
.

DFRMIdroid: A Comprehensive Fusion Approach Utilizing Permissions and Intents

Analysis with the DFR-MI Algorithm for Enhanced Malware Detection on Android Devices

Ibrahim Mahmood Ibrahim1* , Amira Bibo Sallow2

1 Technical College of Informatics-Akre, Duhok Polytechnic University, Duhok 42001, Iraq
2 Technical College of Administration-Duhok, Duhok Polytechnic University, Duhok 42001, Iraq

Corresponding Author Email: ibrahim.mahmood@dpu.edu.krd

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380212 ABSTRACT

Received: 13 September 2023

Revised: 30 December 2023

Accepted: 12 January 2024

Available online: 24 April 2024

Smartphones based on the Android operating system are increasingly popular due to their

multifunctional capabilities in various fields. However, these functions have also

encouraged intruders to develop applications that perform malicious actions, including

stealing sensitive data, encrypting files for ransom, and sending unauthorized SMS

messages without user consent. In this study, we proposed a new and comprehensive dataset

containing 32,170 samples distributed equally between malicious and benign applications

developed on different API levels. The dataset includes two categories of features:

permissions and intents. We also proposed a new feature selection method called

Discriminative Feature Ranking-Mutual Information (DFR-MI) which selects optimal

features from the more frequent features in the dataset and this helped the predictive model

to achieve high performance. Nine machine-learning algorithms were tested, and the results

show that our dataset outperforms the Drebin dataset by at least 2.22% in combining

permissions with intents for detecting malicious apps. Additionally, the DFR-MI algorithm

obtained better results in selecting features and took less time than the mutual information

algorithm. Among all tested machine-learning algorithms, the random forest algorithm

achieved high scores in terms of accuracy, precision, recall, and F1 score, which were

98.52%, 98.62%, 98.41%, and 98.52%, respectively. Our proposed method enhances

mobile security by scrutinizing an app's declared permissions and communication patterns

between its components. This approach allows for a more comprehensive understanding of

an app's behavior, enabling early detection of potential threats generated from Android

applications.

Keywords:

malicious Apps, feature selection, static

features, permissions, intents, API levels,

machine learning, random forest algorithm

1. INTRODUCTION

Smartphone usage has become increasingly common in our

daily lives and can perform various tasks such as sending SMS,

online shopping, entertainment, and financial transactions.

The popularity of Android systems has made it easier for

developers to build apps and offer services, but it has also

made it easier for intruders to build apps that can cause harm

[1]. Malicious apps include viruses, worms, backdoors,

spyware, Trojan horses, and rootkits. These apps can misuse

device resources and steal data, damage file systems, cause

SMS fraud, and lead to premium dialers [2]. Recently, the

number of malicious apps has increased significantly, with the

AV-TEST security institute reporting that Kaspersky detected

5.7 million malware Android packages in 2020 [3].

To prevent attacks, many security vendors provide tools to

protect mobile devices and user data, such as antivirus

software and firewalls. However, these tools work based on

signatures and can only detect known malware. These tools

require frequent database updates to detect new malware apps;

this process can be resource-intensive, potentially impacting

the overall system performance [4]. To build a model that can

identify recent attacks, researchers have proposed using

intelligent methods to detect malware using machine-learning

algorithms [5].

Android apps include several features, such as permissions,

intent, API calls, hardware features, system calls, and network

traffic. Based on these features, the app can be identified as

malicious [6]. In general, three main techniques can be used

for analyzing the behavior of an Android app and extracting

essential features: static, dynamic, and hybrid analysis.

Features such as permissions, intent, and API calls can be

extracted without executing an application. However, dynamic

analysis requires running an application on a virtual machine

to extract features like system calls and network traffic [5-7].

The hybrid analysis combines the features of both static and

dynamic analysis [8].

Earlier research has shown that feature selection is crucial

in building machine-learning models. Researchers use feature

selection to remove duplicate or irrelevant features and refine

essential features to enhance model performance [9]. However,

hackers upgrade their applications along with the Android API

levels. Many researchers still analyze applications written on

older API levels. There is a difference in the features available

at different API levels. For example, API level 28 includes 325

permissions, while API level 15 contains only 166 permissions.

Revue d'Intelligence Artificielle
Vol. 38, No. 2, April, 2024, pp. 491-503

Journal homepage: http://iieta.org/journals/ria

491

https://orcid.org/0009-0000-5636-6210
https://orcid.org/0000-0002-5102-6193
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.380212&domain=pdf

Additionally, several distributors create custom permissions to

access data, hardware resources, and Web APIs. An increasing

number of permissions opens up more opportunities for abuse.

Several studies are based on the MalGenome and Drebin

datasets for malware analysis, which are based on samples

collected between 2010 and 2012 and fall between API levels

9 and 18 [10].

In this research, we introduce an innovative feature

selection technique designed to enhance the capability of

machine-learning algorithms in effectively distinguishing

between malicious and benign Android applications.

Furthermore, our developed dataset collected samples from

diverse sources, ensuring comprehensive coverage of both

older and newer specimens across a wide range of API levels.

The main contributions of this work can be summarized as

follows:

1. Feature Selection Method: The study introduces a novel

feature selection method named Discriminative Feature

Ranking-Mutual Information (DFR-MI), which effectively

selects features and aids in constructing a model capable of

distinguishing between malicious and benign Android

applications. This method improves upon the mutual

information algorithm in terms of both time and accuracy. The

DFR-MI selects the informative features from the most

frequent features in the dataset instead of selecting the

informative features regardless of their frequency in the

dataset as happens with the mutual information algorithm.

2. Comprehensive Dataset: The study develops a large and

well-balanced dataset consisting of 32,170 samples and 209

features. The dataset includes permissions (both native and

custom) along with intents, providing a comprehensive

representation of Android applications.

3. Improved Detection Accuracy: The proposed approach,

combining permissions and intents with machine learning

techniques, achieves high accuracy in detecting malicious

Android apps. The results surpass those obtained using the

Drebin dataset, demonstrating the effectiveness of the

proposed methodology.

4. Random Forest Algorithm: The study evaluates nine

machine learning algorithms and identifies the random forest

algorithm as a highly performant choice. It achieves high

scores in accuracy, precision, recall, and the f1 score when

combined with the proposed feature selection method.

5. Lightweight Models: The study highlights the importance

of using lightweight models for mobile devices. The proposed

models offer faster training and inference times, addressing

battery life concerns and time constraints associated with

mobile devices.

The remainder of the paper is structured as follows: Section

2 includes the related work on Android malware detection and

the techniques used. Section 3 describes the methodology of

the proposed system. Section 4 presents the experiments

performed in this study. Section 5 provides conclusion.

2. RELATED WORK

The surge in mobile device usage and its applications has

brought about a parallel increase in the presence of malicious

apps. The malicious apps pose many threats such as stealing

sensitive user data, misusing applications, and sending short

messages to premium numbers. Therefore, researchers

developed many models for defense and mitigate the risk of

malicious apps. Generally, analyzing the behavior of apps can

be categorized into static, dynamic, and hybrid analyses. Static

methods can extract static features from an app without

executing the app, such as permissions [11, 12], intent [13],

API calls [14, 15], and opcodes [16, 17]. Dynamic methods

detect an app's behavior by monitoring system calls [18, 19],

memory utilization, CPU utilization [20], and network traffic

[21]. Hybrid methods combine static and dynamic features

[22]. Those features are used to distinguish malicious apps

from benign ones.

The authors in the study [23] developed a hybrid malware

detection system named NTPDroid that extracts network

traffic features and permissions from applications. The

proposed model employed the FP-Growth technique to

generate frequent patterns existing in malicious datasets and

benign datasets. The results showed that combining network

traffic features with permissions improved detection rates

compared to either network traffic features or permissions

used alone. The authors in the study [24] presented an

intrusion detection system that detects and classifies malicious

applications based on analyzing permissions. The proposed

method works in three steps: i) extracting features from

Android apps, ii) using machine learning for training on the

extracted features, and iii) assessing the model's performance

using a testing dataset like Drebin and AndroTracker datasets.

Various ML algorithms have been evaluated for detecting and

classifying malicious applications. For the detection of

malware applications, kernel logistic regression achieved the

highest 98.2% accuracy. In the study [25], the authors

developed a method named Deep-Intent, an online Intrusion

Detection System (IDS) that uses an E2E DL implementation

for supervised learning and unsupervised feature engineering

and only uses implicit intent as a feature. The experiment

findings reveal that the presented intent-based IDS could

detect malware application software with an AUC of 81% and

an accuracy of 77.2%. In the research [20], the authors

developed a new Android host-based IDPS (HIDROID) that

runs entirely on a mobile device. The HIDROID periodically

gathers feature samples at run time from many resources that

reflect the utilization of mobile resources like CPU, battery,

memory, and other features. The detection engine uses

machine learning and statistical methods to develop a model

based on data to support benign behaviors. Any observation

that fails to meet this model raises an alert, and the prevention

agent takes adequate countermeasures to reduce the risk.

Experimental test findings reveal that HIDROID can learn

from regular activity and distinguish it from abnormal with a

highly promising precision of up to 91%. The researchers in

the study [26] proposed a lightweight intrusion detection

system that detects zero-day attacks efficiently named

DroidLight. DroidLight is based on the author's probability

distribution and one-class classification. The classification

models learn their regular CPU use and network traffic for

every mobile application. If there is a significant deviation

from the normal pattern, the model raises an intrusion alarm.

A real user who interacted with it using three self-developed

apps evaluated DroidLight on a real device. DroidLight could

identify mobile malware with an accuracy spanning 93.3% to

100%. The study [13] proposed a new static method for

detecting Android malware based on intents and permissions.

Initially, the presented model used Information Gain to rank

both permissions and intents and then combined permissions

and intents to find the best set that could provide better

accuracy using various machine learning algorithms. The

results of the experiments showed that the proposed methods

492

of combining permissions and intents improved detection

accuracy over permissions and intents separately. The study

[27] proposed a classification mechanism for Android

applications that combines dynamic packet analysis with static

permissions. First, through static analysis, the proposed

system collects static information from Android applications

and classifies them as benign or malicious using machine

learning. Furthermore, excessive dynamic data-gathering time

is avoided by filtering out safe apps. The malware's network

traffic is then employed in the dynamic analysis phase to

extract many information features, and then machine learning

is used to classify the malware family. The model's objective

is to limit the number of apps requiring dynamic data

collection, which minimizes analysis time overall. After

experiments, the results show that the model can achieve high

accuracy and reach 96%. The authors [28] proposed the

DATDroid method for Android malware detection.

DATDroid collects dynamic features such as CPU usage,

memory usage, network traffic, system call errors, and system

call time. The DATDroid approach achieved an accuracy of

91.7%. The study [29] presented a new approach based on

Recurrent Neural Networks (RNN) for identifying malware in

Android applications. The suggested method extracts two sets

of features, API calls, and permissions from the Android

application. According to the experimental results, the RNN

achieved a high accuracy of 98.2% on the CICAndMal2017

database. The researchers [30] proposed a new model based

on permissions extracted from APK files. The proposed model

detects malicious apps based on suspicious permissions. The

system extracts essential features such as permissions,

permission rates, and small file sizes from the 10000

applications collected from virus share and Google Play. With

SVM, the model achieved 89.2% accuracy. The study [31]

developed a novel technique for identifying malware in

Android apps utilizing the frequent pattern (FP) growth

algorithm. This algorithm is used to find more frequent

patterns of feature coexistence at different levels. The authors

also made several datasets of co-existing features. These

included a permissions-coexisting dataset, an API-coexisting

dataset, and permission with an API-coexisting dataset.

Several machine-learning algorithms were used for testing,

and the results show that the random forest, support vector

machine, and decision tree got high accuracy and reached 98%

using the permission-API co-existence dataset in the

CIC_MALDROID2020.

Despite the progress made by the prior researchers in

employing diverse methods and achieving promised results,

certain limitations persist in their studies. Common limitations

include reliance on outdated, imbalanced, and non-

comprehensive datasets. Furthermore, the methods employed

for selecting informative features often entail high processing

demands and are time-consuming. To overcome these

challenges, the authors intend to develop a balanced and

comprehensive dataset, encompassing samples from various

API levels for both malicious and benign applications.

Additionally, a feature selection method will be devised to

maximize accuracy while minimizing the time required for

feature selection.

3. METHODOLOGY

The primary objective of this study is to construct a robust

and efficient machine-learning model that uses permissions

and intents to detect malware on Android devices. Figure 1

illustrates the general proposed methodology of the study.

Figure 1. Schematic diagram of the proposed methodology

Figure 2. Main steps for preparing a dataset

493

Table 1. Details of collected samples

Database Type of Samples Sample Classification No. of Samples Date

Androzoo Malware Trojan, Riskware, Adware, SMS 3372 2017-2020

Drebin Malware 79 different family 3000 2010-2012

Android Botnet dataset Malware 14 Botnet families 1800 2010-2014

CIC-InvesAndMal2109 Malware Ransomware (10 Families), Scareware (11 families) 213 2019

CICMalDroid 2020 Malware Adware, Banking, SMS, Riskware 7500 2017-2018

Malware Bazaar Malware Spyware, Trojan, Banker 200 2020-2022

Androzoo Benign Not mentioned 11269 2011-2020

Google Play Benign

Art and design, Beauty, Book, Business, Education,

Financial Communication, Entertainment, Health,

Medical, Music and Audio, News, hoping, Social.

4816 2019-2022

Total 32170

Figure 3. Process of sample analysis and feature extraction

3.1 Preparing dataset

A dataset represents a structured collection of data samples

specifically assembled and prepared for training and testing

machine learning models to classify Android applications as

either benign or malicious. Figure 2 illustrates the main steps

for creating a dataset.

3.1.1 Collecting Android app samples

This study collected samples from various databases,

including Drebin (https://www.sec.tu-bs.de/~danarp/drebin/),

Android Botnet dataset

(https://www.unb.ca/cic/datasets/android-botnet.html), CIC-

InvesAndMal2109

(https://www.unb.ca/cic/datasets/invesandmal2019.html),

CICMalDroid 2020

(https://www.unb.ca/cic/datasets/maldroid-2020.html),

Malware Bazaar (https://bazaar.abuse.ch/browse/tag/apk/),

Google Play (https://play.google.com/store/apps), and

AndroZoo databases (https://androzoo.uni.lu/). The malware

sample size ranged from a minimum of about 10 kilobytes to

a maximum of 50 megabytes, while the benign app size ranged

from a minimum of 11 kilobytes to a maximum of 236

megabytes. Table 1 provides more information about the

malware and benign samples.

3.1.2 Sample analysis

After collecting samples of both malware and benign apps,

the researchers utilized the Static Dynamic Hybrid Feature

Extraction (SDHFE) tool to reverse engineer and decompile

them into their source files. The SDHFE tool is a lightweight

and automated tool developed by the authors to analyze

Android applications and extract features from them. It

operates on the Linux operating system. The SDHFE tool is

easy to use, allowing researchers to effortlessly generate

profiles from the analyzed applications based on selected

features. It can extract permissions and intents from manifest

files, APIs and opcodes from source code, and system calls

from the application's behavior during execution. Notably, it

possesses the capability to efficiently analyze and generate

profiles for a bulk of applications without requiring human

intervention. Furthermore, researchers can leverage this tool

to generate profiles that include features from many sources at

the same time, such as generating profiles based on

permissions and APIs together. For this study, we utilize this

tool to extract static features such as permissions and intents.

3.1.3 Feature extraction

The feature extraction process begins promptly after

decompiling each sample. The SDHFE tool extracts features

primarily from the AndroidManifest.xml file, serving as the

main source, which generates a profile for each analyzed

sample. Our analysis predominantly focuses on two sets of

static features: FS1, representing permissions (both native and

custom), and FS2, representing intents. Throughout our study,

we extracted over 500,000 features associated with both

benign and malware samples. The process of analyzing and

extracting features from a single sample using the SDHFE tool

is depicted in Figure 3.

494

Algorithm 1. Preparing dataset for permissions and intents

Input: Malware and Benign samples

Output: Malware and Benign Dataset

Start:

Parameter Initialization: ProfileList =[], Featurelist =[], FilterList =[], Fvlist =[], Index=0, rowindex =0, DSCSV = [].

 For each sample ∈ Malware, Benign do:

 Decompile sample using the SDHFE tool

ProfileList. Append (profile for sample based on features extracted from the AndroidManifest.xml)

 End For

 For each profile ∈ ProfileList do:

 For each feature ∈ profile do:

 Featurelist[index] =feature

 Increment index by one

 End For

 End For

Remove duplicated features from Featurelist and filter the feature that rarely appears in samples

For each feature ∈ Featurelist do:

FilterList. Append (feature) if feature Not in FilterList And counting (feature) >=th

Where th is a threshold representing the number of times the feature appears in all samples

 End For

 DSCSV [rowindex]. Append (FilterList)

Generate a Feature vector and append it to a dataset
For each profile ∈ ProfileList do:

 Fvlist. Clear for each profile, indexfv=0, increment rowindex by one

 For each feature ∈ FilterList do:

 If feature ∈ profile

 Fvlist [indexfv] =1

 Increment indexfv by one

 Else

 Fvlist [indexfv] =0

 Increment indexfv by one

 End If

 End For

 If profile ∈ malware sample

 Fvlist [indexfv +1] =1

 Else

 Fvlist [indexfv +1] =0

 End If

DSCSV [rowindex]. Append (Fvlist)

End For

End

3.1.4 Preprocessing

The researcher has performed two functions on the

extracted data. The first function scans all profiles generated

in the feature extraction phase to collect features and keeps

them in a single list called Featurelist. The second function

reads the Featurelist and eliminates redundant features from it.

The redundant features are either duplicated more than once in

the Featurelist or rarely appear in Android samples. The

remaining features were saved into a new list called FilterList

and appended to the dataset as a header of columns.

3.1.5 Feature vector

After combining the two feature sets FS1∪FS2, a binary

feature vector Fv = (f1, f2, …,fn) will be generated for each

sample according to Eq. (1).

(1)

The features (permission and intent) are encoded with 1 to

signify their presence in an Android application, and 0 if

absent. For classification, a class label is added to each feature

vector 1 denotes the "malware" class, while 0 denotes the

"benign" class. These binary feature vectors are stored in a

CSV file for efficient data organization and processing. Figure

4 provides an example of such a feature vector, displaying

binary representations of features along with their respective

class labels. The dataset preparation process, encompassing

feature extraction and feature vector creation, is detailed in

Algorithms 1.

Figure 4. Feature vector

3.2 Feature selection

Feature selection is one of the significant steps in machine

learning models. Selecting relevant features and removing

irrelevant or redundant features improves the accuracy of the

predicted model, reduces training time, and decreases the

495

overfitting problem. This study proposes a novel approach

called Discriminative Feature Ranking-Mutual Information

(DFR-MI), which combines the mutual information algorithm

with the discriminative feature ranking method to further

improve the accuracy of the model. The proposed approach

utilizes two levels and focuses on selecting the most

significant features that effectively differentiate between

malicious and benign applications. To provide a

comprehensive understanding, the study introduced key

definitions that will be used throughout each level. Let S be a

set of malware and benign samples in the dataset and denoted

by:

(2)

where, sr represents the rth sample in S and |S| represents the

total samples in the dataset.

Let F be a set of features used by malware and benign

samples in the dataset and denoted by:

(3)

where, fr represents the rth feature and |F| represents the total

features in the dataset.

Let C be a set of the class labels in the dataset and denoted

by:

C= {c1, c2}, here we have only two class labels: malware

and benign.

Let CF represent candidate features selected from level one

and pass to level two.

Definition 1: (Feature Frequency: FF) Calculate the

frequency of each feature in malware and benign samples in

the dataset. Because the presence of each feature in a specific

class is set to 1, and the absence is set to 0. We can find the

frequency of each feature as follows:

(4)

(5)

Definition 2: To know the feature that appears more in

malware or benign samples, calculate the difference for each

feature according to the following equation:

(6)

where, Dfr means the frequency difference feature at the r

index, the Dfr result will be a positive, negative, or zero value.

Positive value: mean the feature is more presence in the

malware samples.

Negative value: mean the feature is more presence in the

benign samples.

Zero value: indicate the presence of feature are equal in

malware and benign samples.

3.2.1 Level one: Discriminative Feature Ranking (DFR)

At this level, the proposed algorithm uses a statistical

method to identify whether a specific feature is utilized more

frequently in benign or malware apps in two steps. In the first

step, use Eqs. (4) and (5) to count the frequency of each feature

in malware and benign apps separately. Although this step

provides valuable insights into which features are used in each

category of apps, it may not help us to distinguish malicious

apps from benign ones. For example, Table 2 shows the top 10

features that mostly appeared in malicious and benign samples

in our dataset. The 'android.permission.INTERNET' feature

appeared 15594 times in malicious samples, which is nearly

97% of malicious samples, and 15536 times in benign samples,

which is nearly 97% of benign samples. The same applies to

the 'android.permission.ACCESS_WIFI_STATE' feature, the

percentage of this feature is very close in both categories.

These features may not be at the top level for distinguishing

malicious from benign apps. Therefore, the features need more

analysis.

In the second step, using Eq. (6) to select more important

features by subtracting the frequencies of each feature that

appears in malicious apps from the frequencies of the same

feature that appear in benign apps and store the result with the

feature name inside a new dataframe called Discriminative

Feature (DF) dataframe. This procedure is robust at identifying

whether a particular feature is more frequently found in benign

or malicious applications. The rank of features changes in this

step and is different from step 1, as shown in Table 3.

Generally, level one provides insight into the features that

are more utilized by malicious and benign apps. However, it is

not necessary for all frequent features to be more informative

in the prediction model because feature counting only

considers the frequency of individual features across a dataset,

it doesn't take into account the relationships or dependencies

between features. This can lead to the inclusion of irrelevant

or redundant features in the model. Therefore, we consider

level one to works as a filter based on the specific thresholds

to narrow down the features to the most common ones in both

categories. This helps to reduce the search space and

computational complexity at the next level.

Table 2. Top 10 features in malware and benign samples after the first step of DFR

Top 10 Malware Feature Freq. Top 10 Benign Feature Freq.

1 android.permission.INTERNET 15594 android.permission.INTERNET 15536

2 android.intent.category.LAUNCHER 15398 android.permission.ACCESS_NETWORK_STATE 14952

3 android.permission.READ_PHONE_STATE 14688 android.permission.WAKE_LOCK 10990

4 android.permission.WRITE_EXTERNAL_STORAGE 12016 android.intent.category.LAUNCHER 10850

5 android.permission.ACCESS_NETWORK_STATE 11272 android.permission.WRITE_EXTERNAL_STORAGE 10476

6 android.intent.action.BOOT_COMPLETED 10478 android.intent.action.BOOT_COMPLETED 7778

7 android.permission.SEND_SMS 9090 android.intent.action.VIEW 7752

8 android.permission.RECEIVE_BOOT_COMPLETED 8038 android.permission.RECEIVE_BOOT_COMPLETED 7706

9 android.permission.RECEIVE_SMS 7622 android.permission.ACCESS_WIFI_STATE 7202

10 android.permission.ACCESS_WIFI_STATE 7276 android.permission.VIBRATE 7072

496

Table 3. Top 10 features in malware and benign samples after the second step of DFR

Top 10 Malware Feature Diff. Top 10 Benign Feature Diff.

1 android.permission.READ_PHONE_STATE 9796 android.intent.action.VIEW -6630

2 android.permission.SEND_SMS 8626 com.google.android.c2dm.permission.RECEIVE -5244

3 android.permission.RECEIVE_SMS 7076 com.android.vending.BILLING -5158

4 android.permission.READ_SMS 6336 android.permission.READ_EXTERNAL_STORAG

E

-4678

5 android.intent.category.LAUNCHER 4548 android.permission.WAKE_LOCK -4078

6 android.intent.category.HOME 3898 android.intent.action.ACTION_POWER_DISCON

NECTED

-3870

7 android.permission.WRITE_SMS 3630 android.intent.action.TIME_SET -3838

8 android.permission.READ_CONTACTS 3108 android.permission.ACCESS_NETWORK_STATE -3680

9 com.android.launcher.permission.INSTALL_SHORTCUT 3076 android.intent.action.DEVICE_STORAGE_OK -3578

10 android.intent.action.BOOT_COMPLETED 2700 android.intent.action.BATTERY_LOW -3518

In this study, we have two thresholds, α1 and α2. The value

of α1 represents the number of features in F that appear more

in malware apps than benign apps. The value of α2 represents

the average frequency of all features that most frequently

occur in benign samples. The DF dataframe was filtered based

on the α1 and α2 and the new features were saved to a new list

known as Candidate Features (CF) list. Finally, the CF became

an input to the next level. Figure 5 illustrates candidate

features from malware and benign samples passed to level two.

Figure 5. Number of candidate features

Table 4. Top 10 features selected by MI algorithm

Top 10 Features Score

1 android.permission.READ_PHONE_STATE 0.219263

2 android.permission.SEND_SMS 0.200989

3 android.permission.RECEIVE_SMS 0.150608

4 android.permission.READ_SMS 0.123614

5 android.intent.action.VIEW 0.121097

6 com.android.vending.BILLING 0.109813

7 com.google.android.c2dm.permission.RECEIVE 0.078074

8 android.intent.category.LAUNCHER 0.076952

9 com.google.android.c2dm.permission.RECEIVE 0.074669

10 android.intent.category.HOME 0.072773

Algorithm 2. Discriminative Feature Ranking-Mutual Information (DFR-MI) feature selection algorithm

Input:

 F is a set of features in the dataset

Output:

 SFList is a set of Selected Features

Parameter Initialization:

SFList =[], CFList =[], 𝜶 = 𝟎, 𝜶𝟏 = 𝟎, 𝜶𝟐 = 𝟎, Featurecount =0, CFcf ∈ 𝑩𝑳𝒊𝒔𝒕 =[], CFcf ∈ 𝑴𝑳𝒊𝒔𝒕=[]

DFdataframe =[,], DFindex =0

Start:

 For each feature ∈ F do:

 FFfeature ∈ 𝑴 =∑ 𝒇𝒆𝒂𝒕𝒖𝒓𝒆. 𝒗𝒂𝒍𝒖𝒆𝒔 , 𝒇𝒐𝒓 𝒎𝒂𝒍𝒘𝒂𝒓𝒆 𝒔𝒂𝒎𝒑𝒍𝒆𝒔
|𝑺|
𝒔=𝟏

 FFfeature ∈ 𝑩 =∑ 𝒇𝒆𝒂𝒕𝒖𝒓𝒆. 𝒗𝒂𝒍𝒖𝒆𝒔
|𝑺|
𝒔=𝟏 , 𝒇𝒐𝒓 𝒃𝒆𝒏𝒊𝒈𝒏 𝒔𝒂𝒎𝒑𝒍𝒆𝒔

 DFdataframe .featurename=feature

 DFdataframe.value= FFfeature ∈ 𝑴 – FFfeature ∈ 𝑩

 Increment DFindex by one

 End For

 For each value ∈ DFdataframe .value do:

 if (value < 0):

 𝜶 = 𝜶 − value

 Increment Featurecount by one

 End If

 End For

 α2= 𝜶/ Featurecount

 For each feature, value ∈ (DFdataframe .featurename, DFdataframe .value) do:

 if value > 𝜶𝟏:

 CFcf ∈ 𝑴𝑳𝒊𝒔𝒕 .Append (feature)

 End If

497

 if value ≤ 𝜶𝟐:

 CFcf ∈ 𝑩𝑳𝒊𝒔𝒕 .Append (feature)

 End If

 End For

 CFList= CFcf ∈ 𝑴𝑳𝒊𝒔𝒕 ∪ CFcf ∈ 𝑩List

 SFList = top N feature from

𝑴𝑰 (𝑪𝑭, 𝑪) = ∑ ∑ 𝑝(𝐶𝐹 = 𝑐𝑓𝑖 , 𝐶 = 𝑐𝑗) ∗ log
𝑝(𝐶𝐹 = 𝑐𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑝(𝐶𝐹 = 𝑐𝑓𝑖) ∗ 𝑝(𝐶 = 𝑐𝑗)
𝑐𝑗𝑐𝑓𝑖

End

3.2.2 Level two: Mutual Information (MI)

Mutual information is a technique that can be used for

weighing variables. It is widely used in machine learning

problems to assess the mutual independence of two random

variables. The value of MI is a non-negative number that

ranges from 0 to 1. The maximum value of MI indicates a

strong correlation between the two variables. The value of 0

indicates no correlation between the two variables. The

following is the mutual information formula:

(7)

In our study, MI is used to measure the relevance of features

received from CF list at the first level. The variable CF

indicates whether the cfi appears in an application. C

represents the class label of the application belonging to

malware or benign application, and p (CF= cfi) indicates the

probability that the variable CF is cfi, p(C=ci) represents the

probability that the value of C is ci. Based on the basic formula

of the MI, the correlation value MI (CF, C) of each feature is

obtained. Table 4 represents the top 10 features selected from

the mutual information algorithm.

The combination of DFR and MI can help to improve the

overall performance of the feature selection process by

eliminating redundant features and selecting only significant

features for the model. Consequently, this refinement results

in more precise predictions and reduces the computational

complexity of the model.

4. EXPERIMENTAL ENVIRONMENT AND RESULT

ANALYSIS

In our study, we used windows ten 64-bit operating system

machine with Intel(R) Core (TM) i5-2320 CPU @ 3.00GHz,

NAVIDIA Quadro 4 GB, and 16 GB of RAM. For processing

our data, the GPU was used to accelerate the execution of

machine learning algorithms. We implemented our codes on

the anaconda platform. The python version is 3, and the basic

libraries utilized in this work include pandas, NumPy, sci-kit-

learn, TensorFlow, matplotlib, and seaborn.

4.1 Machine learning and splitting dataset

We used nine machine-learning algorithms (RF, DT, SVM,

KNN, LR, NB, AdaBoost, Gradient Boosting, and ANN) for

training and testing on our dataset to find a good model for

detecting malware on the smartphone device. During the

learning phase, the variables (hyperparameters) of each

algorithm are adjusted with some values. Table 5 illustrates the

details of the hyperparameters used for each algorithm.

To improve the performance of these models and lower the

risk of overfitting, the mutual information (MI) and DFR-MI

algorithms were used to choose important features. On this

basis, we conducted two experiments to compare the

performance of the two algorithms for feature selection and its

effects on the predicate models. In the first experiment, the

mutual information algorithm chose 75 features and passed

them to nine machine-learning algorithms to train on.

In the second experiment, the same process was followed,

but this time the DFR-MI algorithm was used instead of the

mutual information algorithm to choose the same number of

features. The scores of each experiment are shown in Table 6.

The dataset was divided into two sets: 80% of the dataset

was used for training and 20% for testing models. In general,

it is recommended to use as much data as possible for training

to maximize the performance of the models while still

reserving enough data for testing to obtain reliable estimates

of their performance. The performance of each model was

evaluated based on common metrics such as accuracy,

precision, recall, and F1 score to determine the best model for

Android malware detection. By comparing the results of the

two experiments, we found that the RF and the DT with DFR-

MI algorithms got a higher score in accuracy in the training

case, which is 98.9. While in the case of the test, we found that

the RF with the DFR-MI algorithm outperformed all

algorithms in terms of accuracy, precision, recall, and the f1

score, which are 98.52, 98.62, 98.41, and 98.52 respectively.

This leads to the RF algorithm having the best average score,

which is 98.52. We also got the worst result with NB using the

mutual information algorithm for most evaluation metrics. The

average scores of each algorithm in Table 7 are plotted to

generate related graphs as shown in Figure 6.

Table 5. Hyperparameters used by each algorithm in the experiments

No Algorithms Hyperparameters and Values

1 RF n_estimators=200, criterion=’Gini’, max_depth=50, ,random_state=42

2 DT n_estimators=200, criterion=’Gini’, max_depth=50, random_state=42

3 SVM Kernel=’rbf

4 KNN n_neighbors=3, weights=’ uniform’

5 LR Solver=’ lbfgs’

6 NB var_smoothing=1e-9

7 AdaBoost n_estimators=100, learning_rate=1.0, algorithm=’ SAMME.R’, random_state=42

8 GradientBoosting learning_rate=0.1, n_estimators=100, random_state=67

9 ANN Activation=’Relu’, kernel_initializer= glorot_uniform, kernel_constraint= maxnorm(3),

optimizer=’adam, loss=’ binary_crossentropy’, Epoch=100, batch_size=20

498

Table 6. Results of two experiments with MI and DFR-MI features selection algorithms

Algorithms Feature Selection Algorithms Accuracy (%) Precision (%) Recall (%) F1 Score (%) Average Scores (%)

Train Test Test Test Test Test

RF MI 98.14 97.68 97.05 98.35 97.69 97.69

DFR-MI 98.9 98.52 98.62 98.41 98.52 98.52

DT MI 98.14 97.65 97.13 98.19 97.66 97.66

DFR-MI 98.9 98.33 98.44 98.22 98.33 98.33

SVM MI 96.31 96 94.92 97.2 96.05 96.04

DFR-MI 96.56 96.25 95.53 97.04 96.28 96.28

KNN MI 97.64 95.89 94.97 96.92 95.93 95.93

DFR-MI 98.44 96.82 96.65 97.01 96.83 96.83

LR MI 93.74 93.75 93.74 93.18 93.96 93.66

DFR-MI 93.89 93.75 93.8 93.68 93.74 93.74

NB MI 77.99 77.59 69.44 97.56 81.48 81.51

DFR-MI 84.21 84.53 94.15 73.63 82.63 83.74

adaBoost MI 93.2 93.36 93.64 93.03 93.33 93.34

DFR-MI 93.43 93.5 93.63 93.34 93.49 93.49

G.Boosting MI 93.76 93.73 93.74 93.71 93.73 93.73

DFR-MI 93.81 93.76 93.72 93.81 93.76 93.76

ANN MI 97.53 97.27 97.2 97.35 97.28 97.28

DFR-MI 98.27 98.32 98.05 98.4 98.32 98.27

Figure 6. Average scores of the two experiments

4.2 Training and testing model duration time

In this subsection, we calculated the duration time needed

for each model during training and testing on 75 features twice:

once with the DFR-MI and once with mutual information

algorithms for feature selection. The DFR-MI algorithm not

only increased the model's accuracy but also helped reduce the

duration of time for training and testing the model. Table 8

shows the duration time in seconds for each algorithm for

training and testing the model with the DFR-MI and MI

algorithms. The obtained data in Table 7 are plotted to

generate related graphs. As shown in Figure 7, it is clear that

the time taken to train and test any model with the proposed

algorithm DFR-MI is reduced compared to the MI algorithm

by at least 14 seconds.

4.3 Performance comparison between our dataset and the

benchmark dataset

The authors of this study observed that the Drebin dataset

was commonly favored by many researchers during the review

process, consistently yielding high accuracy in the detection of

malicious Android applications. Building upon this precedent,

this study selected the Drebin dataset as a benchmark and

conducted a comparative analysis with their own dataset. The

visualization of our dataset and the Drebin dataset are

illustrated in Figures 8 and 9.

The Darbin dataset dates back to 2012 and contains four

feature types: API call signatures, permissions, command

signatures, and intent. The number of samples in the Drebin

dataset is 15036, of which 5560 are malware samples, and

9476 are benign samples. Our dataset consists of 32170

samples, distributed equally between malware and benign

samples. The number of columns in our dataset is 209; 208

columns represent features, and 1 column represents a class

label. Two hundred eight features are distributed between

permissions and intents. Permissions can be native

permissions or custom permissions. The number of native

permissions is 102 features, the number of custom permissions

is 60, and the number of intents is 46. To compare our dataset

with the Drebin dataset, we have removed the feature

categories like API call signatures and command signatures

from the Drebin dataset. This is because our dataset only

contains two feature categories: permissions and intents. After

deleting the mentioned features from the Drebin dataset, the

remaining features are 136 (23 intents and 113 permissions).

In this way, we can a fair comparison between the two datasets

with respect to their effectiveness in detecting Android

malware based on permissions and intents. Then we applied

MI and DFR-MI algorithms for feature selection to select the

top 75 features in both datasets and passed them to nine

machine learning algorithms. The scores each algorithm got

on the Drebin datasets are illustrated in Table 8.

Table 7. Duration time in seconds for training models with

DFR-MI and MI

Algorithms MI DFR-MI

RF 47 28.4

DT 40.1 25.2

SVM 103 84

KNN 77 58.8

LR 40.6 22.5

NB 40.2 22.2

adaBoost 45.9 27.8

G.Boosting 41.8 24.2

ANN 164 150

According to the scores obtained by each algorithm in Table

9, we noted that most algorithms got high scores in terms of

accuracy, precision, recall, and F1 score with the DFR-MI

feature selection algorithm on the Drebin dataset. To compare

the performance of our dataset with the Drebin dataset, we

499

summarize the average scores of each machine-learning

algorithm with the DFR-MI algorithm on both datasets in

Table 9. The average scores in Table 9 are plotted to get their

related graphs, as shown in Figure 10.

Figure 7. Duration time in seconds for training and testing

models with DFR-MI and MI

Figure 8. Visualization our dataset

Figure 9. Visualization Drebin dataset

The authors of this paper observed that the samples within

the Drebin dataset suffer from being outdated, imbalanced,

and lacking the inclusion of features utilized by modern

malicious samples. These issues were meticulously addressed

in the development of a new dataset, resulting in improved

outcomes when the machine learning algorithm was trained on

it. For example, the feature

android.permission.REQUEST_INSTALL_PACKAGES

ranked among the top fifteen features in the developed dataset

and can be abused by malicious applications to deceive users

into installing harmful apps on their devices. Notably, this

feature is absent in the older API level utilized by the Drebin

dataset.

Overall, we found the random forest algorithm with DFR-

MI feature selection to be the best performer on our dataset.

So, we chose this algorithm to build a model for figuring out

which apps on smartphones are malicious.

Figure 10. Average scores on both datasets based on the

DFR-MI

4.4 Analyzing the confusion matrix of the random forest

algorithm

A classification model's performance can be assessed by

counting the number of testing samples that the model

correctly and incorrectly predicts. A confusion matrix is a

table that displays these counts. Figure 11 shows the confusion

matrix related to the random forest algorithm for binary

classification. The total number of successfully classified

samples equals the sum of the diagonals in the matrix. In

contrast, the total number of incorrectly classified samples

equals the sum of the secondary diagonal in the matrix.

As illustrated in Figure 11, 3165 samples are malware. They

are correctly classified as malware samples, while the

predictive model misclassifies 44 samples of benign apps as

malware. On the other hand, 3173 samples were correctly

classified as benign, while 51 malware and incorrectly

classified as benign by the predictive model. Overall, the error

rate of the proposed model is 0.014.

Table 8. Results of nine ML algorithms with MI and DFR-MI feature selection algorithms on the Drebin dataset

Algorithms Feature Selection Algorithms Accuracy (%) Precision (%) Recall (%) F1 Score (%) Average Scores (%)

Train Test Test Test Test Test

RF MI 95.82 95.01 96.25 90.01 93.02 93.57

DFR-MI 97.47 96.44 96.91 93.34 95.09 95.45

DT MI 95.82 94.18 94.32 89.65 91.93 92.52

DFR-MI 97.47 94.94 94.03 92.17 93.09 93.56

SVM MI 94.42 94.61 96.31 87.85 92.34 92.78

DFR-MI 95.11 95.21 96.89 89.92 93.28 93.83

KNN MI 91.09 90.25 83.59 91.63 87.43 88.23

DFR-MI 95.69 95.41 94.59 92.89 93.73 94.16

500

LR MI 92.83 93.31 93.92 87.58 90.64 91.36

DFR-MI 93.12 93.41 93.52 88.3 90.84 91.52

NB MI 61.63 61.8 49.16 97.93 65.46 68.59

DFR-MI 64.07 64.79 51.24 98.11 67.32 70.37

adaBoost MI 92.45 92.71 93.39 86.42 89.77 90.57

DFR-MI 92.63 92.91 92.52 87.94 90.17 90.89

G.Boosting MI 92.62 92.95 93.52 86.96 90.12 90.89

DFR-MI 93.09 93.31 93.42 88.12 90.69 91.39

ANN MI 93.92 94.64 95.32 89.92 92.54 93.11

DFR-MI 96.08 96.17 96.8 92.71 94.71 95.10

Table 9. Average scores on both datasets based on the DFR-

MI algorithm

Algorithms Dataset Average Test Scores (%)

RF Drebin 95.45

Our 98.52

DT Drebin 93.56

Our 98.33

SVM Drebin 93.83

Our 96.28

KNN Drebin 94.16

Our 96.83

LR Drebin 91.52

Our 93.74

NB Drebin 70.37

Our 83.74

adaBoost Drebin 90.89

Our 93.49

G.Boosting Drebin 91.39

Our 93.76

ANN Drebin 95.10

Our 98.32

Figure 11. Confusion matrix for random forest

5. CONCLUSION

This study presents a significant contribution to the field of

Android malware detection. Fusing native and custom

permissions with intents, a new dataset was created that is

extensive, comprehensive, and encompasses samples

developed from API level 1 to API level 32. Extensive

experimentation and evaluation using nine machine-learning

algorithms were conducted to compare the performance of this

dataset against the Drebin benchmark dataset. Due to the

comprehensiveness of the developed dataset, it consistently

outperformed the Drebin dataset across all predictive models

by at least 2.22%. Additionally, a novel feature selection

algorithm DFR-MI was proposed with superior performance

to the mutual information algorithm in both accuracy and time

efficiency across the nine predictive models. The DFR-MI

algorithm markedly reduced the training and testing time

during the model construction phase. The findings of this

study hold significant implications for enhancing mobile

security. Precise identification of malicious apps ensures user

privacy and defense against threats; developers in Android

security can benefit from the developed model and feed it with

the extracted permissions and intents from real applications to

predict their state. Additionally, the dataset and feature

selection algorithm introduced in this study have the potential

to advance the development of more effective malware

detection systems. Despite these contributions, the proposed

model may produce false alarms when the tested application

doesn't include any permissions and intents. So future research

should address this limitation by exploring additional feature

sets or integrating dynamic analysis techniques to further

enhance Android malware detection accuracy.

REFERENCES

[1] Feng, P., Ma, J., Li, T., Ma, X., Xi, N., Lu, D. (2021).

Android malware detection via graph representation

learning. Mobile Information Systems, 2021: 5538841.

http://doi.org/10.1155/2021/5538841

[2] Ding, Y., Zhang, X., Hu, J., Xu, W. (2020). Android

malware detection method based on bytecode image.

Journal of Ambient Intelligence and Humanized

Computing, 14: 6401-6410.

http://doi.org/10.1007/s12652-020-02196-4

[3] Alkahtani, H., Aldhyani, T. (2022). Artificial intelligence

algorithms for malware detection in Android-operated

mobile devices. Sensors, 22(6): 2268.

http://doi.org/10.3390/s22062268

[4] Arif, J.M., Razak, M.F., Awang, S., Mat, S.R., Ismail,

N.S. (2021). A static analysis approach for Android

permission-based malware detection systems. PloS One,

16(9): e0257968.

http://doi.org/10.1371/journal.pone.0257968

[5] Wang, X., Li, C. (2021). Android malware detection

through machine learning on kernel task structures.

Neurocomputing, 435: 126-150.

http://doi.org/10.1016/j.neucom.2020.12.088

[6] Wang, X., Zhang, L., Zhao, K., Ding, X. (2022).

MFDroid: A stacking ensemble learning framework for

android malware detection. Sensors, 22(7): 2597.

http://doi.org/10.3390/s22072597

[7] Frenklach, T., Cohen, D., Shabtai, A., Puzis, R. (2021).

Android malware detection via an app similarity graph.

Computers & Security, 109: 102386. http://

doi.org/10.1016/j.cose.2021.102386

[8] Ananya, A., Aswathy, A., Amal, T., Swathy, P., Vinod,

P., Shojafar, M. (2020). SysDroid: A dynamic ML-based

501

android malware analyzer using system call traces.

Cluster Computing, 23(4): 2789-2808.

http://doi.org/10.1007/s10586-019-03045-6

[9] Zhang, N., Tan, Y., Yang, C., Li, Y. (2021). Deep

learning feature exploration for android malware

detection. Applied Soft Computing, 102: 107069.

http://doi.org/10.1016/j.asoc.2020.107069

[10] Mathur, A., Podila, L., Kulkarni, K., Niyaz, Q. (2021)

NATICUSdroid: A malware detection framework for

Android using native and custom permissions. Journal of

Information Security and Applications, 58: 102696.

http://doi.org/10.1016/j.jisa.2020.102696

[11] Wang, Z., Li, K., Hu, Y., Fukuda, A., Kong, W. (2019).

Multilevel permission extraction in android applications

for malware detection. In 2019 International Conference

on Computer, Information and Telecommunication

Systems (CITS), Beijing, China, pp. 1-5.

http://doi.org/10.1109/CITS.2019.8862060

[12] Amer, E. (2021). Permission-based approach for android

malware analysis through ensemble-based voting model.

In 2021 International Mobile, Intelligent, and Ubiquitous

Computing Conference (MIUCC), Cairo, Egypt, pp. 135-

139.

http://doi.org/10.1109/MIUCC52538.2021.9447675

[13] Khariwal, K., Singh, J., Arora, A. (2020). IPDroid:

Android malware detection using intents and permissions.

In 2020 Fourth World Conference on Smart Trends in

Systems, Security and Sustainability (WorldS4), London,

UK, pp. 197-202.

http://doi.org/10.1109/WorldS450073.2020.9210414

[14] Zhang, H., Luo, S., Zhang, Y., Pan, L. (2019). An

efficient Android malware detection system based on

method-level behavioral semantic analysis. IEEE Access,

7: 69246-69256.

http://doi.org/10.1109/ACCESS.2019.2919796

[15] Ma, Z., Luo, S., Zhang, Y., Pan, L. (2019). A

combination method for android malware detection

based on control flow graphs and machine learning

algorithms. IEEE Access, 7: 21235-21245.

http://doi.org/10.1109/ACCESS.2019.2896003

[16] Li, D., Zhao, L., Cheng, Q., Lu, N., Shi, W. (2020).

Opcode sequence analysis of Android malware by a

convolutional neural network. Concurrency and

Computation: Practice and Experience, 32(18): e5308.

http://doi.org/10.1002/cpe.5308

[17] Niu, W., Cao, R., Zhang, X., Ding, K., Zhang, K., Li, T.

(2020). Opcode-level function call graph based android

malware classification using deep learning. Sensors,

20(13): 3645. http://doi.org/10.3390/s20133645

[18] Mahdavifar, S., Abdul Kadir, A., Fatemi, R., Alhadidi,

D., Ghorbani, A. (2020). Dynamic android malware

category classification using semi-supervised deep

learning. In 2020 IEEE Intl Conf on Dependable,

Autonomic and Secure Computing, Intl Conf on

Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB,

Canada, pp. 515-522. http://doi.org/10.1109/DASC-

PICom-CBDCom-CyberSciTech49142.2020.00094

[19] John, T.S., Thomas, T., Emmanuel, S. (2020). Graph

convolutional networks for android malware detection

with system call graphs. In 2020 Third ISEA Conference

on Security and Privacy (ISEA-ISAP), Guwahati, India,

pp. 162-170. http://doi.org/10.1109/ISEA-

ISAP49340.2020.235015

[20] Ribeiro, J., Saghezchi, F.S., Mantas, G., Rodrigues, J.,

Abd-Alhameed, R. (2020). Hidroid: Prototyping a

behavioral host-based intrusion detection and prevention

system for android. IEEE Access, 8: 23154-23168.

http://doi.org/10.1109/ACCESS.2020.2969626

[21] Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L. (2019).

A mobile malware detection method using behavior

features in network traffic. Journal of Network and

Computer Applications, 133: 15-25.

http://doi.org/10.1016/j.jnca.2018.12.014

[22] Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song,

H., Yu, H. (2018). SAMADroid: A novel 3-level hybrid

malware detection model for android operating system.

IEEE Access, 6: 4321-4339.

http://doi.org/10.1109/ACCESS.2018.2792941

[23] Arora, A., Peddoju, S.K. (2018). NTPDroid: A hybrid

android malware detector using network traffic and

system permissions. In 2018 17th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications/ 12th IEEE International

Conference on Big Data Science and Engineering

(TrustCom/BigDataSE), New York, NY, USA, pp. 808-

813.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.001

15

[24] Malik, S., Khatter, K. (2018). Malicious application

detection and classification system for android mobiles.

International Journal of Ambient Computing and

Intelligence (IJACI), 9(1): 122-142.

http://doi.org/10.4018/IJACI.2018010106

[25] Sewak, M., Sahay, S.K., Rathore, H. (2020). DeepIntent:

ImplicitIntent based android IDS with E2E deep learning

architecture. In 2020 IEEE 31st Annual International

Symposium on Personal, Indoor and Mobile Radio

Communications, London, UK, pp. 1-6.

http://doi.org/10.1109/PIMRC48278.2020.9217188

[26] Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S. (2020).

DroidLight: Lightweight anomaly-based intrusion

detection system for smartphone devices. In Proceedings

of the 21st International Conference on Distributed

Computing and Networking, pp. 1-10.

http://doi.org/10.1145/3369740.3369796

[27] Shyong, Y., Jeng, T.H., Chen, Y.M. (2020). Combining

static permissions and dynamic packet analysis to

improve android malware detection. In 2020 2nd

International Conference on Computer Communication

and the Internet (ICCCI), Nagoya, Japan, pp. 75-81.

http://doi.org/10.1109/ICCCI49374.2020.9145994

[28] Thangavelooa, R., Jing, W., Leng, C., Abdullah, J.

(2020). Datdroid: Dynamic analysis technique in android

malware detection. International Journal on Advanced

Science, Engineering and Information Technology, 10(2):

536-541. http://doi.org/10.18517/ijaseit.10.2.10238

[29] Elayan, O.N., Mustafa, A.M. (2021). Android malware

detection using deep learning. Procedia Computer

Science, 184: 847-852.

http://doi.org/10.1016/j.procs.2021.03.106

[30] Akbar, F., Hussain, M., Mumtaz, R., Riaz, Q., Wahab, A.,

Jung, K.H. (2022). Permissions-based detection of

android malware using machine learning. Symmetry,

14(4): 718. http://doi.org/10.3390/sym14040718

[31] Odat, E., Yaseen, Q.M. (2023). A novel machine

502

learning approach for android malware detection based

on the co-existence of features. IEEE Access, 11: 15471-

15484. http://doi.org/10.1109/ACCESS.2023.3244656

503

