
Deep Learning and Machine Learning Based Method for Crop Disease Detection and 

Identification Using Autoencoder and Neural Network 

Abdelouafi Boukhris1* , Antari Jilali1 , Hiba Asri2

1 Laboratory of Computer Systems Engineering, Mathematics and Applications (ISIMA), Polydisciplinary Faculty of 

Taroudant, Ibnou Zohr University, Agadir B.P. 8106, Morocco 
2 LISI Laboratory, Department of Computer Sciences, Faculty of Sciences Semlalia, Marrakech B.P. 2390, Morocco 

Corresponding Author Email: abdelouafi.boukhris@edu.uiz.ac.ma 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ria.380209 ABSTRACT 

Received: 9 June 2023 

Revised: 12 November 2023 

Accepted: 21 November 2023 

Available online: 24 April 2024 

Crop diseases present a major threat to agricultural output, disrupting both the quantity and 

quality of production. Disease diagnosis remains a challenge for farmers, primarily due to 

limited knowledge and the need for specialized agricultural engineering expertise. To solve 

these problems, a new technique named the Autoencoder Latent Space-Neural Network 

(ALS-NN) was introduced in this study. It combines the strengths of autoencoders and 

neural networks to find crop diseases. Data processing is the first step of the methodology, 

and then data compression into a latent space follows. This compressed data serves as the 

input for the neural network, facilitating efficient crop disease classification. This approach 

capitalizes on the autoencoder's capacity for dimensionality reduction, data compression, 

and encoding, which is particularly beneficial when handling high-dimensional data. The 

reduced data dimensionality enables the neural network to process the information more 

efficiently. The ALS-NN model, by compressing data, focuses on the crucial information 

for the classification process, thereby enhancing computational speed and reducing the 

number of trained parameters. This results in time efficiencies during disease detection 

operations, mitigating the detrimental effects of diseases on crop yields. The integration of 

autoencoders and neural networks forms a potent strategy for disease detection, leveraging 

the autoencoders' capabilities for dimensionality reduction, anomaly detection, and feature 

learning, coupled with the classification and generalization abilities of neural networks. 

This hybrid approach can potentially lead to more precise, efficient, and interpretable 

disease detection system. PlantVillage is used with 10 crop types. We used the first part of 

autoencoder (The encoder) to compress images into Latent space; for classification, the 

result is subsequently fed into a neural network. Our model (ALS-NN) achieved 90% for 

test accuracy and 90% for validation accuracy. 
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1. INTRODUCTION

Crops are susceptible to various types of diseases which can 

effectively reduce production and negatively affect the 

agriculture economies. The problem of crop diseases is a 

significant and ongoing challenge in agriculture worldwide. 

Crop diseases can have catastrophic impacts on food 

production, leading to decreased yields, economic losses for 

farmers, and potential food shortages. These diseases are 

caused by different pathogens, including fungi, bacteria, 

viruses, and pests, which can infect a wide range of crops, from 

staple grains like wheat and rice to fruits like apples and citrus. 

Effective disease management is important to guarantee food 

security and sustainable agricultural applications.  

Morocco is an agricultural country and produces several 

types of crops like tomato, potato, wheat, and pepper. That’s 

why we worked on tree types of crops which are: Peppers, 

Potatoes and Tomatoes, and eight types of diseases which are: 

bacterial spot which affect pepper, potato early and light blight 

and tomato diseases (target spot, mosaic virus, yellow leaf curl, 

bacterial spot and early blight). To address these issues, we 

must detect early and automatically crop diseases. Many 

research works presented varied state-of-the-art systems for 

crop diseases identification using machine learning and deep 

learning algorithms. Nandhini and Ashokkumar [1] uses 

DenseNet-121 for plant leaf disease identification, Shadin et 

al. [2] use convolutional neural network and Inception V3 

COVID-19 diagnosis from chest X-ray images, Khan et al. [3] 

use SqueezeNet to classify diseases in citrus fruits and the 

accuracy was 96%, Bharathi and Sonai [4] uses convolution 

encoder method to detect leaf disease and the accuracy was 

98%.  

The state-of-the-art techniques are time consuming and use 

a high trainable parameters number, so a machine with high 

computational power is required. So, we need a novel model 

which can reduce the training time significantly and the 

number of training parameters. 

The main contribution of our novel model is shown as 

follows: 

(1) Data processing: after loading data from PlantVillage
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dataset, we resize all images and normalize them which can 

accelerate the convergence rate and improve the robustness of 

our proposed method. 

(2) We built our variational autoencoder to encode the 

prepared data by Encoder, which can represent our data in low 

dimension called Latent Space or Bottleneck. This step 

compresses our data to speed up the training of our network. 

(1) We reshaped all compressed data to use them for our 

neural network. 

(2) The Encoder output serves as the input for our deep 

neural network. 

(3) Deep neural network identifies crop disease. 

We used TensorFlow to build our model that could identify 

crop disease with good accuracy using the dataset PlantVillage. 

We have tree steps in our proposed model. The first step is data 

processing, the PlantVillage dataset is preprocessed by 

resizing images, cutting and normalization of data to improve 

the model accuracy Khamparia et al. [5]. Second step, we built 

our variational autoencoder to encode the dataset images and 

project all images in Latent Space. The third step, we train our 

neural network with the features extracted by our encoder. We 

used Adam optimizer algorithm for training which can 

enhance the learning efficiency of our model and leads to 

faster convergence of loss function. For ten kinds of diseases 

the model accuracy achieved 90% which demonstrates the 

effectiveness of our proposed model. 

 

 

2. RELATED WORK 

 

Several methods have already been used to accurately 

identify crop diseases through image classification. In all these 

methods, they have used several image processing methods 

like SVM, Neural Network (NN), K-mean algorithms and so 

on. 

Bharathi and Sonai proposed a system to detect crop leaf 

disease using convolutional encoder architecture. They 

combined variational autoencoder for data extraction and 

convolutional neural networks for classification, this method 

named V-Convolution encoder network reached an accuracy 

of 98% after 150 epochs and with a convolution filter of 3*3. 

Another work has been done by Khamparia et al. [5] where 

they used a convolutional neural network based autoencoder 

for crop leaf diseases detection, they have proposed hybrid 

technique to detect leaf diseases combining CNN and 

autoencoders. The dataset used contains 900 images. The 

accuracy of this approach reached 97.5% after 100 epochs. 

Using five CNN architectures, Sanga et al. [6] proposed a 

banana disease identification system. They found that ResNet-

152 outperformed all other architectures and the accuracy was 

99.2%. 

Chohan et al. [7] used Inception and VGG-19 architecture 

for plants disease identification using PlantVillage dataset. 

They found that VGG-19 outperformed Inception V3 with 

accuracy of 95% and 98% for testing and training respectively. 

Mohameth et al. [8] combined various architectures to 

detect plant disease. For features extraction they used CNN 

architectures and for classification they employed k-Nearest 

Neighbor and Support Vector Machine (SVM) classifiers. The 

experiment shows that SVM and CNN combined reached an 

accuracy of 98% which outperformed all others.  

Another similar work, for plant disease identification, has 

been done by Tiwari et al. [9] which combined various CNN 

architectures for features extraction, such as VGG-16, VGG19 

and Inception V3, and classifiers like NN, SVM, KNN and 

Logistic Regression. After experiment, they observed that 

combining Logistic Regression with VGG-19 reached an 

accuracy of 97.8%.  

Sibiya and Sumbwanyambe [10] use CNN for maize disease 

classification, Türkoğlu and Hanbay [11] combined three 

classifiers K-Nearest Neighbor, Extreme Learning Machine, 

and Support Vector Machines with state-of-the-art model 

(SqueezeNet, ResNet-50, ResNet-101, Inception-v3, 

InceptionResNetv2, and GoogLeNet) for plant disease 

recognition. Too et al. [12] presented a comparative study to 

select the best deep learning model for crop disease detection. 

Pardede et al. [13] combined Convolutional Autoencoder 

(CAE) with SVM for corn and potato diseases identification. 

They used CAE architecture for features extraction and SVM 

for classification. Using PlantVillage dataset this proposed 

work achieved an accuracy of 87.01% and 80.42% for potato 

and corn diseases identification respectively. Ferentinos [14] 

use five CNN architecture to detect plant disease. Table 1 

summarizes various research work using PlantVillage dataset. 

 

Table 1. Some of the proposed works by the authors. 

 
Name Year Proposed Work Result  

Nandhini and 

Ashokkumar 

[1] 

2022 DenseNet-121  

Shadin et al. 

[2] 
2021 CNN and InceptionV3  

Khan et al. [3]  2021 SqueezeNet  

Bharathi and 

Sonai [4] 
2022 

variationalautoencoder 

combined with CNN 
98% 

Khamparia et 

al. [5] 
2020 CNN+Autoencoder [15]  97.5 % 

Sanga et al. [6] 2020 ResNet-152 99.2% 

Chohan et al. 

[7] 
2020 VGG-19 98% 

Mohameth et 

al. [8] 
2020 

Combination of SVM and 

ResNet-50. 
98% 

Tiwari et al. 

[9] 
2020 

Combination of Logistic 

Regression and VGG-19. 
97.8% 

Pardede et al. 

[13] 
2018 

Convolutional Autoencoder 

(CAE) combined with 

SVM 

87.01% 

 

Most of these works mentioned above had a high training 

time. That’s why we are motivated to strive towards building 

a model that can reduce the training time and detect crop 

disease with a good classification accuracy as much as 

possible. 

The significant advantage of ALS-NN is training time 

reduction and the number of training parameters is also 

reduced. 

 

 

3. DATA PROCESSING 

 

The first task of this step is loading data from the 

PlantVillage dataset, we collected images of ten crop diseases 

which are mostly affected diseases in Morocco. These are 

Potato Early blight, Late blight, Tomato Target Spot, Tomato 

mosaic virus, Tomato Yellow Leaf Curl Virus, Tomato 

Bacterial spot, Tomato Early blight. Examples of our dataset 

are displayed in Table 2 with disease name. The PlantVillage 

comprises a total of 54,303 images of leaves, which are further 

categorized into 38 different groups based on factors like the 
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plant species and the presence of diseases. The dataset is 

usually organized into subfolders or directories, with each 

subfolder representing a specific plant disease or plant type. 

Within each subfolder, you will find images of plants 

belonging to that category. For example, there might be 

subfolders named "Tomato_Healthy," 

"Tomato_Early_Blight," "Potato_Late_Blight," and so on. 

Here's a simplified example of how the dataset might be 

structured: 

 

PlantVillage_Dataset/ 

    Tomato_Healthy/ 

        image1.jpg 

        image2.jpg 

        ... 

    Tomato_Early_Blight/ 

        image1.jpg 

        image2.jpg 

        ... 

    Potato_Late_Blight/ 

        image1.jpg 

        image2.jpg 

        ... 

    ... 

The dimension of each image is 256*256 and all images are 

typically stored in common image formats, such as JPEG or 

PNG. 

To speed up our model and achieve a good accuracy we 

must process data. The first step in data processing is image 

cropping without reducing images quality. Second step is 

image resizing to have the desired size of our model which is 

60x60 pixel. We also used some data augmentation techniques 

like random flipping and horizontal and vertical translation. 

After that we normalize the data to speed up the rate of 

convergence and for similarity distribution of data. Figure 1 

illustrates the steps of data processing. 

 

Table 2. PlantVillage dataset samples. 

 
Infected 

Images 
Disease Name 

 

Tomato Early blight 

 

Potato Late blight 

 

Pepperbell Bacterial spot 

 

Tomato Bacterial spot 

 

Potato Early blight 

 

Tomato Yellow Leaf 

 
 

Figure 1. 4 Steps to process data 

 

Figure 2 illustrates some data examples after cropping and 

resizing images: 

 

 
 

Figure 2. Leaf images after cropping and resizing operation 

 

 

4. PROPOSED MODEL 

 

We will discuss in this section the techniques used to design 

our novel model. Section 4.1 offers a fundamental concept of 

the Autoencoder and Neural Network. In section 4.2 we 

detailed our hybrid system. Section 4.3 provides the 

experimental setup to implement our novel system. 

 

4.1 Algorithms used 

 

This part outlines Vanilla Autoencoder and Deep Neural 

Network architecture. 

 

4.1.1 Autoencoder 

Autoencoder is a deep learning algorithm used on feature 

selection and extraction, based on unsupervised learning, and 

uses backpropagation algorithms to learn the weight 

parameters of the network. The output and input vectors have 

the same dimensionality because the network reconstructs its 

own inputs after training process. Figure 3 shows the pipeline 

of an autoencoder: 

 

 
 

Figure 3. Pipeline of an autoencoder 

 

Autoencoder compress data into lower representation 

named bottleneck or code and tries to reconstruct the output 

from the bottleneck. An autoencoder have three components: 

Encoder, code (or bottleneck or Latent-Space) and Decoder. 

The objective of the Encoder is to compress data into low 

dimension named code or Latent-Space (or bottleneck). 

Encoder is a Neural Network which contains many layers; the 

last layer is the bottleneck layer. We assume that we have N 

layers; The equation bellow (1) shows the operation of each 

Encoder layer:  
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(1) 

 

For the ith Encoder layer: 

Xei: is the input; Xei+1: the result; Wei: the weight; bei: the bias; 

fei: the activation function. 

In general, the Encoder can be represented by the 

mathematical function bellow: 

 

z=f(Wx+b) (2) 

 

where, Z is the latent dimension (code), f is the activation 

function, W and b are weight and bias respectively. 

The decoder reconstructs the input based on latent space. 

The input of the Decoder is the output of bottleneck layer 

(code). The Decoder can be represented by the following 

equation: 

 

 
(3) 

 

For the ith Decoder layer: 

Xdi: the input; Xdi+1: the result; Wdi: the weight; bdi: the bias; fdi: 

the activation function. 

In general, the Decoder can be represented by the 

mathematical function bellow: 

 

x’=f’(W’z+b’) (4) 

 

The difference between the reconstructed data XR and the 

original data XO is called Reconstruction Loss (RL). To 

minimize the RL, we used backpropagation algorithm to train 

the autoencoder. To compute the RL, we can use two loss 

functions which are BCE and MSE. The mathematical 

equations for these two-loss functions shown in (5) and (6): 

 

 
(5) 

 

 
(6) 

 

Vanilla autoencoder proposed by LeCun et al. [16] contain 

only one hidden layer with a number of neurons less than the 

number of neurons in the input and output layer. The hidden 

layer is considered as a bottleneck layer which restricts and 

minimizes the information that would be stored. The main goal 

of Vanilla autoencoder is to learn how to develop a 

compressed input at the Latent Space layer. Figure 4 bellow 

illustrates the architecture of Vanilla autoencoder: 

 

 
 

Figure 4. Architecture of vanilla autoencoder 

Vanilla autoencoder: 

A vanilla autoencoder, often referred to simply as an 

"autoencoder," is a kind of artificial neural network employed 

for unsupervised learning and dimensionality reduction. It's 

called "vanilla" to distinguish it from more complex variations 

like convolutional autoencoders or recurrent autoencoders. 

Here's a breakdown of the components and purpose of a 

vanilla autoencoder: 

·Encoder: is the first part of the autoencoder. Encodes data 

into a lower-dimensional representation. This lower-

dimensional representation is often referred to as the 

"encoding" or "latent space.". 

·Bottleneck Layer: The bottleneck layer, which is part of 

the encoder, is where the dimensionality reduction occurs. The 

number of neurons is fewer than the number of neurons in the 

input layer. This forces the network to capture the most 

essential features of the input data while discarding less 

important details. 

· Decoder: The decoder is the second part of the 

autoencoder. It takes the encoded data and attempts to recreate 

the original input as closely as possible. 

·Loss Function: calculates the dissimilarity between the 

reconstructed output and the original input. The autoencoder 

is trained to minimize this loss. 

The primary purpose of a vanilla autoencoder is 

dimensionality reduction and feature learning. By training the 

network to compress and then reconstruct the data, it learns to 

capture crucial features in the data. This can be useful in 

various applications, such as: 

· Data Compression: Autoencoders can be used to 

compress data, reducing storage or transmission requirements. 

· Anomaly Detection: When the reconstructed output 

significantly deviates from the input, it can indicate anomalies 

or outliers in the data. 

·Feature Learning: Autoencoders extract features from 

data, which can be useful in tasks like image denoising, text 

generation, and more. 

·Image and Signal Processing: Autoencoders are applied 

in image and signal denoising, inpainting, and super-

resolution tasks. 

·Preprocessing for Supervised Learning: Autoencoders 

can be employed to preprocess data for subsequent supervised 

learning tasks, improving the performance of classifiers or 

regression models. 

Overall, a vanilla autoencoder is a fundamental neural 

network architecture used for representation learning, 

dimensionality reduction, and various applications in 

unsupervised learning scenarios. 

This work deals with crop images, so we use Vanilla 

autoencoder to get the compressed data representation before 

the step of classification. This operation of data compression 

reduces the number of extracted features which can 

significantly reduce the training time of our hybrid system and 

reduces the classification time. 

 

4.1.2 Neural network 

Deep learning models are trained on large volumes of data 

involving numerous computations to perform predictions.  Its 

architecture mimics human brain structure. Deep learning 

architecture contains a computational unit called “perceptron” 

which receives signals and transfers the input to the output 

signals. The perceptron stacks many layers which are essential 

to understand the input data. The architecture of perceptron 
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mimics the structure of neurons in the brain, this architecture 

is named artificial neural networks. Each perceptron 

performed by the following steps: (1) weighted sum is 

calculated: the inputs (x1,x2….xn) are multiplied by the 

respective weight (w1,w2,…..wn) and summed at each node 

plus a bias term b (2) activation function: before sending the 

results to the next layer it convert the output into a wanted non-

linear format, the input of step 1 is passed to the activation 

function (tan hyperbolic, sigmoid…). 

Neural networks contain units which are organized into 

input, hidden and output layers as shown in Figure 5. Shallow 

networks contain one hidden layer, the nodes within each layer 

are linked to nodes in neighboring layers. The computations in 

steps 1 and 2 occur for all neurons in the neural network, we 

talk about forward propagation. The results of forward 

propagation are compared, by the output layer, to the truth 

labels and adjust the weights if they have difference between 

results (predicted values) and truth labels. This process is 

called backpropagation, and the basics of this process can be 

summarized in 5 steps: (1) the neural network tries to reduce 

an objective function. (2) the network takes the derivative of 

total error, i.e., difference between predicted values and actual. 

This derivative is named gradient of the layer. (3) based on the 

gradient obtained in step 2, the weights are updated using the 

same gradient or a factor of it (called learning rate). (4) the 

process is repeated for each layer (5) values of gradients from 

previous layer can be used in next layer to make the gradient 

computation more efficient. 

 

 
 

Figure 5. Neural network architecture 

 

Noted that after one pass forward propagation and 

backpropagation the network layer’s weight is changed. The 

Gradient minimizes the overall error, so parameters number 

are converging to a low value and this convergence is named 

gradient descent. 

Deep neural networks contain several hidden layers. Deep 

learning can be applied to various problems like classification, 

NLP, pattern recognition, predictive analysis, etc. Deep 

learning outperforms its predecessors. 

The first model of deep learning was introduced in 1943 is 

the McCulloch-Pitts [17]. Based on the neural networks, the 

first computer model was created to mimic the neocortex of 

human brain [18]. The theory of Hebbian, employed in 

biological systems, was introduced [19] after the MCP model. 

After that, Frank Rosenblatt was created the “perceptron” the 

first electronic device in 1957 [19] based on MCP neuron. 

There are two types of perceptron’s:  

·Perceptron with single layer which can only works with 

linear separation of data points (linearly separable patterns). 

·Multilayer perceptron or know as feed forward neural 

network which contain two or more layers with more 

processing power. 

In 1969, researchers indicate that neural networks couldn’t 

learn a basic XOR function [20], this phase know as AI-winter 

which AI didn’t get more interest and funding. At the end of 

AI winter, a backpropagation algorithm was introduced in 

1970 [21] by Werbos. Backpropagation learning algorithms 

uses errors for training deep learning models, this technique 

was applied to neural networks in 1980. The difference 

between DNNs (deep neural networks) and earlier generation 

of machine learning techniques is the Automated feature 

extraction. In 1980 Kunihiko proposed the “neocognitron” 

[22] a hierarchical and multilayered neural network which 

inspired the convolutional neural networks, this network has 

been used for Japanese handwritten character recognition. In 

1986, the Recurrent neural networks (RNN) were proposed. In 

1990, LeNet [23] is the earliest convolutional neural networks 

which is trained and used to identify the handwritten digits in 

MNIST data set. In 2006, Deep Belief Network (DBN) was 

proposed by Hinton [24]. DBN is a deep generative network 

composed of several layers of stochastic latent variables, DBN 

is based on reinforcement learning and contains a stacked layer 

of RBM (Restricted Boltzmann Machine). 

In contrast with shallow learning model (which contain few 

processing layers), deep learning contains deeper number of 

processing layers. Shallow architectures can’t be used for non-

linear and complex functions. 

Neural Network: 

Often referred to as an artificial neural network (ANN), 

inspired from the structure of the human brain is a 

computational system. It is used for different tasks, such as 

regression and classification of data. Neural networks (NN) 

contain neurons organized in layers (input layer, one or more 

hidden layers, output layer).  

Here's an overview of the key components and concepts 

related to NN: 

 

1. Neurons (Nodes): Each neuron receives one or more 

inputs, processes them, and produces an output. Nodes are 

arranged into layers (input, output and one or more hidden 

layers). 

2. Weights and Biases: Neurons apply weights to their 

inputs, and these weights determine the strength of the 

connections between neurons. In addition, each neuron has a 

bias term that can be adjusted to control its activation. Weight 

and bias values are learned during the training process. 

3. Activation Function: is applied to the input weighted sum 

and biases to determine the neuron output; it can influence the 

network's learning capacity and behavior. Common activation 

functions include the sigmoid, ReLU (Rectified Linear Unit), 

and tanh functions. 

4. Feedforward Propagation: In feedforward propagation, 

information travels through the network from the input to the 

output layer. In each layer, units apply the activation function 

to their inputs and pass the results to the next layer. This 

process generates predictions or outputs. 

5. Loss Function: Measures the difference between the 

predicted output and the actual target values. The goal during 

training is to minimize this loss, typically using optimization 

techniques like gradient descent. 

6. Backpropagation: updates the weights and biases in the 

network to minimize the loss. It involves calculating the loss 

gradients without modifying the model's parameters and 

adjusting those parameters in the direction that reduces the loss. 

7. Hidden Layers: Neural networks can have one or more 

hidden layers. These layers contain neurons that capture and 

transform features from the input data. Deep neural networks, 

or deep learning models, have many hidden layers and are 
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capable of learning complex patterns. 

8. Training Data: Neural networks require labeled training 

data to learn the input and output relationships. The network 

learns from this data by adjusting its weights and biases during 

training. 

9. Overfitting: Neural networks can be susceptible to 

overfitting, which signifies they might exhibit strong 

performance on the training data but poorly on unseen or new 

data. Methods like dropout, regularization, and cross-

validation are used to mitigate overfitting. 

10. Applications: Neural networks are used in image 

recognition, autonomous vehicles, and many more. Different 

network architectures and configurations are tailored to 

specific tasks. 
 

Table 3. Examples of methods using NN to detect crop disease. 
 

Author Types of NN Diseases Accuracy 

Ferentinos et al. [14]  VGG   65.59% 

Lee et al. [25]  CNN  1269 tea disease images  

Amara et al. [26]  LeNet three kinds of banana diseases 99.71% 

Wang et al. [27]  VGG16, VGG19, GoogLeNet and ResNet50 apple leaf black rot 90.4% with VGG16 

Fujita et al. [28]  four-layer CNN cucumber diseases 82.3% 

Abdulridha et al. [29]  RBF, MLP Laurel wilt (Lw) disease 98% 

Mohanty et al. [30]  AlexNet and GoogleNet  99.35% 
 

Neural networks are very popular in recent years, especially 

deep neural networks, due to their capability to learn intricate 

patterns and representations. They are at the core of many 

breakthroughs in artificial intelligence and have transformed 

industries such as healthcare, finance, and technology. 

Table 3 illustrates the contributions of authors according to 

different Neural Networks for plant disease identification. 

 

4.2 Proposed work 

 

We propose a new technique to detect crop disease 

combining Autoencoder architecture and neural network. The 

idea is to compress all images using the Encoder; the output is 

called Latent space of autoencoder (or Bottleneck) which 

contains all unique features extracted by the Encoder. The 

Latent space represents data into low dimensional in vector 

form. We then used neural network architecture for 

classification; the input of this NN is the compressed data that 

we have got by our Encoder. After training, our algorithm 

achieves 90% accuracy which is a satisfactory outcome. 

The entire tactic of crop disease classification is divided into 

three steps: after data processing, the Encoder extracts features, 

and we use neural network for classification. 

 

4.2.1 Autoencoder for data compression 

 

 
 

Figure 6. Autoencoder architecture 

 

Autoencoder can extract a compressed representation of an 

input. It’s used for dimensionality reduction which is an 

approach to filter just the essential features of our crop data. 

Autoencoder is an unsupervised neural network used for 

automatic feature extraction from data. The autoencoder 

architecture is illustrated in the Figure 6. 

We have three parts of autoencoder: Encoder, Latent space 

(Bottleneck) and Decoder. The encoder extracts essential 

feature from data and Decoder attempt to rebuild the original 

data based on compressed data in latent space vector. The 

output of autoencoder is the same as input with some loss. 

In this paper we use just the first part of Autoencoder: 

Encoder and Latent space representation, the output is then 

reshaped to be inputted into neural network. Our novel 

proposed method has not been introduced in any previous 

research study. 

The experiment demonstrates that Neural Network is the 

most effective classifier compared with other algorithms like 

CNN [31]. 

The architecture of our approach is illustrated in the Figure 

7 below: 
 

 
 

Figure 7. Overview of our proposed method 
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4.2.2 Neural network for classification 

The Encoder compress data into latent space vector that 

contains all unique features from input data, we use then the 

NN as classifier. The training steps is illustrated in Figure 8 

below: 

Figure 9 illustrates all steps of the proposed model. 

We have three steps in the process of creating our novel 

model: the first step is to process data; we crop and resize 

images with size of 62*62 pixels. Resizing images can 

significantly speed up the model training. Then Vanilla 

autoencoder is created to minimize the dimensionality of data 

from 256*256 to 32*32, so we get the compressed data. Our 

autoencoder has three layers, we have used Adam optimizer 

and MSE function. Figure 10 illustrates the architecture of 

Vanilla autoencoder. 

 

 
 

Figure 8. Training sequence of neural network classifier 

 
 

Figure 9. Flowchart to explain our novel method 

 

 
 

Figure 10. Architecture of Vanilla autoencoder 

 

Table 4. Parameters used in NN. 

 
 Neurons Input_Dimensions Weight Initializer Function 

Layer number 1 10 8 Uniform Rectified linear unit 

Layer number 2 6 - Uniform Rectified linear unit 

Layer number 3 1  Uniform sigmoid 

In this paper, we don’t use the Decoder of our autoencoder 

which try reconstructing the original. The loss function is 

mean squared error (MSE). The MSE formula is illustrated in 

Eq. (7): 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖−𝑦�̃�

𝑛

𝑖=1

)² (7) 

 

where, y is the input crop image and ỹ represent the 

reconstructed image, while n is the number of crops images. 

After the operation of dimensionality reduction made by 

Vanilla autoencoder, the result of the Bottleneck layer serves 

as the input of our Neural Network classifier. 

Table above illustrates all parameters used in a NN. 

 

4.3 PlantVillage dataset 

 

In this paper, the dataset used is PlantVillage. We trained 

our model for three types of crops: Potato, Pepper, and Tomato 

and 8 types of crop diseases. Figure 11 illustrates examples of 

PlantVillage crop images: 

We extracted crop images from 10 folders of PlantVillage 

dataset, the image size after extraction is 12080 and the 

extracted labels was: ['Pepper-bell-Bacterial-spot', 'Pepper-

bell-healthy', 'Potato-Early-blight', 'Potato-Late-blight', 
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'Potato-healthy', 'Tomato-Bacterial-spot', 'Tomato-Early-

blight', 'Tomato-Target-Spot', 'Tomato-Yellow-Leaf-Curl- 

Virus', 'Tomato_mosaic_virus']. The shape of our data is 

12080*60*60*3 and 12080*10 for labels. 80% of the data is 

used for training the model, while the remaining 20% is 

reserved for testing. Thus, we have 9664 crop images for 

training dataset and 2416 crop images for testing dataset. 

 

 
 

Figure 11. Images from PlantVillage dataset 
 

 

4.4 Platform requirement 

 

In this paper we used Jupyter Notebook, TensorFlow and 

Python version 3.8. The operating system used is windows 10 

64 bits with a graphic card NVIDIA GEFORCE GTX and a 

RAM capacity of 12 GO. We also used a Core i7 processor. 

The optimizer used for Vanilla autoencoder is Adam [32] 

and the loss function is MSE, we trained this algorithm with 

batch size of 32 and only seven epochs. We trained Neural 

network using binary cross-entropy (BCE) and Adam 

optimizer with five epochs and batch size of 32. 

The choice of the Adam optimizer algorithm for training 

neural networks is a common and popular one for several 

compelling reasons: 

1. Adaptive Learning Rates: Adam, which stands for 

"Adaptive Moment Estimation," adjusts the learning rate 

during training for each parameter individually. This 

adaptability is crucial because it helps the model converge 

faster and more reliably. It dynamically scales the learning 

rates based on the gradients of each parameter, ensuring that 

small and large updates are made appropriately. Adam utilizes 

estimations of both the first and second moments of the 

gradient to adjust the weight learning rate dynamically. For a 

random variable, the moment is calculated as follow: 

 

𝑚𝑛 = 𝐸[𝑋𝑛] (8) 

 

m: moment, X: random variable. 

 

2. Momentum and RMSprop Combination: Momentum 

helps the optimizer navigate through flat regions and 

accelerates convergence, while RMSprop helps control the 

learning rates for each parameter based on the magnitude of 

recent gradients. The combination of these two techniques 

often results in faster convergence and better optimization. 

3. Low Memory Requirements: Adam maintains 

exponentially moving averages of the gradients and squared 

gradients, which requires relatively low memory compared to 

some other optimization algorithms. This is advantageous 

when dealing with large models or when training on hardware 

with limited memory. To calculate the moments, Adam uses 

exponentially moving averages based on the gradients 

calculated from the current mini batch: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (9) 

 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔²𝑡 (10) 

 

m and v: moving averages.  

g: the gradient. 

4. Consistent Performance: While no optimizer is 

universally the best for every problem, Adam tends to provide 

consistently good performance across a variety of tasks. It has 

become a good choice in the deep learning community. 

 

 
5. RESULT AND DISCUSSION 

 

The first operation in our method is data processing, which 

we crop and resize all dataset images. Then we feed the new 

dataset in our autoencoder to compress data. After only 5 

epochs, the loss of autoencoder reached 73 10-4; Figure 12 

below shows the loss of our Encoder, while Figure 13 

illustrates an overview of compressed data. 

 

 
 

Figure 12. Training loss and validation loss for vanilla 

autoencoder 

 

The overview of the compressed images is show in Figure 

13: 

 

 
 

Figure 13. Compressed images by the encoder 

 

Visualize latent space data: 

To visualize latent space data, we can use T-SNE technique 

to project our data into autoencoder Latent space. Figure 14 

below shows the projection of our data into Latent space of 

autoencoder: 
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Figure 14. Projection of data into latent space 

 

T-SNE is a technique for dimensionality reduction 

employed in machine learning and data visualization. It's 

particularly useful for visualizing data in a lower-dimensional 

space without losing important data. 

Here's how T-SNE works: 

1. High-Dimensional Input Data: t-SNE takes as input a 

dataset with a high number of dimensions, such as data points 

with many features. 

2. Pairwise Similarities: It begins by computing pairwise 

similarities between data points. Typically, t-SNE uses the 

Gaussian distribution to measure the similarity between points, 

with closer points having higher similarities. 

3. Probabilities: These similarities are used to create 

probability distributions over pairs of points. In the high-

dimensional space, the probability is based on the similarities 

computed in step 2. 

4. Minimizing Divergences: The T-SNE objective is to find 

a mapping that minimizes the divergence between these two 

probability distributions. This is achieved, in low-dimensional 

space, using an optimization process that adjusts the positions 

of the points. 

5. Gradient Descent: is used in the low-dimensional space 

to minimize the divergence between the two probability 

distributions by adjusting the positions of the points.  

6. Preservation of Structure: The optimization process 

continues until the low-dimensional representation aligns well 

with the high-dimensional data, saving the relationships and 

the structure of data. 

One key characteristic of t-SNE is that it tends to group 

similar data points closely together in the low-dimensional 

space, which makes it excellent for visualizing clusters or 

patterns in the data. However, it's important to note that t-SNE 

is not suitable for dimensionality reduction for other machine 

learning tasks; it's primarily used for visualization. 

Figure 15 below depicts the application of T-SNE on the 

MNIST dataset. The MNIST dataset is known for containing 

images of handwritten digits, making it a popular choice for 

tasks such as digit classification. T-SNE is used as a technique 

to visualize and cluster the data points within this dataset, 

providing insights into the distribution and relationships 

between different handwritten digits. Figure 15 illustrates T-

SNE on mnist dataset.  

In summary, T-SNE is a powerful tool for visualizing data 

by projecting it into a lower-dimensional area while preserving 

the underlying structure and relationships, making it a valuable 

technique for exploratory data analysis and pattern recognition. 

The second step of our method is to build neural network 

for binary classification. The Encoder output is the input of the 

neural network with three layers. After five epochs our model 

reached 90% and 89% for training and validation accuracy 

respectively. Figure 16 and Figure 17 illustrates the accuracy 

and the loss of our classifier respectively. 

 

 
 

Figure 15. Illustration of T-SNE on mnist dataset 

 

 
 

Figure 16. Training and validation accuracy 

 

 
 

Figure 17. Representation of the neural network loss 

 

 

6. COMPARISON OF OUR METHOD WITH OTHER 

ARCHITECTURE 

 

Based on training time, we will compare our method with 

state-of-the-art methods such as CNN, Resnet152, and 

VGG19. As we can see in Table 5, our proposed method 

outperforms all other method and has training time less than 

95 second unlike all compared methods.  
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Table 5. Benchmarks based on training time 

 
Methods Training Time (per second) Number of Epochs Batch Size 

Neural network model 22.014 5 30 

Autoencoder model 30.81 7 30 

The proposed method 52.824 - 30 

CNN [33]  159.14 7 30 

Resnet-152 [34]  1281 (21 minutes20 seconds) 7 30 

VGG-19 [35]  8.77 7 30 

AlexNet [36]  850 (14 minutes 10 seconds) 7 30 

GoogLeNet (Inception V1) [37]  3716.42 (61.94 minutes) 7 30 

Inception V 3 [38]  825.87 (14 minutes) 7 30 

VGG 16 [39]  913.73 (15 minutes) 7 30 

DenseNet121 [40]  791.99 (13 minutes) 7 30 

SqueezeNet [41]  152.23 7 30 

 

Table 5 illustrates the comparison of training time between 

state-of-the-art methods and the proposed work (batch size= 

30, epochs = 7). 

As we can see in Table 5above, the proposed method ALS-

NN (Autoencoder Latent Space – Neural network) identifies 

crop disease in less time than other works, after only 22.014 

second the classifier neural network (NN) can identify 

accurately crop disease after 5 epochs only while CNN and 

ResNet-152 exceeds 100 seconds. So, our novel method 

outperforms other works, and it is less time consuming. 

The accuracy comparison is illustrated in Table 6. As 

illustrated, our proposed technique outperforms all these 

algorithms after only 5 epochs (batch size = 30, epochs = 7). 

 

Table 6. Accuracy benchmark 

 
Methods Accuracy Loss 

The proposed model 0.90 0.3252 

Resnet-152  0.89 0.32 

AlexNet 0.90 0.0000e+00 

GoogleNet (Inception V1)  0.90 Nan 

Inception V 3 0.895 0.2988 

VGG 16  0.9651 0.0890 

DenseNet121 0.90 0.0000e+00 

SqueezeNet  0.2078 2.13 

CNN  0.87 0.2838 

VGG-19  0.10 0.0000e+00 

 

As illustrated in Table 6, the proposed method achieved 90% 

testing accuracy which is more than Resnet-152, VGG and 

CNN (with three layers). The validation accuracy of ALS-NN 

method is 90% which is a good accuracy compared with other 

techniques like VGG19 with validation accuracy 10%, and 

ResNet-152 with validation accuracy 90%, and CNN with 

validation accuracy 86% but after 7 epochs. 

On the other hand, ALS-NN is trained using less parameters 

compared with VGG, Resnet159 and CNN networks. Table 7 

below shows a comparative study of our methods and other 

techniques based on a number of trainable parameters. 

As illustrated in Table 7, our method is trained with less 

parameters compared with VGG, Resnet-152 and CNN with 

less than 90 000 parameters for Vanilla autoencoder and only 

163 parameters for NN classifier. To reach the same accuracy 

as our method, Resnet-152 needs more than 8 million trained 

parameters, so the proposed system outperformed the state-of-

the-art systems based on trained parameters. 

Significance of Results: 

Our proposed model can be used in the agriculture area to 

speed up the process of crop disease identification which can 

increase crop yield by identifying and addressing crop disease 

promptly. So, farmers maintain healthier crops leading to 

increased yield. This is vital for food production to address the 

needs of an expanding global population. Our model can 

enable precise and targeted treatment by identifying diseases 

timely which can significantly reduce the need for chemical 

pesticides and fungicides, leading to cost savings for farmers 

and decreased environmental impact. 

The use of ALS-NN can improve resource management 

with accurate disease identification, so farmers can allocate 

resources more efficiently. They can focus on the areas of their 

fields that need attention, saving time and resources. By 

reducing crop losses and optimizing resource use, our model 

ALS-NN can lead to cost savings for farmers. This is 

especially crucial for small-scale farmers and those in 

developing regions like Morocco. Our model is a good tool for 

farmers to tackle disease outbreaks effectively, maximize crop 

yields, and contribute to global food security. 

 

Table 7. Benchmark based on number of trainable parameters between ALS-NN and other works 

 

Method 
Number of Trainable 

Parameters 
Testing Accuracy Validation Accuracy 

CNN  2,685,898 87% 86% 

ALS-NN 

(our method) 

Autoencoder: 87,139 

NN classifier: 163 
90% 90% 

VGG 19  263,169 10.01% 10% 

Resnet-152  8,203,010 89.99% 90% 

AlexNet  28,846,051 90% 90% 

GoogLeNet (Inception V1)   90% 90% 

Inception V 3 40,644,769 89.5% 90% 

VGG 16  14,714,688 96 .51% - 

DenseNet121 6,954,881 90% 90% 

SqueezeNet  727,632 20.78% 21.98% 
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7. IOT FOR SMART AGRICULTURE 

 

The Internet of things plays a significant role in smart 

agriculture; IoT sensors can provide more information about 

crops which can positively affect crop production by 

monitoring environmental factors.  Using IoT we can expect 

an increase of production with low cost by monitoring 

temperature, humidity, fertilizer, and soil efficiency. 

Certainly, IoT has played a crucial role in smart agriculture, 

enabling farmers to monitor and manage their operations more 

efficiently. Here are some specific examples of how IoT has 

been used in agriculture and the impact it has had: 

1. Precision Agriculture: IoT sensors are used for data 

collection (temperature or soil moisture…). This data helps 

farmers to take precise decisions about irrigation and 

fertilization. 

2. Weather and Environmental Monitoring: Collect data like 

precipitation, humidity, and temperature. This information is 

vital for optimizing planting, irrigation management, and 

mitigating weather-related risks. 

3. Crop Health Monitoring: using drones with cameras and 

IoT sensors. The data and captured images are analyzed to 

identify signs of disease. 

4. Automated Irrigation: the system of irrigation is 

controlled based on IoT. This prevents over-irrigation, 

conserves water, and reduces energy costs. 

5. Supply Chain Management: IoT helps in tracking the 

movement of crops and produce from farm to market. Sensors 

on storage containers monitor temperature and humidity to 

ensure perishable goods safety. 

6. Livestock Feed Management: Smart feeders use IoT 

technology to dispense the right amount of feed for animals, 

reducing waste and ensuring optimal nutrition. 

7. Farm Equipment Maintenance: IoT sensors on tractors 

and other farming machinery monitor performance and send 

alerts when maintenance is needed. This proactive approach 

reduces downtime and improves operational efficiency. 

8. Labor Efficiency: IoT can help with labor management 

by tracking worker activity and optimizing work schedules 

and assignments. 

 

The impact of IoT in agriculture has been substantial: 

·Increased Productivity: IoT enables data-driven decision-

making, resulting in higher crop yields, healthier livestock, 

and more efficient resource use. 

·Resource Conservation: IoT helps reduce water and 

energy consumption by optimizing irrigation, reducing 

wastage, and promoting sustainable practices. 

·Cost Reduction: By improving efficiency, IoT lowers 

operational costs, making farming more profitable. 

·Sustainability: IoT supports sustainable agriculture by 

minimizing the environmental impact of farming practices. 

·Improved Quality and Safety of agricultural products. 

·Risk Mitigation: Early disease detection and weather 

monitoring allow farmers to take proactive measures, reducing 

crop and livestock losses. 

In summary, IoT has revolutionized agriculture by giving 

farmers real-time information and control over various aspects 

of their operations. The impact is evident in increased 

productivity, resource efficiency, cost reduction, and overall 

sustainability. 

In this paper we can monitor temperature and humidity in 

agriculture field through sensors using Raspberry Pi 3 model 

B+. The camera is connected to Raspberry Pi to capture crop 

images and use our proposed algorithm ALS-NN to identify 

crop diseases. 

 

7.1 Concept of IoT 

 

Internet of things (IoT) describes a system where the world 

is connected to Internet using several sensors. IoT is a vision 

where all objects (vehicles, furniture, roads, etc..) are 

controllable, locatable, and recognizable via the Internet. 

Using IoT can improve accuracy, efficiency and economic 

benefit and reduce human intervention [42]. 

 

7.1.1 Raspberry Pi 

The Raspberry Pi is a compact single-board computer used 

for small networking operations and computing. It’s one of the 

important elements in the field of IoT. Using the Internet, 

Raspberry Pi can connect remote location controlling devices 

with automation system. In this paper we used Raspberry Pi 

version 3 B+, it has quad-core has quad-core ARM Cortex-

A53 CPU of 900 MHz, and 1GB LPDDR2 SDRAM. It has 4 

usb ports, Ethernet port, HDMI port, video camera interface, 

display interface DCI, and SD card slot. Here are some reasons 

why the Raspberry Pi 3 Model B+ might be chosen over other 

options: 

·Performance: It offers a significant boost in performance 

compared to its predecessors. 

·Built-in Wireless Connectivity: The Model B+ comes 

with built-in dual-band Wi-Fi (2.4GHz and 5GHz) and 

Bluetooth 4.2. This integrated wireless connectivity simplifies 

connectivity and communication, which is important for many 

IoT and networked projects. 

·Availability and Community Support: The Raspberry Pi 

3 Model B+ benefits from a large and active user community, 

ensuring easy access to tutorials, documentation, and 

community support. The availability of resources and 

expertise is a major advantage for both beginners and 

experienced users. 

·Cost-Efficiency: Raspberry Pi boards are known for their 

cost-effectiveness. The Model B+ offers a good balance of 

performance and features for its price, making it an attractive 

choice for projects with budget constraints. 

·Compatibility: The Model B+ maintains compatibility 

with many of the existing Raspberry Pi accessories, including 

cases, power supplies, and HATs (Hardware Attached on Top). 

This can save time and money when transitioning from a 

previous Raspberry Pi model. 

·GPIO Pins: It comes with a 40-pin GPIO header, which 

is important for hardware and DIY projects that require 

interfacing with sensors, motors, and other external 

components. 

· Energy Efficiency: It is relatively energy-efficient, 

consuming only a modest amount of power. This can be 

important for projects where power consumption is a 

consideration. 

·Operating System Support: The Model B+ enjoys wide 

operating system support, including various flavors of Linux 

and even Windows 10 IoT Core, making it versatile and 

compatible with a variety of software applications. 

 

7.1.2 Temperature sensor 

DS18B20 temperature sensor is used to measure 

temperature. Waterproof probe based on a DS18B20 allowing 
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temperature measurement from -55 to +125°C. It is connected 

to a microcontroller via digital input. 

 

7.1.3 Humidity sensor 

This sensor measures the water content in soil and transfers 

it to Raspberry Pi (our microcontroller) to act of switching 

water pump on/off. 

 

7.1.4 Power supply 

Raspberry Pi 12.5W Micro USB Power Supply with 5.1V / 

2.5A DC output. 

 

7.1.5 Camera Raspberry Pi 

A 5MP (5 Megapixels) camera for Raspberry Pi. Easy to 

install, an ideal solution for designing a Webcam, IP Camera, 

or CCTV Camera from the Raspberry Pi. It has a number of 

pixels 2592*1944 with sensor size of 3.67*2.74 mm. 

Temperature, humidity, and camera sensors are commonly 

chosen for agricultural monitoring systems because they 

provide critical data that can significantly impact crop and 

livestock management. Here's why these specific sensors are 

commonly used: 

1. Temperature Sensors: 

· Crop Health: Temperature affects plant growth and 

development. Monitoring temperature helps farmers assess the 

suitability of their environment for specific crops. Different 

crops have specific temperature requirements for optimal 

growth. 

·Frost and Freeze Protection: Monitoring temperature is 

essential to protect crops from frost and freezing temperatures. 

When temperatures drop below critical levels, automated 

systems can activate heaters or fans to safeguard crops. 

· Energy Efficiency: Temperature data allows for the 

efficient use of heating and cooling systems. This reduces 

energy consumption and lowers operational costs. 

2. Humidity Sensors: 

· Irrigation Management: Humidity levels are closely 

related to the need for irrigation. Monitoring humidity helps in 

determining when and how much to irrigate. It prevents over- 

or under-watering, promoting healthy crop growth. 

· Disease Prevention: Certain plant diseases thrive in 

humid conditions. Monitoring humidity can help in disease 

prediction and management. Farmers can take preventive 

measures when humidity levels are conducive to disease 

development. 

· Storage and Preservation: In post-harvest storage, 

humidity control is crucial to prevent spoilage and maintain 

the quality of agricultural products. Sensors help maintain the 

optimal storage environment. 

3. Camera Sensors: 

·Crop Health Assessment: Cameras capture images of 

crops, allowing for visual assessment of their health and 

growth. ALS-NN models can be used to analyze images for 

crop disease identification. 

· Pest and Weed Detection: Cameras can detect the 

presence of pests and weeds, enabling farmers to take timely 

action. This reduces the need for chemical treatments and 

minimizes crop damage. 

·Quality Control: Cameras in packing and processing 

facilities help in quality control by ensuring that agricultural 

products meet the desired standards. They can detect defects 

and sort produce accordingly. 

·Research and Data Collection: Images collected from 

cameras can be valuable for research and historical data 

analysis. They provide a visual record of the development and 

health of crops over time. 

These sensors are chosen to produce real-time information 

that is critical for decision-making in agriculture. By 

monitoring temperature, humidity, and using cameras for 

visual data, farmers can improve crop management, minimize 

risks, and optimize resource usage. These sensors are integral 

to the shift towards data-driven precision agriculture, where 

decisions are made based on accurate and timely information, 

ultimately leading to better yields and sustainability in farming. 

 

7.2 Proposed system model 

 

To monitor crop healthiness, we used an intelligent system 

with various sensors which can collect information from the 

fields accurately. The camera connected to Raspberry Pi takes 

pictures of crops and sends them to our proposed system ALS-

NN to identify crop disease. 

Figure 18 below illustrate how we can identify crop disease 

with camera of Raspberry Pi and our system: 

 

 
 

Figure 18. Using camera Raspberry Pi and our proposed 

method to identify crop disease 

 

The Raspberry Pi microcontroller is the core component of 

this system. It controls the working of each device connected 

to it. The important device connected to Raspberry Pi is 

camera with 5 Megapixels: 

(1) A camera is fitted which will capture pictures of the crop. 

(2) This image is sent to our system to be analyzed. 

(3) After image processing, we used our proposed algorithm 

ALS-NN to identify crop disease. 

 

 
 

Figure 19. Blog diagram for smart agriculture 
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Figure 19 illustrates the block diagram of proposed system 

model. 

 

 

8. CONCLUSIONS 

 

Crop disease identification is a challenging task, much 

research used deep learning and neural network to identify 

crop diseases. However, the downside of these methods is that 

they are time consuming and trained with millions of 

parameters which need performed computer. To address these 

issues, the proposed method ALS-NN used two networks, the 

first network is Vanilla autoencoder and Neural Network (NN). 

The first network compress data using the Encoder and feeds 

this output to the second network for classification. The 

autoencoder reduces extracted features number, without losing 

the important features, which also reduces the training time of 

our system which is the main contribution of this paper. The 

ALS-NN model works by compressing the data to utilize only 

the most critical information during the classification process. 

Vanilla Autoencoder is used for data compression by using the 

Encoder which is the first half of Autoencoder. The encoder 

takes high dimensional input data and transforms it into lower-

dimensional representation without losing the important 

information. The encoder ultimately compresses data, and the 

result is called bottleneck, which represents a compact and 

informative representation of the original data. The 

compressed data is classified using neural network. This 

compression significantly speeds up the model and reduces the 

parameters number which outperform the state-of-the-art 

model. By combining Autoencoder and Neural Network [43] 

technologies effectively, we achieve a fast model with fewer 

parameters. As a result, disease detection operations are much 

quicker, which helps mitigate the negative impact of these 

plant diseases on crop yields. 

Our system attained a testing accuracy of 90% and a 

validation accuracy of 90%. This system uses a few numbers 

of trained parameters (163 for Neural Network, 87139 for 

autoencoder). The implementation of the ALS-NN model can 

enhance resource management through precise disease 

identification. This allows farmers to allocate their resources 

more efficiently, as they can concentrate their efforts on the 

specific field’s areas. This not only saves time but also 

conserves valuable resources, resulting in more effective and 

sustainable farming practices. 
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