figure 2, in

which T2, T1, B2, and B1 are the four linked lists that make

up the CAR directory. Lists T2 and T1 are linked as CLOCK

policy implementers, and B2 and B1 are linked as LRU policy

implementers [17-19].

Lists B2 and B1 include history pages that have recently

been evicted from the cache, and CLOCKs T2 and T1 contain

pages that are currently in the cache. CLOCK T2 records

frequency (F), and CLOCK T1 records recency (R). Simple

LRU lists can be found in lists B2 and B1. Pages that have

been evicted from T1 replace B1, and those removed from T2

replace B2. This algorithm aims to maintain B2 and B1 at

nearly equivalent sizes to T2 and T1, respectively.

Additionally, the technique prevents |T1|+|B1| from exceeding

the cache size. In response to a varying workload, the sizes

allocated to CLOCKs T2 and T1 are continuously adjusted.

The target size for T1 is increased anytime a hit in B1 is

detected; conversely, the T1 target size decreases whenever a

hit in B2 is detected. The new pages are placed in T2 or T1,

directly behind the clock hands that have been displayed in

order to move clockwise. New pages have a page reference bit

that is set to “0” [20, 21].

Figure 2. CAR directory structure

Any page in T1 U T2 can be cached by setting the page

reference bit for that page to “1”. The T1 clock hand moves a

page behind T2 clock hand then resets the reference bit of the

page to “0” if it meets a page that has a page reference bit of

“1“. A “0-page” reference bit page is evicted then put at the

most recently used position (MRU) in B1 whenever T1 clock

hand comes across it. The page reference bit is reset to “0” if

the T2 clock hand comes across a page with page reference bit

that equals “1”. An evicted page is then placed at the MRU

position in B2 any time the T2 clock hand comes into contact

with a reference page bit with value “1” [22, 23]. The basic

CAR algorithm is as follows [5, 11, 17]:

The main disadvantage of CAR is that it does not handle

temporal filtering. Therefore, more stringent separation must

be imposed between short-term and long-term utility pages for

specific workloads. This means that recency (R) and frequency

(F) cannot select the best candidate data page for eviction,

which results in a lower hit ratio. This will be the focus of the

modification proposed in this study [24].

Another common disadvantage in such technique with

complex structure is that it cannot be implemented as hardware

because it has a partitioned data structure that makes it

impossible to implement a hardware clock hand that moves at

the required speed [25].

INITIALIZATIONS: Set p = 0 and set lists Tl, Bl, B2 and

T2 as empty.

CAR(x)

INPUT: requested page x.

if(x is in T2 ∪ Tl) then

/* cacheHit */

Set page reference bit for x to the value of 1.

otherwise /* cacheMiss */ if(|T2|+T1=c)

/* cacheFull, substitute page from the cache */

699

replace()

/* replacement of the directory of the cache */

if((x isn't in B2 ∪ B1) and (|B1|+|T1|=c))

Discarding the LRU page in the B 1.

Else if((|T1|+|Bl|+|T2|+|B2|=2c) and (x isn't in B2 ∪ Bl))

Discarding the LRU page in the B2.

End if

End if

/* cache the directory miss */

if(x isn't in B2 ∪ Bl) then

Insert x at Tl tail.

Set the reference bit of page of x to 0.

3. THE PROPOSED METHOD (M-CAR)

3.1 Design concept

The proposed technique will concentrate on the concept of

“long-term utility pages,” which basically depends on:

I. Accurate guessing.

II. Factors updating.

III. Dynamic data blocks repositioning.

The proposed technique structure and parameters will

contain:

i. T2, T1, B2, and B1 are the four linked lists that make up

the CAR directory.

ii. Lists T2 and T1 are linked as CLOCK policy

implementers. iii. B2 and B1 are linked as LRU policy

implementers.

iv. Lists B2 and B1 include history pages that have recently

been evicted from the cache.

v. CLOCKs T2 and T1 contain pages that are currently in

the cache, CLOCK T2 records frequency (F), and CLOCK T1

records recency (R).

vi. Virtual list updated dynamically contains the (MAXF-1)

at each cache referencing.

In the proposed method, keeping long-term utility pages for

future requests is achieved by giving greater importance to the

frequency factor (F) in specific conditions when the cache is

full during requesting new data pages. In a traditional CAR

algorithm, when a cache miss occurs a data page is normally

evicted from T2 (which means that this page was frequently

utilized prior its eviction from the cache). In addition, it should

be noted that the time complexity in traditional (CAR) and the

proposed (M-CAR) will not be affected because both of these

techniques are scan resistance. And space complexity also will

not be affected because the proposed (M-CAR) maintains the

same structure of (CAR). Thus, the previous mentioned factors

will not be a noticeable criteria.

The proposed modification will be as follows:

1. When cache miss occurs in T2 and coincides with the data

block in the tail of T2 being the maximum frequency (MAXF)

data page, the data block with MAXF-1 is evicted from T2 and

placed at the most recently used position (MRU) in B2.

2. When a cache miss occurs in B2, the data block that is

evicted out of cache from B2 will not be the data block with

MAXF even if it located at the end of B2 list. Instead, the data

block that positioned before the most recently used position

(MRU-1) in B2 will be moved out of cache.

Figure 3 illustrates the concept of the proposed M-CAR

technique in a flowchart, in which all the subroutines

achieving the different working steps of the proposed system

(miss and hit stages) are gathered in one diagram of steps,

conditions and actions.

Figure 3. Flowchart of the proposed M-CAR technique

The M-CAR Pseudocode is given below:

INITIALIZATION

Set a pointer p to 0

Initialize four empty lists: T1, B1, B2, and T2

Set a variable c as the maximum cache size

FUNCTION CAR(x):

Check if x is already in the cache x is in (T2 or T1):

Set reference bit of page x to 1

ELSE:

If cache is full, perform cache replacement length(T2) +

length(T1) = c:

CALL replace()

IF x is not in (B2 or B1) and If B1 is full length (B1) + length

(T1) = c,

 perform replacement:

IF LRU page in B1 has MAXF:

 Discard MAXF-1 page in B2

ELSE:

Discard least recently used page in B1

IF total cache size exceeds limit length (T1) + length (B1)

+ length (T2) + length (B2) =

 2 * c and x is not in (B2 or B1),

perform replacement:

700

Discard least recently used page in B2

IF cache directory miss x is not in (B2 or B1) and length

(T1) + length (T2) + length (B1)

 + length (B2) = 2 * c, take action based on MRU page:

 IF page of MRU is MAXF:

Discard MRU-1 page in B2

ELSE:

Append x to T1

Set reference bit of page x to 0

FUNCTION replace():

IF B1 or B2 is full the length (B1) + length (T1) = c OR

length (T1) + length (B1) +

 length (T2) + length (B2) = 2 * c, replace the oldest page:

IF length (B1) + length (T1) = c:

cache_to_replace := B1

ELSE:

cache_to_replace := B2

Remove the oldest page from cache_to_replace

3.2 Method implementation

The criteria used to judge the performance efficiency in the

proposed algorithm is the hit ratio gained by (M-CAR) and

original (CAR), because cache memory was basically invented

to solve the wait-state problem by keeping a useful data block

to achieve the highest reachable hit ratio.

The experimental environment to implement these

techniques depended on coding by (c#) on computer system

with (O.S: Win-10), CPU: 1.83 GHz (2-CPUs), M.M:3-GB

(which has no impact on the obtained results)

The main parameter is the cache size and it will be at the

range 20-100 (which will impact on results by the more it

increases allows more item's repetitions which causes higher

hit ratio).

The two algorithms operated on the same set of input files

(data sets), and the performance of the proposed modification

is measured using the hit ratio calculated from Equation 1 and

presented as the program's final finding:

Hit ratio =
No. of cache hits

No. of memory references in data set
*100 (1)

First, the method was implemented on Dataset-1 which

contains (245) items as follows:

{2, 3, 4, 1, 2, 4, 140, 150, 3, 2, 1, 4, 6, 5, 170, 180, 190, 200,

5, 6, 1, 7, 3, 4, 2, 5, 6, 7, 4, 210, 220, 1, 3, 5, 7, 2, 4, 6, 1, 8, 6,

7, 2, 3, 4, 2, 3, 6, 7, 8, 230, 240, 250, 260, 270, 280, 290, 300,

7, 8, 1, 3, 5, 6, 2, 4, 1, 8, 6, 310, 320, 330, 340, 350, 1, 8, 7, 2,

4, 3, 8, 6, 5, 7, 1, 360, 370, 380, 390, 400, 410, 6, 5, 4, 3, 2, 1,

6, 1, 15, 2, 3, 15, 17, 16, 4, 17, 16, 7, 6, 1, 5, 15, 17, 8, 5, 21,

16, 15, 17, 2, 3, 16, 21, 17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23,

24, 8, 15, 12, 17, 19, 21, 16, 4, 1, 2, 3, 8, 19, 8, 7, 6, 1, 2, 3, 4,

5, 6, 7, 19, 18, 17, 16, 2, 13, 1, 2, 3, 4, 5, 21, 22, 18, 16, 14, 12,

2, 4, 6, 1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 24, 10, 11, 12, 13,

14, 15, 9, 6, 7, 6, 5, 4, 3, 2, 1, 1, 5, 15, 17, 8, 5, 21, 16, 15, 17,

2, 3, 16, 21, 17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23, 24, 8, 15, 12,

17, 19, 21, 16, 4, 1, 2, 3, 8}

Implementing the proposed method using Dataset-1

produces the hit ratios shown in Figure 4.

Next, the method was implemented on Dataset-2, which

contains (270) items as follows:

{380, 390, 400, 410, 6, 5, 4, 3, 2, 1, 6, 1, 15, 2, 3, 15, 17, 16,

4, 17, 16, 7, 6, 1, 5, 15, 17, 8, 5, 4, 1, 2, 3, 8, 19, 8, 7, 6, 1, 2,

3, 4, 5, 6, 7, 19, 18, 17, 16, 2, 13, 1, 2, 3, 4, 5, 21, 22, 18, 16,

14, 210, 220, 1, 3, 5, 7, 2, 4, 6, 1, 8, 6, 7, 2, 3, 4, 2, 3, 6, 7, 8,

230, 240, 250, 260, 270, 280, 290, 21, 16, 15, 17, 2, 3, 16, 21,

17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23, 24, 8, 15, 12, 17, 19, 21,

16, 12, 2, 4, 6, 1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 24, 10, 11,

12, 13, 14, 15, 9, 6, 7, 6, 5, 4, 3, 2, 2, 3, 4, 1, 2, 4, 140, 150, 3,

2, 1, 4, 6, 5, 170, 180, 190, 200, 5, 6, 1, 7, 3, 4, 2, 5, 6, 7, 4,

300, 7, 8, 1, 3, 5, 6, 2, 4, 1, 8, 6, 310, 320, 330, 340, 350, 1, 8,

7, 2, 4, 3, 8, 6, 5, 7, 1, 360, 370, 1, 5, 7, 2, 4, 6, 1, 8, 6, 7, 2, 3,

4, 2, 3, 6, 7, 8, 230, 240, 250, 260, 270, 280, 290, 5, 6, 2, 4, 1,

8, 6, 310, 320, 330, 340, 350, 1, 8, 7, 2, 4, 3, 8, 6, 5, 7, 1, 360,

370, 380, 390, 400, 410, 6, 5, 4, 3, 2, 1, 6, 1, 15, 2, 3}

When the proposed method is implemented using Dataeset-

2, the results in Figure 5 are obtained.

Figure 4. Hit ratio for CAR & M-CAR chart for Data set-1

Figure 5. Hit ratio for CAR & M-CAR chart for Data set-2

4. RESULTS AND ANALYSIS

Based on the results obtained in the previous section, the

proposed method achieved the following advantages:

A. Numerical results:

1. As seen in Figure 4 and Figure 5, the proposed M-CAR

method achieved a hit ratio 91% and 76% higher than that

achieved with traditional CAR when the dataset contained 245

and 270 items, respectively. This means that overall, as an

average, the proposed M-CAR is capable of achieving a hit

ratio 83.5% higher than that achieved using a traditional CAR.

2. While the performance of both methods dropped with the

increase in the number of elements in the dataset, that drop was

701

less pronounced for M-CAR compared with that of the

traditional CAR. By keeping the MAXF data block and

replacing the MXF-1 block instead, the proposed modification

makes a more realistic prediction of future CPU requests.

3. To assess the statistical significance of the increase in hit

ratio after applying the (M-CAR) technique, we calculated the

hit ratios of the (CAR) and (M-CAR) approaches for each

dataset using a two-sample t-test with unequal variances and a

two-tailed distribution. The obtained p-values were

(1.97403E-10) for dataset-1 and (5.54347E-14) for dataset-2,

demonstrating a substantial difference in hit rates between the

old and new approaches for both datasets.

B. Results based on working mechanism and structure:

1. (M-CAR) is dynamically higher than (CAR).

2. (M-CAR) is scan resistance which makes it a fast

technique.

3. Mathematical and technical complexity in (M-CAR) has

not been affected and it is the same as in (CAR).

4. (M-CAR) is more accurate than (CAR) in selecting the

candidate cache block for eviction based on two variables

(recency and frequency), as well as the necessary modification

step (moving MAXF-1 cache blocks in certain instances).

5. CONCLUSIONS

This study proposed a modified CAR (M-CAR) approach

that achieves higher performance compared with the original

approach through maximizing the hit ratio. The obtained

results revealed that the hit ratios achieved using M-CAR are

noticeably higher, increasing by an average of 83.5%

compared with those obtained using typical CAR. We

therefore conclude that the M-CAR is a high-performance

cache replacement algorithm, and by default, achieving higher

hit ratio means that the miss ratio has been minimized, which

is the primary study objective for which it was found. In the

same time, as a potential limitation of M-CAR, mathematical

complexity (caused by the highly dynamic updating for F, R,

MAXF and MAXR counters) might be a challenge for the

proposed system that can slow down the overall performance.

So, as a future improvement, a third factor can be added to this

system, such as the Low Inter-reference Recency Set

algorithm (LIRS) that can keep track any changes in its

counters without extra time.

ACKNOWLEDGMENT

This research has been supported by the Computer Science

Department /College of Education / Mustansiriyah University

we strongly express our gratitude to the Department of

Computer Science for the continuous and diligent support for

us in this work

REFERENCES

[1] Hasoon, J.N., Hassan, R. (2019). Solving job scheduling

problem using fireworks algorithm. Journal of Al-

Qadisiyah for Computer Science and Mathematics, 11(2):

1-8. https://doi.org/10.29304/jqcm.2019.11.2.557

[2] Supase, S.S., Pansare, J.R. (2023). A robust, preference-

based coordinator election algorithm for distributed

systems. Ingénierie des Systèmes d’Information, 28(4):

843-851. https://doi.org/10.18280/isi.280405

[3] Balagoni, Y., Rao, R.R. (2018). SAGS: A SLA-aware

green scheduling in heterogeneous cloud using hadoop

YARN. International Journal of Intelligent Engineering

and Systems, 11(6): 108-117.

https://doi.org/10.22266/ijies2018.1231.11

[4] Banday, M.T., Khan, M. (2014). A study of recent

advances in cache memories. In 2014 International

Conference on Contemporary Computing and

Informatics (IC3I), Mysore, India, pp. 398-403.

https://doi.org/10.1109/IC3I.2014.7019786

[5] Jasim, B.H., AL-Aaragee, A.M.J., Alawsi, A.A.A.,

Dakhil, A.M. (2023). A heuristic optimization approach

for the scheduling home appliances. Bulletin of Electrical

Engineering and Informatics, 12(3): 1256-1266.

https://doi.org/10.11591/eei.v12i3.3989

[6] Ahmed, T.I.O., Elamin, E.M. (2018). Design strategy of

cache memory for computer performance improvement.

International Journal of Research, 4(3): 12-17.

http://doi.org/10.20431/2454-9436.0403002

[7] Suppiah, Y., Bhuvaneswari, T., Yee, P.S., Yue, N.W.,

Horng, C.M. (2022). Scheduling single machine problem

to minimize completion time. TEM Journal, 11(2): 552-

556. https://doi.org/10.18421/TEM112-08

[8] Mlinarić, D. (2020). Challenges in dynamic software

updating. TEM Journal, 9(1): 117-128.

https://doi.org/10.18421/TEM91-17

[9] Ogrutan, P., Aciu, L.E. (2017). Laboratory works

designed for developing student motivation in computer

architecture. TEM Journal, 6(1): 3-10.

https://doi.org/10.18421/TEM61-01

[10] Al-Atbee, O.Y.K., Abdulhassan, K.M. (2023). A cascade

multi-level inverter topology with reduced switches and

higher efficiency. Bulletin of Electrical Engineering and

Informatics, 12(2): 668-676.

https://doi.org/10.11591/eei.v12i2.4138

[11] Zhen, C., Li, K. (2009). Memory management research

based on real-time database. In 2009 International

Conference on Test and Measurement, Hong Kong,

China, pp. 416-419.

https://doi.org/10.1109/ICTM.2009.5412904

[12] Prongnuch, S., Sitjongsataporn, S., Wiangtong, T. (2020).

A heuristic approach for scheduling in heterogeneous

distributed embedded systems. International Journal of

Intelligent Engineering and Systems, 13(1): 135-145.

https://doi.org/10.22266/ijies2020.0229.13

[13] Raghuvanshi, D. (2018). Memory management in

operating system. International Journal of Trend in

Scientific Research and Development, 2(5): 2346-2347.

https://doi.org/10.31142/ijtsrd18342

[14] Mohialden, Y.M., Hussien, N.M., Hameed, S.A. (2022).

Review of software testing methods. Journal La Multiapp,

3(3): 104-112.

https://doi.org/10.37899/journallamultiapp.v3i3.648

[15] Salih, N.A.J., Altaie, H.T.R., Al-Azzawi, W.K., Mnati,

M.J. (2023). Design and implementation of a driver

circuit for three-phase induction motor based on

STM32F103C8T6. Bulletin of Electrical Engineering

and Informatics, 12(1): 42-50.

https://doi.org/10.11591/eei.v12i1.4276

[16] Zaitar, Y. (2022). Analyzing the contribution of ERP

systems to improving the performance of organizations.

Ingénierie des Systèmes d’Information, 27(4): 549-556.

https://doi.org/10.18280/isi.270404

702

[17] Pappas, C., Moschos, T., Alexoudi, T., Vagionas, C.,

Pleros, N. (2022). Caching with light: First

demonstration of an optical cache memory prototype. In

Optical Fiber Communication Conference, San Diego,

California, USA, pp. Th4B-3.

https://doi.org/10.1364/OFC.2022.Th4B.3

[18] Aalsaud, A., Rafiev, A., Xia, F., Shafik, R., Yakovlev, A.

(2018). Model-free runtime management of concurrent

workloads for energy-efficient many-core heterogeneous

systems. In 2018 28th International Symposium on

Power and Timing Modeling, Optimization and

Simulation (PATMOS), Platja d'Aro, Spain, pp. 206-213.

https://doi.org/10.1109/PATMOS.2018.8464142

[19] Jaber, S., Ali, Y., Ibrahim, N. (2022). An automated task

scheduling model using a multi-objective improved

cuckoo optimization algorithm. International Journal of

Intelligent Engineering & Systems, 15(1): 295-304.

https://doi.org/10.22266/ijies2022.0228.27

[20] Ilhem, B., Elamin, B.M., Ahmed, L., Salaheddine, B.

(2022). 3D modelling of the mechanical behaviour of

magnetic forming systems. Bulletin of Electrical

Engineering and Informatics, 11(4): 1807-1817.

https://doi.org/10.11591/eei.v11i4.3628

[21] Sadiq, A.T., Abdullah, H.S., Ahmed, Z.O. (2018).

Solving flexible job shop scheduling problem using

meerkat clan algorithm. Iraqi Journal of Science, 59(2A):

754-761. https://doi.org/10.24996/ijs.2018.59.2A.13

[22] Kareem, E.I.A., Hussein, S.A. (2022). Optimal CPU jobs

scheduling method based on simulated annealing

algorithm. Iraqi Journal of Science, 63(8): 3640-3651.

https://doi.org/10.24996/ijs.2022.63.8.38

[23] Salem, R., Abdel-Moneim, W., Hassan, M. (2021). Fast

Local Flow-based Method using Parallel Multi-core

CPUs Architecture. International Journal of Intelligent

Engineering & Systems, 14(4): 1-10.

https://doi.org/1010.22266/ijies2021.0831.01

[24] Arumalla, A., Makkena, M.L. (2016). An effective

implementation of dual path fused floating-point add-

subtract unit for reconfigurable architectures.

International Journal of Intelligent Engineering and

Systems, 10(2): 40-47.

https://doi.org/10.22266/ijies2017.0430.05

[25] Belmahdi, R., Mechta, D., Harous, S. (2021). A survey

on various methods and algorithms of scheduling in Fog

Computing. Ingénierie des Systèmes d’Information,

26(2): 211-224. https://doi.org/10.18280/isi.260208

703

