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Smartphones based on the Android operating system are increasingly popular due to their 

multifunctional capabilities in various fields. However, these functions have also 

encouraged intruders to develop applications that perform malicious actions, including 

stealing sensitive data, encrypting files for ransom, and sending unauthorized SMS 

messages without user consent. In this study, we proposed a new and comprehensive dataset 

containing 32,170 samples distributed equally between malicious and benign applications 

developed on different API levels. The dataset includes two categories of features: 

permissions and intents. We also proposed a new feature selection method called 

Discriminative Feature Ranking-Mutual Information (DFR-MI) which selects optimal 

features from the more frequent features in the dataset and this helped the predictive model 

to achieve high performance. Nine machine-learning algorithms were tested, and the results 

show that our dataset outperforms the Drebin dataset by at least 2.22% in combining 

permissions with intents for detecting malicious apps. Additionally, the DFR-MI algorithm 

obtained better results in selecting features and took less time than the mutual information 

algorithm. Among all tested machine-learning algorithms, the random forest algorithm 

achieved high scores in terms of accuracy, precision, recall, and F1 score, which were 

98.52%, 98.62%, 98.41%, and 98.52%, respectively. Our proposed method enhances 

mobile security by scrutinizing an app's declared permissions and communication patterns 

between its components. This approach allows for a more comprehensive understanding of 

an app's behavior, enabling early detection of potential threats generated from Android 

applications.  
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1. INTRODUCTION

Smartphone usage has become increasingly common in our 

daily lives and can perform various tasks such as sending SMS, 

online shopping, entertainment, and financial transactions. 

The popularity of Android systems has made it easier for 

developers to build apps and offer services, but it has also 

made it easier for intruders to build apps that can cause harm 

[1]. Malicious apps include viruses, worms, backdoors, 

spyware, Trojan horses, and rootkits. These apps can misuse 

device resources and steal data, damage file systems, cause 

SMS fraud, and lead to premium dialers [2]. Recently, the 

number of malicious apps has increased significantly, with the 

AV-TEST security institute reporting that Kaspersky detected 

5.7 million malware Android packages in 2020 [3]. 

To prevent attacks, many security vendors provide tools to 

protect mobile devices and user data, such as antivirus 

software and firewalls. However, these tools work based on 

signatures and can only detect known malware. These tools 

require frequent database updates to detect new malware apps; 

this process can be resource-intensive, potentially impacting 

the overall system performance [4]. To build a model that can 

identify recent attacks, researchers have proposed using 

intelligent methods to detect malware using machine-learning 

algorithms [5]. 

Android apps include several features, such as permissions, 

intent, API calls, hardware features, system calls, and network 

traffic. Based on these features, the app can be identified as 

malicious [6]. In general, three main techniques can be used 

for analyzing the behavior of an Android app and extracting 

essential features: static, dynamic, and hybrid analysis. 

Features such as permissions, intent, and API calls can be 

extracted without executing an application. However, dynamic 

analysis requires running an application on a virtual machine 

to extract features like system calls and network traffic [5-7]. 

The hybrid analysis combines the features of both static and 

dynamic analysis [8]. 

Earlier research has shown that feature selection is crucial 

in building machine-learning models. Researchers use feature 

selection to remove duplicate or irrelevant features and refine 

essential features to enhance model performance [9]. However, 

hackers upgrade their applications along with the Android API 

levels. Many researchers still analyze applications written on 

older API levels. There is a difference in the features available 

at different API levels. For example, API level 28 includes 325 

permissions, while API level 15 contains only 166 permissions. 
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Additionally, several distributors create custom permissions to 

access data, hardware resources, and Web APIs. An increasing 

number of permissions opens up more opportunities for abuse. 

Several studies are based on the MalGenome and Drebin 

datasets for malware analysis, which are based on samples 

collected between 2010 and 2012 and fall between API levels 

9 and 18 [10]. 

In this research, we introduce an innovative feature 

selection technique designed to enhance the capability of 

machine-learning algorithms in effectively distinguishing 

between malicious and benign Android applications. 

Furthermore, our developed dataset collected samples from 

diverse sources, ensuring comprehensive coverage of both 

older and newer specimens across a wide range of API levels. 

The main contributions of this work can be summarized as 

follows: 

1. Feature Selection Method: The study introduces a novel 

feature selection method named Discriminative Feature 

Ranking-Mutual Information (DFR-MI), which effectively 

selects features and aids in constructing a model capable of 

distinguishing between malicious and benign Android 

applications. This method improves upon the mutual 

information algorithm in terms of both time and accuracy. The 

DFR-MI selects the informative features from the most 

frequent features in the dataset instead of selecting the 

informative features regardless of their frequency in the 

dataset as happens with the mutual information algorithm. 

2. Comprehensive Dataset: The study develops a large and 

well-balanced dataset consisting of 32,170 samples and 209 

features. The dataset includes permissions (both native and 

custom) along with intents, providing a comprehensive 

representation of Android applications. 

3. Improved Detection Accuracy: The proposed approach, 

combining permissions and intents with machine learning 

techniques, achieves high accuracy in detecting malicious 

Android apps. The results surpass those obtained using the 

Drebin dataset, demonstrating the effectiveness of the 

proposed methodology. 

4. Random Forest Algorithm: The study evaluates nine 

machine learning algorithms and identifies the random forest 

algorithm as a highly performant choice. It achieves high 

scores in accuracy, precision, recall, and the f1 score when 

combined with the proposed feature selection method. 

5. Lightweight Models: The study highlights the importance 

of using lightweight models for mobile devices. The proposed 

models offer faster training and inference times, addressing 

battery life concerns and time constraints associated with 

mobile devices. 

The remainder of the paper is structured as follows: Section 

2 includes the related work on Android malware detection and 

the techniques used. Section 3 describes the methodology of 

the proposed system. Section 4 presents the experiments 

performed in this study. Section 5 provides conclusion. 

 

 

2. RELATED WORK 

 

The surge in mobile device usage and its applications has 

brought about a parallel increase in the presence of malicious 

apps. The malicious apps pose many threats such as stealing 

sensitive user data, misusing applications, and sending short 

messages to premium numbers. Therefore, researchers 

developed many models for defense and mitigate the risk of 

malicious apps. Generally, analyzing the behavior of apps can 

be categorized into static, dynamic, and hybrid analyses. Static 

methods can extract static features from an app without 

executing the app, such as permissions [11, 12], intent [13], 

API calls [14, 15], and opcodes [16, 17]. Dynamic methods 

detect an app's behavior by monitoring system calls [18, 19], 

memory utilization, CPU utilization [20], and network traffic 

[21]. Hybrid methods combine static and dynamic features 

[22]. Those features are used to distinguish malicious apps 

from benign ones. 

The authors in the study [23] developed a hybrid malware 

detection system named NTPDroid that extracts network 

traffic features and permissions from applications. The 

proposed model employed the FP-Growth technique to 

generate frequent patterns existing in malicious datasets and 

benign datasets. The results showed that combining network 

traffic features with permissions improved detection rates 

compared to either network traffic features or permissions 

used alone. The authors in the study [24] presented an 

intrusion detection system that detects and classifies malicious 

applications based on analyzing permissions. The proposed 

method works in three steps: i) extracting features from 

Android apps, ii) using machine learning for training on the 

extracted features, and iii) assessing the model's performance 

using a testing dataset like Drebin and AndroTracker datasets. 

Various ML algorithms have been evaluated for detecting and 

classifying malicious applications. For the detection of 

malware applications, kernel logistic regression achieved the 

highest 98.2% accuracy. In the study [25], the authors 

developed a method named Deep-Intent, an online Intrusion 

Detection System (IDS) that uses an E2E DL implementation 

for supervised learning and unsupervised feature engineering 

and only uses implicit intent as a feature. The experiment 

findings reveal that the presented intent-based IDS could 

detect malware application software with an AUC of 81% and 

an accuracy of 77.2%. In the research [20], the authors 

developed a new Android host-based IDPS (HIDROID) that 

runs entirely on a mobile device. The HIDROID periodically 

gathers feature samples at run time from many resources that 

reflect the utilization of mobile resources like CPU, battery, 

memory, and other features. The detection engine uses 

machine learning and statistical methods to develop a model 

based on data to support benign behaviors. Any observation 

that fails to meet this model raises an alert, and the prevention 

agent takes adequate countermeasures to reduce the risk. 

Experimental test findings reveal that HIDROID can learn 

from regular activity and distinguish it from abnormal with a 

highly promising precision of up to 91%. The researchers in 

the study [26] proposed a lightweight intrusion detection 

system that detects zero-day attacks efficiently named 

DroidLight. DroidLight is based on the author's probability 

distribution and one-class classification. The classification 

models learn their regular CPU use and network traffic for 

every mobile application. If there is a significant deviation 

from the normal pattern, the model raises an intrusion alarm. 

A real user who interacted with it using three self-developed 

apps evaluated DroidLight on a real device. DroidLight could 

identify mobile malware with an accuracy spanning 93.3% to 

100%. The study [13] proposed a new static method for 

detecting Android malware based on intents and permissions. 

Initially, the presented model used Information Gain to rank 

both permissions and intents and then combined permissions 

and intents to find the best set that could provide better 

accuracy using various machine learning algorithms. The 

results of the experiments showed that the proposed methods 
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of combining permissions and intents improved detection 

accuracy over permissions and intents separately. The study 

[27] proposed a classification mechanism for Android 

applications that combines dynamic packet analysis with static 

permissions. First, through static analysis, the proposed 

system collects static information from Android applications 

and classifies them as benign or malicious using machine 

learning. Furthermore, excessive dynamic data-gathering time 

is avoided by filtering out safe apps. The malware's network 

traffic is then employed in the dynamic analysis phase to 

extract many information features, and then machine learning 

is used to classify the malware family. The model's objective 

is to limit the number of apps requiring dynamic data 

collection, which minimizes analysis time overall. After 

experiments, the results show that the model can achieve high 

accuracy and reach 96%. The authors [28] proposed the 

DATDroid method for Android malware detection. 

DATDroid collects dynamic features such as CPU usage, 

memory usage, network traffic, system call errors, and system 

call time. The DATDroid approach achieved an accuracy of 

91.7%. The study [29] presented a new approach based on 

Recurrent Neural Networks (RNN) for identifying malware in 

Android applications. The suggested method extracts two sets 

of features, API calls, and permissions from the Android 

application. According to the experimental results, the RNN 

achieved a high accuracy of 98.2% on the CICAndMal2017 

database. The researchers [30] proposed a new model based 

on permissions extracted from APK files. The proposed model 

detects malicious apps based on suspicious permissions. The 

system extracts essential features such as permissions, 

permission rates, and small file sizes from the 10000 

applications collected from virus share and Google Play. With 

SVM, the model achieved 89.2% accuracy. The study [31] 

developed a novel technique for identifying malware in 

Android apps utilizing the frequent pattern (FP) growth 

algorithm. This algorithm is used to find more frequent 

patterns of feature coexistence at different levels. The authors 

also made several datasets of co-existing features. These 

included a permissions-coexisting dataset, an API-coexisting 

dataset, and permission with an API-coexisting dataset. 

Several machine-learning algorithms were used for testing, 

and the results show that the random forest, support vector 

machine, and decision tree got high accuracy and reached 98% 

using the permission-API co-existence dataset in the 

CIC_MALDROID2020. 

Despite the progress made by the prior researchers in 

employing diverse methods and achieving promised results, 

certain limitations persist in their studies. Common limitations 

include reliance on outdated, imbalanced, and non-

comprehensive datasets. Furthermore, the methods employed 

for selecting informative features often entail high processing 

demands and are time-consuming. To overcome these 

challenges, the authors intend to develop a balanced and 

comprehensive dataset, encompassing samples from various 

API levels for both malicious and benign applications. 

Additionally, a feature selection method will be devised to 

maximize accuracy while minimizing the time required for 

feature selection. 

 

 

3. METHODOLOGY 

 

The primary objective of this study is to construct a robust 

and efficient machine-learning model that uses permissions 

and intents to detect malware on Android devices. Figure 1 

illustrates the general proposed methodology of the study. 

 

 
 

Figure 1. Schematic diagram of the proposed methodology 

 

 
 

Figure 2. Main steps for preparing a dataset 
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Table 1. Details of collected samples 

 
Database Type of Samples Sample Classification No. of Samples Date 

Androzoo Malware Trojan, Riskware, Adware, SMS 3372 2017-2020 

Drebin Malware 79 different family 3000 2010-2012 

Android Botnet dataset Malware 14 Botnet families 1800 2010-2014 

CIC-InvesAndMal2109 Malware Ransomware (10 Families), Scareware (11 families) 213 2019 

CICMalDroid 2020 Malware Adware, Banking, SMS, Riskware 7500 2017-2018 

Malware Bazaar Malware Spyware, Trojan, Banker 200 2020-2022 

Androzoo Benign Not mentioned 11269 2011-2020 

Google Play Benign 

Art and design, Beauty, Book, Business, Education, 

Financial Communication, Entertainment, Health, 

Medical, Music and Audio, News, hoping, Social. 

4816 2019-2022 

Total    32170  

 

 
 

Figure 3. Process of sample analysis and feature extraction 

 

3.1 Preparing dataset 

 

A dataset represents a structured collection of data samples 

specifically assembled and prepared for training and testing 

machine learning models to classify Android applications as 

either benign or malicious. Figure 2 illustrates the main steps 

for creating a dataset. 

 

3.1.1 Collecting Android app samples 

This study collected samples from various databases, 

including Drebin (https://www.sec.tu-bs.de/~danarp/drebin/), 

Android Botnet dataset 

(https://www.unb.ca/cic/datasets/android-botnet.html), CIC-

InvesAndMal2109 

(https://www.unb.ca/cic/datasets/invesandmal2019.html), 

CICMalDroid 2020 

(https://www.unb.ca/cic/datasets/maldroid-2020.html), 

Malware Bazaar (https://bazaar.abuse.ch/browse/tag/apk/), 

Google Play (https://play.google.com/store/apps), and 

AndroZoo databases (https://androzoo.uni.lu/). The malware 

sample size ranged from a minimum of about 10 kilobytes to 

a maximum of 50 megabytes, while the benign app size ranged 

from a minimum of 11 kilobytes to a maximum of 236 

megabytes. Table 1 provides more information about the 

malware and benign samples. 

 

3.1.2 Sample analysis 

After collecting samples of both malware and benign apps, 

the researchers utilized the Static Dynamic Hybrid Feature 

Extraction (SDHFE) tool to reverse engineer and decompile 

them into their source files. The SDHFE tool is a lightweight 

and automated tool developed by the authors to analyze 

Android applications and extract features from them. It 

operates on the Linux operating system. The SDHFE tool is 

easy to use, allowing researchers to effortlessly generate 

profiles from the analyzed applications based on selected 

features. It can extract permissions and intents from manifest 

files, APIs and opcodes from source code, and system calls 

from the application's behavior during execution. Notably, it 

possesses the capability to efficiently analyze and generate 

profiles for a bulk of applications without requiring human 

intervention. Furthermore, researchers can leverage this tool 

to generate profiles that include features from many sources at 

the same time, such as generating profiles based on 

permissions and APIs together. For this study, we utilize this 

tool to extract static features such as permissions and intents. 

 

3.1.3 Feature extraction 

The feature extraction process begins promptly after 

decompiling each sample. The SDHFE tool extracts features 

primarily from the AndroidManifest.xml file, serving as the 

main source, which generates a profile for each analyzed 

sample. Our analysis predominantly focuses on two sets of 

static features: FS1, representing permissions (both native and 

custom), and FS2, representing intents. Throughout our study, 

we extracted over 500,000 features associated with both 

benign and malware samples. The process of analyzing and 

extracting features from a single sample using the SDHFE tool 

is depicted in Figure 3. 
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Algorithm 1. Preparing dataset for permissions and intents 

 
Input: Malware and Benign samples 

Output: Malware and Benign Dataset 

Start: 

Parameter Initialization: ProfileList =[], Featurelist =[], FilterList =[], Fvlist =[], Index=0, rowindex =0, DSCSV = []. 

 For each sample ∈ Malware, Benign do: 

  Decompile sample using the SDHFE tool 

ProfileList. Append (profile for sample based on features extracted from the AndroidManifest.xml) 

 End For 

 For each profile ∈ ProfileList do: 

  For each feature ∈ profile do: 

   Featurelist[index] =feature 

   Increment index by one 

  End For 

 End For 

Remove duplicated features from Featurelist and filter the feature that rarely appears in samples 

For each feature ∈ Featurelist do: 

FilterList. Append (feature) if feature Not in FilterList And counting (feature) >=th 

Where th is a threshold representing the number of times the feature appears in all samples 

 End For 

 DSCSV [rowindex]. Append (FilterList )  

Generate a Feature vector and append it to a dataset   
For each profile ∈ ProfileList do: 

  Fvlist. Clear for each profile, indexfv=0, increment rowindex by one  

 For each feature ∈ FilterList do: 

  If feature ∈ profile 

   Fvlist [indexfv] =1 

   Increment indexfv by one  

  Else  

   Fvlist [indexfv] =0  

   Increment indexfv by one 

  End If 

 End For 

 If profile ∈ malware sample 

  Fvlist [indexfv +1] =1  

 Else 

  Fvlist [indexfv +1] =0 

 End If 

DSCSV [rowindex]. Append (Fvlist)  

End For 

End 
 

3.1.4 Preprocessing 

The researcher has performed two functions on the 

extracted data. The first function scans all profiles generated 

in the feature extraction phase to collect features and keeps 

them in a single list called Featurelist. The second function 

reads the Featurelist and eliminates redundant features from it. 

The redundant features are either duplicated more than once in 

the Featurelist or rarely appear in Android samples. The 

remaining features were saved into a new list called FilterList 

and appended to the dataset as a header of columns. 

 

3.1.5 Feature vector 

After combining the two feature sets FS1∪FS2, a binary 

feature vector Fv = (f1, f2, …,fn) will be generated for each 

sample according to Eq. (1). 

 

 

(1) 

 

The features (permission and intent) are encoded with 1 to 

signify their presence in an Android application, and 0 if 

absent. For classification, a class label is added to each feature 

vector 1 denotes the "malware" class, while 0 denotes the 

"benign" class. These binary feature vectors are stored in a 

CSV file for efficient data organization and processing. Figure 

4 provides an example of such a feature vector, displaying 

binary representations of features along with their respective 

class labels. The dataset preparation process, encompassing 

feature extraction and feature vector creation, is detailed in 

Algorithms 1.

 
 

Figure 4. Feature vector 

 

3.2 Feature selection 

 

Feature selection is one of the significant steps in machine 

learning models. Selecting relevant features and removing 

irrelevant or redundant features improves the accuracy of the 

predicted model, reduces training time, and decreases the 
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overfitting problem. This study proposes a novel approach 

called Discriminative Feature Ranking-Mutual Information 

(DFR-MI), which combines the mutual information algorithm 

with the discriminative feature ranking method to further 

improve the accuracy of the model. The proposed approach 

utilizes two levels and focuses on selecting the most 

significant features that effectively differentiate between 

malicious and benign applications. To provide a 

comprehensive understanding, the study introduced key 

definitions that will be used throughout each level. Let S be a 

set of malware and benign samples in the dataset and denoted 

by: 

 

 
(2) 

 

where, sr represents the rth sample in S and |S| represents the 

total samples in the dataset. 

Let F be a set of features used by malware and benign 

samples in the dataset and denoted by: 

 

 
(3) 

 

where, fr represents the rth feature and |F| represents the total 

features in the dataset. 

Let C be a set of the class labels in the dataset and denoted 

by: 

C= {c1, c2}, here we have only two class labels: malware 

and benign. 

Let CF represent candidate features selected from level one 

and pass to level two. 

Definition 1: (Feature Frequency: FF) Calculate the 

frequency of each feature in malware and benign samples in 

the dataset. Because the presence of each feature in a specific 

class is set to 1, and the absence is set to 0. We can find the 

frequency of each feature as follows: 

 

 
(4) 

 

 
(5) 

 

Definition 2: To know the feature that appears more in 

malware or benign samples, calculate the difference for each 

feature according to the following equation: 

 

 
(6) 

 

where, Dfr means the frequency difference feature at the r 

index, the Dfr result will be a positive, negative, or zero value. 

Positive value: mean the feature is more presence in the 

malware samples. 

Negative value: mean the feature is more presence in the 

benign samples. 

Zero value: indicate the presence of feature are equal in 

malware and benign samples. 

 

3.2.1 Level one: Discriminative Feature Ranking (DFR) 

At this level, the proposed algorithm uses a statistical 

method to identify whether a specific feature is utilized more 

frequently in benign or malware apps in two steps. In the first 

step, use Eqs. (4) and (5) to count the frequency of each feature 

in malware and benign apps separately. Although this step 

provides valuable insights into which features are used in each 

category of apps, it may not help us to distinguish malicious 

apps from benign ones. For example, Table 2 shows the top 10 

features that mostly appeared in malicious and benign samples 

in our dataset. The 'android.permission.INTERNET' feature 

appeared 15594 times in malicious samples, which is nearly 

97% of malicious samples, and 15536 times in benign samples, 

which is nearly 97% of benign samples. The same applies to 

the 'android.permission.ACCESS_WIFI_STATE' feature, the 

percentage of this feature is very close in both categories. 

These features may not be at the top level for distinguishing 

malicious from benign apps. Therefore, the features need more 

analysis. 

In the second step, using Eq. (6) to select more important 

features by subtracting the frequencies of each feature that 

appears in malicious apps from the frequencies of the same 

feature that appear in benign apps and store the result with the 

feature name inside a new dataframe called Discriminative 

Feature (DF) dataframe. This procedure is robust at identifying 

whether a particular feature is more frequently found in benign 

or malicious applications. The rank of features changes in this 

step and is different from step 1, as shown in Table 3. 

Generally, level one provides insight into the features that 

are more utilized by malicious and benign apps. However, it is 

not necessary for all frequent features to be more informative 

in the prediction model because feature counting only 

considers the frequency of individual features across a dataset, 

it doesn't take into account the relationships or dependencies 

between features. This can lead to the inclusion of irrelevant 

or redundant features in the model. Therefore, we consider 

level one to works as a filter based on the specific thresholds 

to narrow down the features to the most common ones in both 

categories. This helps to reduce the search space and 

computational complexity at the next level.

 

Table 2. Top 10 features in malware and benign samples after the first step of DFR 

 
# Top 10 Malware Feature Freq. Top 10 Benign Feature Freq. 

1 android.permission.INTERNET 15594 android.permission.INTERNET 15536 

2 android.intent.category.LAUNCHER 15398 android.permission.ACCESS_NETWORK_STATE 14952 

3 android.permission.READ_PHONE_STATE 14688 android.permission.WAKE_LOCK 10990 

4 android.permission.WRITE_EXTERNAL_STORAGE 12016 android.intent.category.LAUNCHER 10850 

5 android.permission.ACCESS_NETWORK_STATE 11272 android.permission.WRITE_EXTERNAL_STORAGE 10476 

6 android.intent.action.BOOT_COMPLETED 10478 android.intent.action.BOOT_COMPLETED 7778 

7 android.permission.SEND_SMS 9090 android.intent.action.VIEW 7752 

8 android.permission.RECEIVE_BOOT_COMPLETED 8038 android.permission.RECEIVE_BOOT_COMPLETED 7706 

9 android.permission.RECEIVE_SMS 7622 android.permission.ACCESS_WIFI_STATE 7202 

10 android.permission.ACCESS_WIFI_STATE 7276 android.permission.VIBRATE 7072 
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Table 3. Top 10 features in malware and benign samples after the second step of DFR 

 
# Top 10 Malware Feature Diff. Top 10 Benign Feature Diff. 

1 android.permission.READ_PHONE_STATE 9796 android.intent.action.VIEW -6630 

2 android.permission.SEND_SMS 8626 com.google.android.c2dm.permission.RECEIVE -5244 

3 android.permission.RECEIVE_SMS 7076 com.android.vending.BILLING -5158 

4 android.permission.READ_SMS 6336 android.permission.READ_EXTERNAL_STORAG

E 

-4678 

5 android.intent.category.LAUNCHER 4548 android.permission.WAKE_LOCK -4078 

6 android.intent.category.HOME 3898 android.intent.action.ACTION_POWER_DISCON

NECTED 

-3870 

7 android.permission.WRITE_SMS 3630 android.intent.action.TIME_SET -3838 

8 android.permission.READ_CONTACTS 3108 android.permission.ACCESS_NETWORK_STATE -3680 

9 com.android.launcher.permission.INSTALL_SHORTCUT 3076 android.intent.action.DEVICE_STORAGE_OK -3578 

10 android.intent.action.BOOT_COMPLETED 2700 android.intent.action.BATTERY_LOW -3518 

 

In this study, we have two thresholds, α1 and α2. The value 

of α1 represents the number of features in F that appear more 

in malware apps than benign apps. The value of α2 represents 

the average frequency of all features that most frequently 

occur in benign samples. The DF dataframe was filtered based 

on the α1 and α2 and the new features were saved to a new list 

known as Candidate Features (CF) list. Finally, the CF became 

an input to the next level. Figure 5 illustrates candidate 

features from malware and benign samples passed to level two. 

 

 
 

Figure 5. Number of candidate features 

 

Table 4. Top 10 features selected by MI algorithm 

 
# Top 10 Features Score 

1 android.permission.READ_PHONE_STATE 0.219263 

2 android.permission.SEND_SMS 0.200989 

3 android.permission.RECEIVE_SMS 0.150608 

4 android.permission.READ_SMS 0.123614 

5 android.intent.action.VIEW 0.121097 

6 com.android.vending.BILLING 0.109813 

7 com.google.android.c2dm.permission.RECEIVE 0.078074 

8 android.intent.category.LAUNCHER 0.076952 

9 com.google.android.c2dm.permission.RECEIVE 0.074669 

10 android.intent.category.HOME 0.072773 

 

Algorithm 2. Discriminative Feature Ranking-Mutual Information (DFR-MI) feature selection algorithm 

 
Input: 

 F is a set of features in the dataset 

Output: 

 SFList is a set of Selected Features 

Parameter Initialization: 

SFList =[], CFList =[],   𝜶 = 𝟎, 𝜶𝟏 = 𝟎, 𝜶𝟐 = 𝟎,  Featurecount =0, CFcf ∈ 𝑩𝑳𝒊𝒔𝒕 =[], CFcf ∈ 𝑴𝑳𝒊𝒔𝒕=[] 

DFdataframe =[,], DFindex =0 

Start: 

 For each feature ∈ F do: 

  FFfeature ∈ 𝑴 =∑   𝒇𝒆𝒂𝒕𝒖𝒓𝒆. 𝒗𝒂𝒍𝒖𝒆𝒔 , 𝒇𝒐𝒓 𝒎𝒂𝒍𝒘𝒂𝒓𝒆 𝒔𝒂𝒎𝒑𝒍𝒆𝒔
|𝑺|
𝒔=𝟏  

  FFfeature ∈ 𝑩 =∑   𝒇𝒆𝒂𝒕𝒖𝒓𝒆. 𝒗𝒂𝒍𝒖𝒆𝒔
|𝑺|
𝒔=𝟏  , 𝒇𝒐𝒓 𝒃𝒆𝒏𝒊𝒈𝒏 𝒔𝒂𝒎𝒑𝒍𝒆𝒔 

  DFdataframe .featurename=feature 

  DFdataframe.value= FFfeature ∈ 𝑴 – FFfeature ∈ 𝑩 

  Increment DFindex by one 

 End For 

 For each value ∈ DFdataframe .value do: 

  if (value < 0): 

   𝜶 =  𝜶 − value 

   Increment Featurecount by one 

  End If 

 End For 

 α2= 𝜶/ Featurecount 

 For each feature, value ∈ (DFdataframe .featurename, DFdataframe .value) do: 

  if value > 𝜶𝟏: 

   CFcf ∈ 𝑴𝑳𝒊𝒔𝒕 .Append (feature) 

  End If 
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  if value ≤  𝜶𝟐: 

   CFcf ∈ 𝑩𝑳𝒊𝒔𝒕  .Append (feature) 

  End If 

 End For 

 CFList= CFcf ∈ 𝑴𝑳𝒊𝒔𝒕   ∪  CFcf ∈ 𝑩List 

 SFList = top N feature from   

𝑴𝑰 (𝑪𝑭, 𝑪) = ∑ ∑ 𝑝(𝐶𝐹 = 𝑐𝑓𝑖 , 𝐶 = 𝑐𝑗) ∗ log
𝑝(𝐶𝐹 = 𝑐𝑓𝑖 , 𝐶 = 𝑐𝑗)

𝑝(𝐶𝐹 = 𝑐𝑓𝑖   ) ∗ 𝑝(𝐶 = 𝑐𝑗)
𝑐𝑗𝑐𝑓𝑖

 

End 
 

3.2.2 Level two: Mutual Information (MI) 

Mutual information is a technique that can be used for 

weighing variables. It is widely used in machine learning 

problems to assess the mutual independence of two random 

variables. The value of MI is a non-negative number that 

ranges from 0 to 1. The maximum value of MI indicates a 

strong correlation between the two variables. The value of 0 

indicates no correlation between the two variables. The 

following is the mutual information formula: 
 

 

(7) 

 

In our study, MI is used to measure the relevance of features 

received from CF list at the first level. The variable CF 

indicates whether the cfi appears in an application. C 

represents the class label of the application belonging to 

malware or benign application, and p (CF= cfi) indicates the 

probability that the variable CF is cfi, p(C=ci) represents the 

probability that the value of C is ci. Based on the basic formula 

of the MI, the correlation value MI (CF, C) of each feature is 

obtained. Table 4 represents the top 10 features selected from 

the mutual information algorithm. 

The combination of DFR and MI can help to improve the 

overall performance of the feature selection process by 

eliminating redundant features and selecting only significant 

features for the model. Consequently, this refinement results 

in more precise predictions and reduces the computational 

complexity of the model. 
 

 

4. EXPERIMENTAL ENVIRONMENT AND RESULT 

ANALYSIS 

 

In our study, we used windows ten 64-bit operating system 

machine with Intel(R) Core (TM) i5-2320 CPU @ 3.00GHz, 

NAVIDIA Quadro 4 GB, and 16 GB of RAM. For processing 

our data, the GPU was used to accelerate the execution of 

machine learning algorithms. We implemented our codes on 

the anaconda platform. The python version is 3, and the basic 

libraries utilized in this work include pandas, NumPy, sci-kit-

learn, TensorFlow, matplotlib, and seaborn. 

4.1 Machine learning and splitting dataset 

 

We used nine machine-learning algorithms (RF, DT, SVM, 

KNN, LR, NB, AdaBoost, Gradient Boosting, and ANN) for 

training and testing on our dataset to find a good model for 

detecting malware on the smartphone device. During the 

learning phase, the variables (hyperparameters) of each 

algorithm are adjusted with some values. Table 5 illustrates the 

details of the hyperparameters used for each algorithm. 

To improve the performance of these models and lower the 

risk of overfitting, the mutual information (MI) and DFR-MI 

algorithms were used to choose important features. On this 

basis, we conducted two experiments to compare the 

performance of the two algorithms for feature selection and its 

effects on the predicate models. In the first experiment, the 

mutual information algorithm chose 75 features and passed 

them to nine machine-learning algorithms to train on. 

In the second experiment, the same process was followed, 

but this time the DFR-MI algorithm was used instead of the 

mutual information algorithm to choose the same number of 

features. The scores of each experiment are shown in Table 6. 

The dataset was divided into two sets: 80% of the dataset 

was used for training and 20% for testing models. In general, 

it is recommended to use as much data as possible for training 

to maximize the performance of the models while still 

reserving enough data for testing to obtain reliable estimates 

of their performance. The performance of each model was 

evaluated based on common metrics such as accuracy, 

precision, recall, and F1 score to determine the best model for 

Android malware detection. By comparing the results of the 

two experiments, we found that the RF and the DT with DFR-

MI algorithms got a higher score in accuracy in the training 

case, which is 98.9. While in the case of the test, we found that 

the RF with the DFR-MI algorithm outperformed all 

algorithms in terms of accuracy, precision, recall, and the f1 

score, which are 98.52, 98.62, 98.41, and 98.52 respectively. 

This leads to the RF algorithm having the best average score, 

which is 98.52. We also got the worst result with NB using the 

mutual information algorithm for most evaluation metrics. The 

average scores of each algorithm in Table 7 are plotted to 

generate related graphs as shown in Figure 6. 

 

Table 5. Hyperparameters used by each algorithm in the experiments 

 
No Algorithms  Hyperparameters and Values 

1 RF n_estimators=200, criterion=’Gini’, max_depth=50, ,random_state=42 

2 DT n_estimators=200, criterion=’Gini’, max_depth=50, random_state=42 

3 SVM Kernel=’rbf 

4 KNN n_neighbors=3, weights=’ uniform’ 

5 LR Solver=’ lbfgs’ 

6 NB var_smoothing=1e-9 

7 AdaBoost n_estimators=100, learning_rate=1.0, algorithm=’ SAMME.R’, random_state=42 

8 GradientBoosting learning_rate=0.1, n_estimators=100, random_state=67 

9 ANN Activation=’Relu’, kernel_initializer= glorot_uniform, kernel_constraint= maxnorm(3), 

optimizer=’adam, loss=’ binary_crossentropy’, Epoch=100, batch_size=20 
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Table 6. Results of two experiments with MI and DFR-MI features selection algorithms 

 
Algorithms Feature Selection Algorithms Accuracy (%) Precision (%) Recall (%) F1 Score (%) Average Scores (%) 

Train Test Test Test Test Test 

RF MI 98.14 97.68 97.05 98.35 97.69 97.69 

DFR-MI 98.9 98.52 98.62 98.41 98.52 98.52 

DT MI 98.14 97.65 97.13 98.19 97.66 97.66 

DFR-MI 98.9 98.33 98.44 98.22 98.33 98.33 

SVM MI 96.31 96 94.92 97.2 96.05 96.04 

DFR-MI 96.56 96.25 95.53 97.04 96.28 96.28 

KNN MI 97.64 95.89 94.97 96.92 95.93 95.93 

DFR-MI 98.44 96.82 96.65 97.01 96.83 96.83 

LR MI 93.74 93.75 93.74 93.18 93.96 93.66 

DFR-MI 93.89 93.75 93.8 93.68 93.74 93.74 

NB MI 77.99 77.59 69.44 97.56 81.48 81.51 

DFR-MI 84.21 84.53 94.15 73.63 82.63 83.74 

adaBoost MI 93.2 93.36  93.64 93.03 93.33 93.34 

DFR-MI 93.43 93.5 93.63 93.34 93.49 93.49 

G.Boosting MI 93.76 93.73 93.74 93.71 93.73 93.73 

DFR-MI 93.81 93.76 93.72 93.81 93.76 93.76 

ANN MI 97.53 97.27 97.2 97.35 97.28 97.28 

DFR-MI 98.27 98.32 98.05 98.4 98.32 98.27 

 
 

Figure 6. Average scores of the two experiments 

 

4.2 Training and testing model duration time 

 

In this subsection, we calculated the duration time needed 

for each model during training and testing on 75 features twice: 

once with the DFR-MI and once with mutual information 

algorithms for feature selection. The DFR-MI algorithm not 

only increased the model's accuracy but also helped reduce the 

duration of time for training and testing the model. Table 8 

shows the duration time in seconds for each algorithm for 

training and testing the model with the DFR-MI and MI 

algorithms. The obtained data in Table 7 are plotted to 

generate related graphs. As shown in Figure 7, it is clear that 

the time taken to train and test any model with the proposed 

algorithm DFR-MI is reduced compared to the MI algorithm 

by at least 14 seconds. 

 

4.3 Performance comparison between our dataset and the 

benchmark dataset 

 

The authors of this study observed that the Drebin dataset 

was commonly favored by many researchers during the review 

process, consistently yielding high accuracy in the detection of 

malicious Android applications. Building upon this precedent, 

this study selected the Drebin dataset as a benchmark and 

conducted a comparative analysis with their own dataset. The 

visualization of our dataset and the Drebin dataset are 

illustrated in Figures 8 and 9. 

The Darbin dataset dates back to 2012 and contains four 

feature types: API call signatures, permissions, command 

signatures, and intent. The number of samples in the Drebin 

dataset is 15036, of which 5560 are malware samples, and 

9476 are benign samples. Our dataset consists of 32170 

samples, distributed equally between malware and benign 

samples. The number of columns in our dataset is 209; 208 

columns represent features, and 1 column represents a class 

label. Two hundred eight features are distributed between 

permissions and intents. Permissions can be native 

permissions or custom permissions. The number of native 

permissions is 102 features, the number of custom permissions 

is 60, and the number of intents is 46. To compare our dataset 

with the Drebin dataset, we have removed the feature 

categories like API call signatures and command signatures 

from the Drebin dataset. This is because our dataset only 

contains two feature categories: permissions and intents. After 

deleting the mentioned features from the Drebin dataset, the 

remaining features are 136 (23 intents and 113 permissions). 

In this way, we can a fair comparison between the two datasets 

with respect to their effectiveness in detecting Android 

malware based on permissions and intents. Then we applied 

MI and DFR-MI algorithms for feature selection to select the 

top 75 features in both datasets and passed them to nine 

machine learning algorithms. The scores each algorithm got 

on the Drebin datasets are illustrated in Table 8. 

 

Table 7. Duration time in seconds for training models with 

DFR-MI and MI 

 
Algorithms  MI DFR-MI 

RF 47 28.4 

DT 40.1 25.2 

SVM 103 84 

KNN 77 58.8 

LR 40.6 22.5 

NB 40.2 22.2 

adaBoost 45.9 27.8 

G.Boosting 41.8 24.2 

ANN 164 150 

 

According to the scores obtained by each algorithm in Table 

9, we noted that most algorithms got high scores in terms of 

accuracy, precision, recall, and F1 score with the DFR-MI 

feature selection algorithm on the Drebin dataset. To compare 

the performance of our dataset with the Drebin dataset, we 
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summarize the average scores of each machine-learning 

algorithm with the DFR-MI algorithm on both datasets in 

Table 9. The average scores in Table 9 are plotted to get their 

related graphs, as shown in Figure 10. 

 

 
 

Figure 7. Duration time in seconds for training and testing 

models with DFR-MI and MI 

 

 
 

Figure 8. Visualization our dataset 

 

 
 

Figure 9. Visualization Drebin dataset 

 

The authors of this paper observed that the samples within 

the Drebin dataset suffer from being outdated, imbalanced, 

and lacking the inclusion of features utilized by modern 

malicious samples. These issues were meticulously addressed 

in the development of a new dataset, resulting in improved 

outcomes when the machine learning algorithm was trained on 

it. For example, the feature 

android.permission.REQUEST_INSTALL_PACKAGES 

ranked among the top fifteen features in the developed dataset 

and can be abused by malicious applications to deceive users 

into installing harmful apps on their devices. Notably, this 

feature is absent in the older API level utilized by the Drebin 

dataset. 

Overall, we found the random forest algorithm with DFR-

MI feature selection to be the best performer on our dataset. 

So, we chose this algorithm to build a model for figuring out 

which apps on smartphones are malicious. 

 

 
 

Figure 10. Average scores on both datasets based on the 

DFR-MI 

 

4.4 Analyzing the confusion matrix of the random forest 

algorithm 

 

A classification model's performance can be assessed by 

counting the number of testing samples that the model 

correctly and incorrectly predicts. A confusion matrix is a 

table that displays these counts. Figure 11 shows the confusion 

matrix related to the random forest algorithm for binary 

classification. The total number of successfully classified 

samples equals the sum of the diagonals in the matrix. In 

contrast, the total number of incorrectly classified samples 

equals the sum of the secondary diagonal in the matrix. 

As illustrated in Figure 11, 3165 samples are malware. They 

are correctly classified as malware samples, while the 

predictive model misclassifies 44 samples of benign apps as 

malware. On the other hand, 3173 samples were correctly 

classified as benign, while 51 malware and incorrectly 

classified as benign by the predictive model. Overall, the error 

rate of the proposed model is 0.014. 

 
Table 8. Results of nine ML algorithms with MI and DFR-MI feature selection algorithms on the Drebin dataset 

 
Algorithms Feature Selection Algorithms Accuracy (%) Precision (%) Recall (%) F1 Score (%) Average Scores (%) 

Train Test Test Test Test Test 

RF MI 95.82 95.01 96.25 90.01 93.02 93.57 

DFR-MI 97.47 96.44 96.91 93.34 95.09 95.45 

DT MI 95.82 94.18 94.32 89.65 91.93 92.52 

DFR-MI 97.47 94.94 94.03 92.17 93.09 93.56 

SVM MI 94.42 94.61 96.31 87.85 92.34 92.78 

DFR-MI 95.11 95.21 96.89 89.92 93.28 93.83 

KNN MI 91.09 90.25 83.59 91.63 87.43 88.23 

DFR-MI 95.69 95.41 94.59 92.89 93.73 94.16 
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LR MI 92.83 93.31 93.92 87.58 90.64 91.36 

DFR-MI 93.12 93.41 93.52 88.3 90.84 91.52 

NB MI 61.63 61.8 49.16 97.93 65.46 68.59 

DFR-MI 64.07 64.79 51.24 98.11 67.32 70.37 

adaBoost MI 92.45 92.71 93.39 86.42 89.77 90.57 

DFR-MI 92.63 92.91 92.52 87.94 90.17 90.89 

G.Boosting MI 92.62 92.95 93.52 86.96 90.12 90.89 

DFR-MI 93.09 93.31 93.42 88.12 90.69 91.39 

ANN MI 93.92 94.64 95.32 89.92 92.54 93.11 

DFR-MI 96.08 96.17 96.8 92.71 94.71 95.10 

Table 9. Average scores on both datasets based on the DFR-

MI algorithm 

 
Algorithms Dataset  Average Test Scores (%) 

RF Drebin 95.45 

Our 98.52 

DT Drebin 93.56 

Our 98.33 

SVM Drebin 93.83 

Our 96.28 

KNN Drebin 94.16 

Our 96.83 

LR Drebin 91.52 

Our 93.74 

NB Drebin 70.37 

Our 83.74 

adaBoost Drebin 90.89 

Our 93.49 

G.Boosting Drebin 91.39 

Our 93.76 

ANN Drebin 95.10 

Our 98.32 

 

 
 

Figure 11. Confusion matrix for random forest 

 

 

5. CONCLUSION 

 

This study presents a significant contribution to the field of 

Android malware detection. Fusing native and custom 

permissions with intents, a new dataset was created that is 

extensive, comprehensive, and encompasses samples 

developed from API level 1 to API level 32. Extensive 

experimentation and evaluation using nine machine-learning 

algorithms were conducted to compare the performance of this 

dataset against the Drebin benchmark dataset. Due to the 

comprehensiveness of the developed dataset, it consistently 

outperformed the Drebin dataset across all predictive models 

by at least 2.22%. Additionally, a novel feature selection 

algorithm DFR-MI was proposed with superior performance 

to the mutual information algorithm in both accuracy and time 

efficiency across the nine predictive models. The DFR-MI 

algorithm markedly reduced the training and testing time 

during the model construction phase. The findings of this 

study hold significant implications for enhancing mobile 

security. Precise identification of malicious apps ensures user 

privacy and defense against threats; developers in Android 

security can benefit from the developed model and feed it with 

the extracted permissions and intents from real applications to 

predict their state. Additionally, the dataset and feature 

selection algorithm introduced in this study have the potential 

to advance the development of more effective malware 

detection systems. Despite these contributions, the proposed 

model may produce false alarms when the tested application 

doesn't include any permissions and intents. So future research 

should address this limitation by exploring additional feature 

sets or integrating dynamic analysis techniques to further 

enhance Android malware detection accuracy. 
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