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Caching is a key method used to close the latency gap between memory and the CPU by 

using locality in memory accesses. varied cache replacement algorithms have radically 

varied effects on system performance because they choose which blocks to evict from cache 

memory in the event of a cache miss. The goal of these replacement strategies is to move 

closer to the ideal scenario by making the greatest use of the entire cache area, reducing the 

miss ratio as much as feasible, and obtaining the maximum system performance possible. 

In this paper, based on clock with adaptive replacement algorithm (CAR), a simple and 

effective modified algorithm is proposed, namely, modified clock with adaptive 

replacement (M-CAR), which achieved 91% and 76% hit ratio higher (compared with the 

conventional CAR method) with datasets that contained 245 and 270 items, respectively. 

Which is considered to be the most important cache performance criteria. Which means, by 

default, minimizing the cache miss ratio. As well as the dynamical behavior that has been 

improved and gained the (M-CAR) that makes it more reliable. 
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1. INTRODUCTION

Cache memory was developed to close the gap between 

memory access time and CPU performance speed. Even 

modern memory technologies remain unable to address this 

gap, because the computer CPU runs at a high speed, leading 

to the issue known as the wait state. A wait state is experienced 

by a computer processor in the case of accessing an external 

memory or any device which has slow response. This wait 

state manifests as additional clock cycles allowing the device 

the time needed for completing a process [1-3]. During this 

delay, the CPU is unable to perform any operations on data it 

has not yet received from the memory. M. V. Wilkes created 

cache memory in 1965, and initially referred to it as the “slave 

memory”, describing it as the second level of a high-speed 

unconventional memory which produces a zero-wait state [4]. 

As shown in Figure 1, cache memory is a fast, extremely 

tiny, zero-wait state memory, placed between the M.M and 

CPU to act as a bridge for data exchange and storage. Due its 

small size, a major problem in cache memory is the “cache 

miss”, which took place if the CPU requests an item of data 

that is not available in the cache. Conversely, a ''cache hit'' took 

place if the CPU re-quests an item of data that is available in 

the cache [5]. 

Replacement algorithms are required when a cache miss 

took place and there is no space in the cache to load memory 

blocks. A replacement algorithm selects the existing block in 

the cache. Replacement policies/algorithms are used to 

achieve optimized cache usage. When the cache is full, 

replacement policies decide what data is replaced to make 

room for new data currently in use. An efficient algorithm is 

an algorithm that can take less time, the number of cache 

misses is low and also balances the cost. In modern embedded 

systems, applications have become very large and the presence 

of caches is inevitable. Therefore, newer embedded processors 

have cache architectures that are just as complex as those of 

general-purpose processors. Integrated processor caches, 

especially for mobile devices, have complicated architectures 

because all three metrics (performance, power and area) must 

be satisfied simultaneously within certain constraints. 

When a cache miss took place, a replacement algorithm is 

needed if the space demanded to load the memory blocks is 

not available in the cache. The algorithm searches M.M to 

identify the required data item and transfer it to the cache, and 

makes a decision to strategically swap blocks. Such algorithms 

are referred to as the replacement algorithms [6, 7]. Since 

replacement algorithms choose a candidate block in the cache 

for replacement, they need to be implementable in hardware to 

achieve high operational speed. Based on the principle of 

replacement, these techniques may be categorized as [6-8]: 

A. Optimal: This technique replaces the block least likely to

be required in the future. Although this policy of re-placement 

isn’t feasible, it is frequently utilized as a benchmark to assess 

the effectiveness of other replacement plans. 

B. Random: This technique may choose the replacement

cache block candidate in a completely arbitrary order that 

ignores the memory references. 

C. First-In, First-Out (FIFO): This technique selects the

oldest available block for replacement. 

D. Least Recently Used (LRU): This technique is based
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upon the idea that a block that has recently been referred has a 

high likelihood of being referred again in the future. 

E. Least-Frequently-Used (LFU): This technique uses the 

software counter related to each cache block to identify and 

replace the least frequently used block. 

F. Second chance algorithm: When a replacement is 

required, the data exists at the top of the queue (with the 

longest dwell time) is inspected; if it was referenced while in 

the cache, it is pushed to the end of the queue and given 

another opportunity. If not, you'll be evicted. 

G. Working set algorithm (WS): The Working Set 

Replacement technique replaces old data in cache memory 

using the working set concept, which is defined as the set of 

blocks used by a process at any given time. 

H. Aging algorithm: A method that employs a bit 

presentation of a zero-counter for each data item in cache, with 

this counter adding zero for unreferenced blocks per clock tick. 

When a block has to be replaced, the block with the lowest 

counter is deleted. 

 

 
 

Figure 1. Cache and M.M data transfer 

 

 

2. RELATED WORK 

 

Numerous studies have developed sophisticated cache 

replacement algorithms that reduce the miss ratio and speed 

disparity between the (CPU) and (M.M) access time. Below 

are some of these algorithms. 

 

2.1 CLOCK algorithm 

 

The page cache entries in this algorithm are structured as a 

circular buffer (list) resembling a clock, with each data page 

having an associated reference bit. The hand of the clock scans 

the clock structure in a circular motion examining the 

reference bit of each entry until it identifies the buffer’s oldest 

data page. The reference bit of the data is marked in an event 

where certain data page was referenced. Cache replacement 

policy is invoked when a page fault is encountered, and the 

data page is pointed to (identified) by the inspecting hand as 

the oldest data page [4]. In an event where marking a reference 

bit of data page, the bit value will be reset to 0, and the next 

oldest data page is pointed to by the hand. This process 

continues until a data page with reference bit of 0 is found, in 

which case that data page is taken away from the buffer, and a 

new data page is inserted instead and its reference bit value is 

set to 0 [9-11]. This technique suffers from few disadvantages, 

including its impracticality (the evicted block may be needed 

in a short time later), low hit ratio in the presence of unrepeated 

sequence of data pages, and lack of scan resistance (which 

means that the entire memory must be searched to choose the 

best eviction candidate), which makes this technique slow. 

 

2.2 Dueling CLOCK 

 

This represents a policy of adaptive replacement that 

functions based on the CLOCK method. To achieve a scan-

resistant CLOCK, the single necessary modification is for the 

clock hand to point to the buffer’s latest rather than oldest data 

page [11, 12]. This may be viewed as a method of adaptive 

replacements using CLOCK structure. The cache will be split 

into 3 groups: (M1), (M2) and (M3), each to carry out a 

specific task. This algorithm is commonly implemented as an 

approach to substitute a small set of (M1), whereas scan-

resistant CLOCK is always utilized by small sets (M2 and M3), 

which are the large sets that may be applied between the scan-

resistant CLOCK and traditional CLOCK according to the 

comparative performance associated with the two former sets 

(M2 and M3). For specifying the replacement policy that must 

be applied for (M3), a (10-bit) policy select counter (PSEL) is 

implemented [12, 13]. 

The disadvantages of this technique include its technical 

complexity, its performance efficiency that is only achieved 

when applied inmulti-level caches (level2 specifically), and its 

low hit ratio when data pages reside in level1 or level3. 

 

2.3 CLOCK-Pro 

 

The CLOCK-Pro algorithm utilizes CLOCK for the 

approximation of the reuse distance. A page that is accessed is 

viewed as “hot” if it has little reuse distance, and “cold” if it 

has a massive reuse distance. The data items are accessed in a 

list in which data items that have slight recency level are 

placed at the top of the list, whereas those that have a larger 

recency level are placed at end of that list. The circular list is 

utilized to keep the entries of the cache page [13, 14]. There 

are three status bits that are associated with these pages; cold 

or hot indicator, referencing bit, and indicator for every one of 

the cold pages to specify whether or not a page is in the test 

phase. The CLOCK-Pro approach has 3-hands [14]. The 

HANDcold is viewed as the first one that indicates to the last 

resident cold page, or cold page that is substituted after that. 

During the process of page substitution, the page which is 

chosen via the HANDcold will be evicted when the reference 

bit that is associated with the page is 0. HANDhot is the 2nd 

hand pointing to the hot page with the maximum recency. If a 

reference bit associated with the page which has been chosen 

by HANDhot is 0, the page is considered a cold page [15, 16]. 

The disadvantages of this technique are its mathematical 

complexity, and the fact that it only captures the “recency” 

factor. 

 

2.4 Two queue (2Q) 

 

2Q maintains two detached lists. One of them is managed 

as a list (LRU), which is named (Hot). And the other as (FIFO), 

F. The list (F) is divided into two parts (F-in) and (F-out). The 

list (F-in) comprises data items in (M.M), while the list (F-out) 

only contains information about data items, but not the actual 

content. When the data item is accessed for the first time, it is 

placed data item at the top of the list (F-in). The data item 

position in the list (F-in) is not changed as long as it remains 

there. As new data items are used, the list fills up (F-in). In this 

situation, the final data item in the list (F-in) is fetched next, 

but the data item information is placed at the beginning of the 

list (F-out). When the data item is utilized in the list (F-out), 

space is reclaimed and put at the beginning of the current list. 

If the list (F-in) is not full, the claim begins at the end of the 

active list. The data item taken from the active list is not added 

into any lists since it has not been utilized for a long time. 
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2.5 LOW inter-reference recency set (LIRS) 

 

(LIRS) dismisses data items based mostly on their Inter-

Reference Recency (IRR). The (IRR) of a data item specifies 

the precise number of other data items transferred between two 

sequential references to any data item. It is assumed that if the 

current (IRR) of a data item is considerable, the next (IRR) of 

the data item may likewise be considerable. It is worth noting 

that a data item with a high IRR that was picked for deletion 

may have recently been used. 

This method distinguishes between data items of greater 

IRR (HIR) and data items of lower IRR (LIR). The numbers 

of data items of (LIR) and (HIR) are chosen so that all (LIR) 

data items and just a few numbers off (HIR) data items are 

retained. 

 

2.6 Adaptive replacement cache (ARC) 

 

ARC algorithm links the LFU solution with regulates 

between the two solutions dynamically. It is an easy to 

implement with low overhead on systems such as LRU. It 

employs ‘4’ double linked lists (K1, K2) as the factual cache 

content. (N1, N2) is an actor as a second level. N1 and N2 

contain the data items that have been thrown out from K1 and 

K2 respectively. thus, an overall number of data items of (2 * 

C) is required for these lists. (C) would be the number of data 

items that are present in the then cache. Both lists use LRU 

replacements, where the data item removed from K2 is placed 

into N2. (K1, N1) and N2 work in a similar way, except in case 

of a hit in K1 or N1, the data item is moved to K2. The adaptive 

nature of this policy makes it possible to change the sizes of 

lists. 

The size of K1 and S2 always adds up to the total number 

of data items. Whenever there is a hit in N1, the size of K1 

increases by ‘1’ and decreases of K2 by ‘1. In the opposite 

direction, a hit in N2 will increase the size of K2 by ones, 

resulting in a decrease of K1 by one. This allows cache to 

adjust and have more or less frequency or recency depending 

on the workload.  

 

2.7 CLOCK with adaptive replacement (CAR) 

 

The CAR directory structure is depicted in Figure 2, in 

which T2, T1, B2, and B1 are the four linked lists that make 

up the CAR directory. Lists T2 and T1 are linked as CLOCK 

policy implementers, and B2 and B1 are linked as LRU policy 

implementers [17-19]. 

Lists B2 and B1 include history pages that have recently 

been evicted from the cache, and CLOCKs T2 and T1 contain 

pages that are currently in the cache. CLOCK T2 records 

frequency (F), and CLOCK T1 records recency (R). Simple 

LRU lists can be found in lists B2 and B1. Pages that have 

been evicted from T1 replace B1, and those removed from T2 

replace B2. This algorithm aims to maintain B2 and B1 at 

nearly equivalent sizes to T2 and T1, respectively. 

Additionally, the technique prevents |T1|+|B1| from exceeding 

the cache size. In response to a varying workload, the sizes 

allocated to CLOCKs T2 and T1 are continuously adjusted. 

The target size for T1 is increased anytime a hit in B1 is 

detected; conversely, the T1 target size decreases whenever a 

hit in B2 is detected. The new pages are placed in T2 or T1, 

directly behind the clock hands that have been displayed in 

order to move clockwise. New pages have a page reference bit 

that is set to “0” [20, 21]. 

 
 

Figure 2. CAR directory structure 

 

Any page in T1 U T2 can be cached by setting the page 

reference bit for that page to “1”. The T1 clock hand moves a 

page behind T2 clock hand then resets the reference bit of the 

page to “0” if it meets a page that has a page reference bit of 

“1“. A “0-page” reference bit page is evicted then put at the 

most recently used position (MRU) in B1 whenever T1 clock 

hand comes across it. The page reference bit is reset to “0” if 

the T2 clock hand comes across a page with page reference bit 

that equals “1”. An evicted page is then placed at the MRU 

position in B2 any time the T2 clock hand comes into contact 

with a reference page bit with value “1” [22, 23]. The basic 

CAR algorithm is as follows [5, 11, 17]: 

The main disadvantage of CAR is that it does not handle 

temporal filtering. Therefore, more stringent separation must 

be imposed between short-term and long-term utility pages for 

specific workloads. This means that recency (R) and frequency 

(F) cannot select the best candidate data page for eviction, 

which results in a lower hit ratio. This will be the focus of the 

modification proposed in this study [24]. 

Another common disadvantage in such technique with 

complex structure is that it cannot be implemented as hardware 

because it has a partitioned data structure that makes it 

impossible to implement a hardware clock hand that moves at 

the required speed [25]. 

 

INITIALIZATIONS: Set p = 0 and set lists Tl, Bl, B2 and 

T2 as empty. 

CAR(x) 

INPUT: requested page x. 

if(x is in T2 ∪ Tl) then 

/* cacheHit */ 

Set page reference bit for x to the value of 1. 

otherwise /* cacheMiss */ if(|T2|+T1=c) 

/* cacheFull, substitute page from the cache */ 
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replace() 

/* replacement of the directory of the cache */ 

if((x isn't in B2 ∪ B1) and (|B1|+|T1|=c)) 

Discarding the LRU page in the B 1. 

Else if((|T1|+|Bl|+|T2|+|B2|=2c) and (x isn't in B2 ∪ Bl)) 

Discarding the LRU page in the B2. 

End if 

End if 

/* cache the directory miss */ 

if(x isn't in B2 ∪ Bl) then 

Insert x at Tl tail. 

Set the reference bit of page of x to 0. 

 

 

3. THE PROPOSED METHOD (M-CAR) 

 

3.1 Design concept 

 

The proposed technique will concentrate on the concept of 

“long-term utility pages,” which basically depends on: 

I. Accurate guessing. 

II. Factors updating. 

III. Dynamic data blocks repositioning. 

The proposed technique structure and parameters will 

contain: 

i. T2, T1, B2, and B1 are the four linked lists that make up 

the CAR directory.  

ii. Lists T2 and T1 are linked as CLOCK policy 

implementers. iii. B2 and B1 are linked as LRU policy 

implementers. 

iv. Lists B2 and B1 include history pages that have recently 

been evicted from the cache. 

v. CLOCKs T2 and T1 contain pages that are currently in 

the cache, CLOCK T2 records frequency (F), and CLOCK T1 

records recency (R). 

vi. Virtual list updated dynamically contains the (MAXF-1) 

at each cache referencing.  

In the proposed method, keeping long-term utility pages for 

future requests is achieved by giving greater importance to the 

frequency factor (F) in specific conditions when the cache is 

full during requesting new data pages. In a traditional CAR 

algorithm, when a cache miss occurs a data page is normally 

evicted from T2 (which means that this page was frequently 

utilized prior its eviction from the cache). In addition, it should 

be noted that the time complexity in traditional (CAR) and the 

proposed (M-CAR) will not be affected because both of these 

techniques are scan resistance. And space complexity also will 

not be affected because the proposed (M-CAR) maintains the 

same structure of (CAR). Thus, the previous mentioned factors 

will not be a noticeable criteria.  

The proposed modification will be as follows:  

1. When cache miss occurs in T2 and coincides with the data 

block in the tail of T2 being the maximum frequency (MAXF) 

data page, the data block with MAXF-1 is evicted from T2 and 

placed at the most recently used position (MRU) in B2. 

2. When a cache miss occurs in B2, the data block that is 

evicted out of cache from B2 will not be the data block with 

MAXF even if it located at the end of B2 list. Instead, the data 

block that positioned before the most recently used position 

(MRU-1) in B2 will be moved out of cache. 

Figure 3 illustrates the concept of the proposed M-CAR 

technique in a flowchart, in which all the subroutines 

achieving the different working steps of the proposed system 

(miss and hit stages) are gathered in one diagram of steps, 

conditions and actions. 

 

 
 

Figure 3. Flowchart of the proposed M-CAR technique 

 

The M-CAR Pseudocode is given below: 

 

INITIALIZATION 

Set a pointer p to 0 

Initialize four empty lists: T1, B1, B2, and T2 

Set a variable c as the maximum cache size 

FUNCTION CAR(x): 

Check if x is already in the cache x is in (T2 or T1): 

Set reference bit of page x to 1 

ELSE:  

If cache is full, perform cache replacement length(T2) + 

length(T1) = c: 

CALL replace() 

IF x is not in (B2 or B1) and If B1 is full length (B1) + length 

(T1) = c, 

 perform replacement: 

IF LRU page in B1 has MAXF: 

 Discard MAXF-1 page in B2 

ELSE:  

Discard least recently used page in B1 

IF total cache size exceeds limit length (T1) + length (B1) 

+ length (T2) + length (B2) = 

 2 * c and x is not in (B2 or B1),  

perform replacement: 
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Discard least recently used page in B2 

IF cache directory miss x is not in (B2 or B1) and length 

(T1) + length (T2) + length (B1) 

 + length (B2) = 2 * c, take action based on MRU page: 

 IF page of MRU is MAXF: 

Discard MRU-1 page in B2 

ELSE:  

Append x to T1 

Set reference bit of page x to 0 

FUNCTION replace(): 

IF B1 or B2 is full the length (B1) + length (T1) = c OR 

length (T1) + length (B1) + 

 length (T2) + length (B2) = 2 * c, replace the oldest page: 

IF length (B1) + length (T1) = c: 

cache_to_replace := B1 

ELSE:  

cache_to_replace := B2 

Remove the oldest page from cache_to_replace 

 

3.2 Method implementation 

 

The criteria used to judge the performance efficiency in the 

proposed algorithm is the hit ratio gained by (M-CAR) and 

original (CAR), because cache memory was basically invented 

to solve the wait-state problem by keeping a useful data block 

to achieve the highest reachable hit ratio. 

The experimental environment to implement these 

techniques depended on coding by (c#) on computer system 

with (O.S: Win-10), CPU: 1.83 GHz (2-CPUs), M.M:3-GB 

(which has no impact on the obtained results) 

The main parameter is the cache size and it will be at the 

range 20-100 (which will impact on results by the more it 

increases allows more item's repetitions which causes higher 

hit ratio).  

The two algorithms operated on the same set of input files 

(data sets), and the performance of the proposed modification 

is measured using the hit ratio calculated from Equation 1 and 

presented as the program's final finding: 
 

Hit ratio =
No. of cache hits

No. of memory references in data set
*100 (1) 

 

First, the method was implemented on Dataset-1 which 

contains (245) items as follows: 

 

{2, 3, 4, 1, 2, 4, 140, 150, 3, 2, 1, 4, 6, 5, 170, 180, 190, 200, 

5, 6, 1, 7, 3, 4, 2, 5, 6, 7, 4, 210, 220, 1, 3, 5, 7, 2, 4, 6, 1, 8, 6, 

7, 2, 3, 4, 2, 3, 6, 7, 8, 230, 240, 250, 260, 270, 280, 290, 300, 

7, 8, 1, 3, 5, 6, 2, 4, 1, 8, 6, 310, 320, 330, 340, 350, 1, 8, 7, 2, 

4, 3, 8, 6, 5, 7, 1, 360, 370, 380, 390, 400, 410, 6, 5, 4, 3, 2, 1, 

6, 1, 15, 2, 3, 15, 17, 16, 4, 17, 16, 7, 6, 1, 5, 15, 17, 8, 5, 21, 

16, 15, 17, 2, 3, 16, 21, 17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23, 

24, 8, 15, 12, 17, 19, 21, 16, 4, 1, 2, 3, 8, 19, 8, 7, 6, 1, 2, 3, 4, 

5, 6, 7, 19, 18, 17, 16, 2, 13, 1, 2, 3, 4, 5, 21, 22, 18, 16, 14, 12, 

2, 4, 6, 1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 24, 10, 11, 12, 13, 

14, 15, 9, 6, 7, 6, 5, 4, 3, 2, 1, 1, 5, 15, 17, 8, 5, 21, 16, 15, 17, 

2, 3, 16, 21, 17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23, 24, 8, 15, 12, 

17, 19, 21, 16, 4, 1, 2, 3, 8} 
 

Implementing the proposed method using Dataset-1 

produces the hit ratios shown in Figure 4. 

Next, the method was implemented on Dataset-2, which 

contains (270) items as follows: 

 

{380, 390, 400, 410, 6, 5, 4, 3, 2, 1, 6, 1, 15, 2, 3, 15, 17, 16, 

4, 17, 16, 7, 6, 1, 5, 15, 17, 8, 5, 4, 1, 2, 3, 8, 19, 8, 7, 6, 1, 2, 

3, 4, 5, 6, 7, 19, 18, 17, 16, 2, 13, 1, 2, 3, 4, 5, 21, 22, 18, 16, 

14, 210, 220, 1, 3, 5, 7, 2, 4, 6, 1, 8, 6, 7, 2, 3, 4, 2, 3, 6, 7, 8, 

230, 240, 250, 260, 270, 280, 290, 21, 16, 15, 17, 2, 3, 16, 21, 

17, 15, 16, 4, 7, 6, 7, 3, 2, 17, 21, 23, 24, 8, 15, 12, 17, 19, 21, 

16, 12, 2, 4, 6, 1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23, 24, 10, 11, 

12, 13, 14, 15, 9, 6, 7, 6, 5, 4, 3, 2, 2, 3, 4, 1, 2, 4, 140, 150, 3, 

2, 1, 4, 6, 5, 170, 180, 190, 200, 5, 6, 1, 7, 3, 4, 2, 5, 6, 7, 4, 

300, 7, 8, 1, 3, 5, 6, 2, 4, 1, 8, 6, 310, 320, 330, 340, 350, 1, 8, 

7, 2, 4, 3, 8, 6, 5, 7, 1, 360, 370, 1, 5, 7, 2, 4, 6, 1, 8, 6, 7, 2, 3, 

4, 2, 3, 6, 7, 8, 230, 240, 250, 260, 270, 280, 290, 5, 6, 2, 4, 1, 

8, 6, 310, 320, 330, 340, 350, 1, 8, 7, 2, 4, 3, 8, 6, 5, 7, 1, 360, 

370, 380, 390, 400, 410, 6, 5, 4, 3, 2, 1, 6, 1, 15, 2, 3} 

 

When the proposed method is implemented using Dataeset-

2, the results in Figure 5 are obtained. 

 

 
 

Figure 4. Hit ratio for CAR & M-CAR chart for Data set-1 

 

 
 

Figure 5. Hit ratio for CAR & M-CAR chart for Data set-2 
 

 

4. RESULTS AND ANALYSIS 
 

Based on the results obtained in the previous section, the 

proposed method achieved the following advantages: 

A. Numerical results: 

1. As seen in Figure 4 and Figure 5, the proposed M-CAR 

method achieved a hit ratio 91% and 76% higher than that 

achieved with traditional CAR when the dataset contained 245 

and 270 items, respectively. This means that overall, as an 

average, the proposed M-CAR is capable of achieving a hit 

ratio 83.5% higher than that achieved using a traditional CAR. 

2. While the performance of both methods dropped with the 

increase in the number of elements in the dataset, that drop was 
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less pronounced for M-CAR compared with that of the 

traditional CAR. By keeping the MAXF data block and 

replacing the MXF-1 block instead, the proposed modification 

makes a more realistic prediction of future CPU requests. 

3. To assess the statistical significance of the increase in hit 

ratio after applying the (M-CAR) technique, we calculated the 

hit ratios of the (CAR) and (M-CAR) approaches for each 

dataset using a two-sample t-test with unequal variances and a 

two-tailed distribution. The obtained p-values were 

(1.97403E-10) for dataset-1 and (5.54347E-14) for dataset-2, 

demonstrating a substantial difference in hit rates between the 

old and new approaches for both datasets. 

B. Results based on working mechanism and structure: 

1. (M-CAR) is dynamically higher than (CAR). 

2. (M-CAR) is scan resistance which makes it a fast 

technique. 

3. Mathematical and technical complexity in (M-CAR) has 

not been affected and it is the same as in (CAR). 

4. (M-CAR) is more accurate than (CAR) in selecting the 

candidate cache block for eviction based on two variables 

(recency and frequency), as well as the necessary modification 

step (moving MAXF-1 cache blocks in certain instances). 

 

 

5. CONCLUSIONS 

 

This study proposed a modified CAR (M-CAR) approach 

that achieves higher performance compared with the original 

approach through maximizing the hit ratio. The obtained 

results revealed that the hit ratios achieved using M-CAR are 

noticeably higher, increasing by an average of 83.5% 

compared with those obtained using typical CAR. We 

therefore conclude that the M-CAR is a high-performance 

cache replacement algorithm, and by default, achieving higher 

hit ratio means that the miss ratio has been minimized, which 

is the primary study objective for which it was found. In the 

same time, as a potential limitation of M-CAR, mathematical 

complexity (caused by the highly dynamic updating for F, R, 

MAXF and MAXR counters) might be a challenge for the 

proposed system that can slow down the overall performance. 

So, as a future improvement, a third factor can be added to this 

system, such as the Low Inter-reference Recency Set 

algorithm (LIRS) that can keep track any changes in its 

counters without extra time. 
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