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Plant diseases significantly reduce the yield and the production of crops across the globe. 

Crop productivity, plant development and human access to food have all been hampered by 

the prevalence of plant diseases throughout the history. In general, leaves exhibit symptoms 

if the plant is affected by diseases. Therefore, it is essential to identify the type of infestation 

to reduce the destructiveness of the disease. This scenario allows one to replicate the spread 

of infectious diseases and the inability of farmers to recognize and remember them. One 

possible approach to tackle this issue is to utilise Deep Learning (DL) techniques in 

conjunction with Machine Learning (ML) approaches within the domain of Computer 

Vision (CV). The current research has introduced the APLDD-ESOSDL approach, which 

utilises deep learning to optimise the search for symbiotic organisms in order to automate 

the detection of plant leaf diseases. The objective of the proposed APLDD-ESOSDL 

approach is to enhance agricultural yields and reduce crop losses by offering farmers a 

visual depiction of disease symptoms. The goal of the APLDD-ESOSDL approach is to 

accurately classify the presence of leaf diseases. The APLDD-ESOSDL technique utilises 

the inception ResNet-v2 model as a feature extractor and the Stacked Long Short-Term 

Memory (SLSTM) model for classification. In addition, the hyperparameters of the SLSTM 

algorithm are adjusted using the Enhanced Symbiotic Organism Search (ESOS) approach. 

A comprehensive experiment was carried out utilising the reference data set to verify the 

effectiveness of the APLDD-ESOSDL approach. The APLDD-ESOSDL algorithm 

outperformed more advanced systems, achieving a maximum accuracy of 99.22%, 

precision of 98.52%, sensitivity of 98.06%, and specificity of 99.54% in experimental 

experiments employing six distinct cutting-edge approaches. 
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1. INTRODUCTION

Plant diseases adversely affect the agricultural productivity. 

Food insecurity may increase, if the plant diseases are not 

diagnosed promptly [1]. Earlier identification is vital for 

effective control and prevention of the plant diseases and they 

serve a crucial role in managing the agricultural productivity 

as well [2]. At present, plant disease detection remains a huge 

concern. Precise and prompt analysis of the plant diseases is 

critical for correct and sustainable agricultural production [3]. 

Certain plant diseases have invisible indications; in such cases, 

the advanced analyses techniques are used. However, most 

plant diseases start showing symptoms whereas skilled plant 

pathologists can sense the conditions and detect the disease by 

examining the affected plant leaves visually [4]. A pathologist 

should have good observation skills to find the characteristic 

symptoms in an accurate manner. However, the variations in 

the context of plant disease due to climatic changes, a large 

variety of plants and the faster spread of disease lead even 

skilled pathologists to misdiagnose some conditions [5].  

In this background, the exploitation of intelligent and expert 

systems to automatically detect the plant disease precisely 

offers valuable contributions to agriculturists [6]. In addition, 

when these systems are presented as simple mobile apps, 

which non-expert farmers can easily use, it would be a great 

achievement and it helps the farmers to make decisions 

effectively. The recent developments in Artificial Intelligence 

(AI) technology have made a huge contribution to the 

advancement of automatic systems that can give precise and 

faster outcomes in disease diagnosis [7]. Recently, in the study 

of plant disease detection, Deep Learning (DL) technology has 

been further developed [8]. DL has expressed original image 

characteristics that contain numerous end-to-end features. 

Such characteristics make the DL technology obtain more 

attention in plant disease detection domain [9]. CNN, a type of 

DL method, is the preferable approach in disease detectio 

processes. It is well known for its potential in image 

processing and classification applications [10]. DL methods 

were first introduced in plant image detection based on leaf 

vein patterns. 

1.1 Objective 

The main goal behind early detection of plant diseases is to 
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control it as it reduces the crop yields. Plant diseases have 

historically reduced the crop yields and endangered the food 

supply process. The aim of this research work is to develop a 

dynamic system that can accurately diagnose and classify the 

plant leaf diseases based on the symptoms observed in leaf 

pictures. This sort of identification is required for early illness 

detection and mitigation. The aim of the APLDD-ESOSDL is 

to classify the leaf diseases from plant pictures in an accurate 

manner. This classification is essential for decision-making in 

agriculture. The APLDD-ESOSDL method extracts the 

features using the Inception ResNet-v2 model. In general, 

image-based disease diagnosis requires feature extraction. The 

research uses Stacked Long Short-Term Memory (SLSTM) 

for disease classification. Sequential data analysis is SLSTM's 

forte. To improve the performance, the SLSTM’s 

hyperparameters are fine-tuned utilising the Enhanced 

Symbiotic Organism Search (ESOS). The study compares the 

performance of the APLDD-ESOSDL algorithm against the 

existing state-of-the-art systems to prove the former’s 

superiority. The method improves disease diagnosis accuracy 

and effectiveness. 

 

 

2. RELATED WORKS 

 

Reddy et al. [11] proposed a new PDICNet method for 

identifying and diagnosing illnesses in plant leaves. The study 

employed the Modified Red Deer Optimizer Algorithm 

(MRDOA) as the optimal method for feature selection. The 

objective was to get conspicuous and ideal characteristics 

while decreasing the size of MRDOA. Furthermore, a DLCNN 

classifier method was utilised to enhance the accuracy of the 

classification. Abd Algani et al. [12] proposed a new deep 

learning method called Ant Colony Optimisation with 

Convolutional Neural Networks (ACO-CNN) to categorise 

and diagnose illnesses. This study evaluated the effectiveness 

of employing Ant Colony Optimisation (ACO) for the 

detection of illnesses in plant leaves. The CNN approach 

utilises many techniques to extract multiple pieces of 

information, such as the organisation of plant leaves, the 

geometric properties of texture, and the colour composition, 

from the provided photographs. 

Shah et al. [13] developed a structure called Residual 

Teacher/Student (ResTS), which was utilised as a 

classification and visualisation method for diagnosing the 

plant diseases. ResTS is developed on the basis of CNN 

infrastructure with two classifiers (ResStudent and 

ResTeacher) and decoders. This structure trained both the 

classifiers from reciprocal mode and conveyed the 

representation between ResStudent and ResTeacher, in which 

the latter was utilised as a proxy. Hameed Al-bayati and 

Üstündağ [14] devised a Plant Disease Detection System 

(PDDS) structure using Deep Neural Network (DNN) that 

could diagnose apple plant leaf disease. For this study, 

Grasshopper Optimization Algorithm (GOA) was utilized for 

feature optimisation while Speeded Up Robust Feature (SURF) 

was used for the purpose of feature extraction. The 

classification parameters like Error, Precision, F-measure, 

Recall, and precision were determined and a comparative 

analysis was conducted to exhibit the effectiveness of the 

presented model. Albattah et al. [15] proposed a Custom 

CenterNet framework with DenseNet77 as a robust plant 

disease classification mechanism base network. As a primary 

step, the annotations were presented to acquire the RoI. In the 

secondary step, an improved CenterNet was projected while 

DenseNet77 was developed for abstracting deep vital points. 

In order to find and classify the plant diseases, the 1-stage 

detector CenterNet was adopted in this study. 

Alirezazadeh et al. [16] modelled the CBAM 

(Convolutional Block Attention Module) for enhancing the 

classification outcomes with CNN, a lightweight attention 

module embedded as some CNN structure with negligible 

overhead. Some of the renowned CNN methods (i.e., 

ResNet50, EfficientNetB0, VGG19, MobileNetV2, and 

InceptionV3) were implemented for executing the TL for 

classifying plant diseases and then fine-tuning using the plant 

disease database. In literature [17], a DCNN method was 

developed for image-related plant leaf disease detection 

utilising hyperparameter optimization and data augmentation 

techniques.  

Chakraborty et al. [18] presented an approach for 

performing multilayer picture thresholding by employing the 

Symbiotic Organisms Search (SOS) algorithm. The SOS 

algorithm demonstrated a superior performance than the four 

contemporary meta-heuristic algorithms. The SOS algorithm 

effectively achieved an optimal balance between intensity and 

diversification. This study introduced a novel approach for 

doing multilevel image thresholding. The concept of 

symbiotic relationships among the organisms was employed 

to enhance the objective functions. Chakraborty et al. [19] 

introduced a new optimisation technique called Chaotic 

Symbiotic Organisms Search (CSOS) for multilevel picture 

segmentation. The aim of the proposed method was to enhance 

the performance of the traditional Symbiotic Organisms 

Search (SOS) algorithm in image processing [20]. The 

effectiveness of the CSOS algorithm was demonstrated in 

combination with Masi's entropy. The CSOS method had a 

broad range of flexibility, particularly in high-dimensional 

optimization problems.  

 

2.1 Limitations 

 

The reference dataset studies exhibited the accuracy, 

precision, sensitivity, and specificity of the proposed method. 

However, real-world illumination, leaf changes, and ambient 

circumstances may cause the proposed model to malfunction. 

Inception ResNet-v2 and SLSTM models get affected by 

quality and quantity of the training data. If the training dataset 

does not represent all types of scenarios, the algorithm may 

struggle to identify the plant diseases in diverse species and 

conditions. Plant diseases tend to exhibit different types of 

symptoms. This approach may misdiagnose rare or early 

diseases. The training dataset may be imbalanced, when some 

disease classes have only a few examples. The model may 

classify the underrepresented diseases poorly. 

 

 

3. THE PROPOSED MODEL 

 

In the current study, a novel APLDD-ESOSDL technique 

has been presented for accurate detection and classification of 

plant leaf diseases. The aim of the given technique is to 

categorize the presence of leaf diseases properly. The 

proposed technique encompasses several stages of operations. 

The SLSTMs are ideal for sequential data problems like time 

series and image sequences. Plant leaf disease diagnosis 

involves a series of changes in leaf symptoms. The SLSTMs 

can capture temporal relationships, which helps in disease 
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detection process. LSTMs and other deep learning models 

excel at image classification. The capacity to automatically 

learn and extract the features from image data can help in 

identifying tiny leaf disease changes. Traditional machine 

learning methods may struggle to capture complicated leaf 

disease patterns and linkages. As deep learning models, the 

SLSTMs can represent complex data relationships. ESOS is a 

metaheuristic optimisation technique that functions on the 

basis of natural symbioses. This technique is specialized in 

efficient exploration of the parameter spaces and the detection 

of optimal or near-optimal solutions. When used for 

hyperparameter adjustment, ESOS can improve the 

parameters of the model. Preventing overfitting in deep 

learning models requires hyperparameter adjustment. ESOS 

helps in identifying the hyperparameters that balance the 

model’s complexity with generalisation. The customization of 

ESOS towards specific optimisation aims makes it suitable for 

plant leaf disease diagnostics. For noise reduction and image 

edge preservation, bilateral filtering is an efficient option. BF 

can improve the plant leaf picture data for analysis, even with 

noise or flaws. BF enhances the essential visual elements and 

hides the unimportant ones. This can assist the model focus on 

disease-related features and reduce unnecessary image 

artefacts. Pre-processing methods like BF can improve the 

model’s performance by cleaning and informing the input data. 

These methods are chosen because they can handle sequential 

data, optimise the model’s performance, and preprocess the 

images for plant leaf disease identification. The researchers 

must provide detailed arguments in their study to confirm 

these design decisions and establish its efficacy compared to 

other methodologies. Figure 1 illustrates the workflow of the 

APLDD-ESOSDL approach. 

 

 
 

Figure 1. Workflow of the APLDD-ESOSDL approach 

 

Many task-specific factors have been studied for Inception 

ResNet-v2 model based feature extraction. This application 

benefits from unique architecture and computer vision. The 

essential reasons to use the inception ResNet-v2 model are 

listed below. 

1. Beginning deep residual link: Architecture Inception 

from GoogLeNet helps in ResNet-v2 model’s reuse 

connections. The deep hybrid model captures both low- as 

well as high-level traits. This depth is needed to extract the 

correct patterns and structures from complex multi-scale 

medical images. 

2. Multi-scale feature extraction: Inception ResNet-v2 

model have varied convolutional filter sizes. The multi-scale 

approach accounts for medical imaging variability by 

collecting the characteristics at multiple granularities. The 

model should have adaptability since it should work with 

healthcare data images of various resolutions, orientations, and 

textures.  

3. Inception in computer vision: ResNet-v2 governs the 

classification process. Classification, object recognition, and 

segmentation are handled for varied image datasets. The 

proposed model extracts task-relevant information and 

executes differentiation. 

4. Transfer learning inception: Transfers the learning 

outcomes from the ImagesNet ResNet-v2. The training data 

and representations are used with pre-trained models. When 

updated with the medical imaging dataset, the model responds 

quickly and saves data from processing. 

5. Inception: efficiency and scalability: Model complexity 

and computational efficiency are balanced by ResNet-v2 

model while the computationally-light healthcare software 

benefits from the deep design of the model. Scalability lets us 

to add features or alter the models. 

 

3.1 Image pre-processing 

 

To improve the quality of plant leaf disease images, 

Bilateral Filtering (BF) technique is used. BF is a noise 

removal technique inspired by Gaussian filtering (GF) 

technique [19]. But, by effectually preserving the denoising 

ability of GF, it efficiently reduces the additive noise without 

ending the specifics and edges of the images. The edge data of 

the images are maintained though the impulse noise cannot be 

separated. 

 

3.2 Feature extraction process 

 

For effectual extraction of the features, the Inception 

ResNet-v2 model is used. Transfer Learning (TL) is a branch 

of ML that proposes data transmission in a source model for 

objective function by utilising the correlations in parts, models, 

or outcomes [20]. For the TL model, the Inception‐Resnet‐V2 

structure with pre-training weighted is utilised. The network 

model can learn rich element representations for different 

images. Different sizes of convolution filters and residual 

networks can be combined in the Inception‐Resnet block. The 

stimulus to choose this structure was based on the 

experimental outcomes and comparison study with other DL 

approaches. As the model is considered to be used in edge 

platform, other resource‐extensive, bulky methods cannot be 

selected.  

The residual networks offer model shortcuts, thus 

permitting this structure to achieve even more superior 

outcomes. It is a hybrid of residual and inception blocks, 

which enhances the efficiency. In order to improve the 

efficiency of the trained model, the Inception accomplishes 

optimum utilisation of the computational resources and 

removes further features with similar computation counts. The 

resultant of the previous layer is integrated with the network 

after which the computation of the 5×5 convolutional kernel 

gets large. The 1×1 convolutional is utilised in the Inception 

element for two reasons: the primary reason is to overlap more 

convolutions on receptive domains of similar scale to derive 
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rich features in the constellation diagram. The second reason 

is to reduce the computational cost and measurement. The 1×1 

convolutional layer of the network that derives before 3×3 and 

5×5 convolutional layers is utilized for reducing the 

dimensionality issues. This method is determined to strike a 

right balance between overfitting and underfitting. The dense 

layers utilize the ReLU activation function, which is 

mathematically determined utilizing the subsequent formula: 

 

𝑅(𝑧) = max(0, 𝑍) (1) 

 

The FC layer is exchanged with global average pooling 

layer excluding the inception model’s elements. It is complete 

to reduce the variable counts. Batch Normalization (BN) also 

forms a part of the network procedure. The BN layer creates 

the entire mini‐batch constellation maps that are similar to it 

moving forward to NN layer, thus avoiding the gradients from 

disappearing problem. 

It is a group of constellations that assists the trained ground 

to provide some of the constellation. The BP technique also 

computes the Jacobians. These are easily partial derivations of 

norms for the variables 𝑎 and 𝜒. 
 

𝜎𝑁𝑜𝑟𝑚(𝑎, 𝜒)

𝜕𝑎
 𝑎𝑛𝑑 

𝜎𝑁𝑜𝑟𝑚(𝑎, 𝜒)

𝜕𝜒
 (2) 

 

In this network, Adam optimization algorithm is utilized for 

maximizing the network parameter and minimizing the loss. 

This model is highly effective if the functioning of the model 

has huge issues with several data or parameters. It is effectual 

and needs minimal memory. 

 

𝜃𝑥: = 𝜃𝑥−1 − 𝛼 ⋅
�̂�𝑥

√𝜈𝑥 + ℰ
 (3) 

 

At this point, 𝛼 ∈ 𝑅 and 𝜃,  �̂�𝑡 , �̂�𝑡 , 𝑒 ∈ 𝑅𝑛 for some 𝑛. 
To this day, dropout's regularisation feature is useful for 

avoiding overfitting issues. In the majority of instances, the 

dropout may be seen as a sign that a neuron of NN is disabled 

during training with a certain probability p. The following 

formula demonstrates the following method for calculating the 

dropout for the probability 𝑝𝑖(1 ≤ 𝑖 ≤ 𝑡).  

 

𝐸𝑅 =
1

2
(𝑥 − ∑ 𝑝𝑖

𝑡

𝑖=1

𝑤𝑖𝐼𝑖)

2

+ ∑ 𝑝𝑖

𝑡

𝑖=1

(1 − 𝑝𝑖)𝑤𝑖
2𝐼𝑖

2𝑎 (4) 

 

3.3 Plant leaf disease classification model 

 

In order to accurately identify and categorise diseases 

affecting plant leaf tissue, the SLSTM model is employed. The 

SLSTM model is an LSTM stack, which consists of many 

stacked layers. Hence, the subsequent layer takes its input 

from the previous layer's LSTM output [21]. The LSTM model 

makes use of three gates. Each of the three types of gates input, 

output, and forget has a single cell state. The LSTM receives 

as inputs in each time-step t the hidden state ℎ𝑡−1 and the cell 

state 𝑐𝑡−1, which were created in the time-step before t-1. The 

input 𝑡 − 1, is obtained in the following way at the current 

time t:  

 

ℎ𝑡 , 𝑐𝑡 = 𝑓𝐿𝑆𝑇𝑀(𝑢𝑡 , ℎ𝑡−1, 𝑐𝑡−1) (5) 

 

An explanation of the internal structure of the LSTM 

model's memory cells and gates is provided below.  

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑢𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) (6) 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑢𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑢𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜) (8) 

 

𝑧𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑢𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧) (9) 

 

𝑐𝑡 = 𝑖𝑡 ⊙ +𝑓𝑡 ⊙ 𝑐𝑡−1 (10) 

 

ℎ𝑡 = 0𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (11) 

 

A bias vector is represented by the letter b, the input weight 

matrix that was learnt during training by the letter W, and the 

recurrent weight matrix by the letter R in this context. 

Furthermore, the sigmoid function, denoted by the equation 

(𝑥) = 1/1 + 𝑒𝑥𝑝(𝑥), is also represented by the symbol σ. On 

top of that, it compresses the input to a range of values between 

zero and one, thanks to its squashing effect. To avoid a drastic 

rise in value over time, the hyperbolic tangent function 𝑇𝑎𝑛ℎ 

generates values between -1 and 1, thereby limiting the range 

of possible values. Finding the values of these two functions 

requires a computation that takes each component into account. 

The symbol 𝑖𝑡   represents the input gate, 𝑜𝑡   represents the 

output gate, and 𝑓𝑡 represents the forget gate. The output of the 

sigmoid function is used to calculate the linear projections. 

These projections are then added to the linear projections of 

𝑢𝑡 and ℎ𝑡−1. The forget, input, and output gates are utilised to 

modulate the cell value of the prior state 𝑐𝑡−1 , the input 

conversion 𝑧𝑡, and the component-wise multiplication output 

⊙ , respectively. By utilising a three-layer stacked LSTM 

architecture, the output of the third layer is directly fed as input 

to the second layer, while the output of the first layer serves as 

the input for the second layer. In order to obtain the concealed 

states and initial cell, we compute the mean of the collections 

of the vector p. For the first LSTM layer, they are 𝑐0
1  and ℎ0

1. 

For the second LSTM layer, they are 𝑐0
2 and ℎ0

2. Finally, for 

the third LSTM layer, they are 𝑐0
3   and ℎ0

3 . Two different 

Multi-Layer Perceptrons (MLP) are used to process these 

evaluations; they are represented as 𝑓𝑖𝑛𝑖𝑡−𝐶

𝑖  and 𝑓𝑖𝑛𝑖𝑡−ℎ
𝑖 ,  𝑖 

respectively, where 𝑖 = 1,2,3: 

 

ℎ0
𝑖 = 𝑓𝑖𝑛𝑖𝑡−ℎ

𝑖 (
1

𝐿
∑ 𝑎𝑖

𝐿

𝑖

) (12) 

 

𝑐0
𝑖 = 𝑓𝑖𝑛𝑖𝑡−𝐶

𝑖 (
1

𝐿
∑ 𝑎𝑖

𝐿

𝑖

) (13) 

 

The annotation vectors 𝑎𝑖 ,  where i ranges from 1 to L, 

represent the characteristics associated with certain sub-

regions of the picture. In addition, an initial layer of LSTM 

uses a multi-layer LSTM stack. Figure 2 depicts the structure 

of the SLSTM technology. 

 

3.4 Parameter tuning process 

 

For the optimal selection of the hyperparameters related to 

the SLSTM model, the ESOS algorithm is used. SOS creates 

a population initialization of the organisms in which all the 

organisms are created randomly in a predetermined search 
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space [22]. During the iteration or generation process, this 

algorithm exploits parasitism, mutualism, and commensalism 

to find the optimum global solution. 

 

 
 

Figure 2. Structure of SLSTM 

 

3.4.1 Mutualism phase 

The term "mutualism" is used to describe symbiotic 

partnerships where two species work together and both parties 

benefit from the association. From the population, two distinct 

organisms, 𝑋𝑖
𝑔

 and 𝑋𝑅1

𝑔
, are chosen at random. Here we have 

the tangible illustration. Two new species are born from the 

mating of the two animals, as seen below.  

 

𝑋𝑖𝑛𝑒𝑤
𝑔

= 𝑋𝑖
𝑔

+ 𝑟𝑎𝑛𝑑[0,1](𝑋𝑏𝑒𝑠𝑡
𝑔

− 𝐵𝑃1 ∗ 𝑀𝑣) (14) 

 

𝑋𝑅1𝑛𝑒𝑤
𝑔

= 𝑋𝑅1

𝑔
+ 𝑟𝑎𝑛𝑑[0,1](𝑋𝑏𝑒𝑠

𝑔
− 𝐵𝐹2 ∗ 𝑀𝑣) (15) 

 

𝑀𝑣 =
𝑋𝑖

𝑔
+ 𝑋𝑅1

𝑔

2
 (16) 

 

In this context, 𝑋𝑏𝑒𝑠𝑡
𝑔

 represents the most superior 

individual organism in the current population. The term rand 

[0,1] refers to a randomly generated value within the range of 

0 to 1. BF1 and BF2 are variables that represent the benefit 

factors of all organisms. These factors are randomly generated 

as either 1 or 2, depending on whether the benefits during the 

interaction are full or partial. Afterwards, 𝑋𝑖𝑛𝑒𝑤
𝑔

 and 𝑋𝑅1𝑛𝑒𝑤
𝑔

 

are calculated using the primary function. These values are 

then compared against 𝑋𝑖
𝑔

, and 𝑋𝑅1

𝑔
 in order to identify the 

most optimal organisms in each pair. 

 

3.4.2 Parasitism phase 

One kind of symbiotic interaction occurs when one 

organism gains an advantage over another, while the other 

organism has negative consequences. The present population 

or environment is used to randomly choose 𝑋𝑖
𝑔

 and 𝑋𝑅1

𝑔
 to start. 

Furthermore, 𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒
𝑔

 stands for an organism that is present 

in the population or environment in the form of a copy. The 

subsequent creation of a parasitic organism is the 

responsibility of 𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒
𝑔

. The host organism for the parasite 

is represented by 𝑋𝑅1

𝑔
. The 𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒

𝑔
. modifies some of its 

components at random so that it can affect the host. 

 

𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒
𝑔

= 𝐿 + 𝑟𝑎𝑛𝑑[0,1](𝑈 − 𝐿) (17) 

If 𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒
𝑔

 has a higher objective function value than the 

host organism (𝑋𝑅1

𝑔
) , then 𝑋𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒

𝑔
 can replace the host 

organism in the present environment. Algorithm 1 depicts the 

common architecture of the SOS algorithm.  

In the ESOS algorithm, the chaotic optimizer technique is 

utilized for initializing the population. The chaotic logistic 

mapping system decides the initialized population. Chaotic 

modification support the prevention of local minima by 

presenting arbitrary perturbation as the search model. This 

perturbation supports the model for exploring the searching 

space regions, which it could not be searched. Chaos is 

established as the searching procedure to make this technique 

highly possible to determine the global minima and less 

possibly to get stuck in local minima. The mathematical 

equation of the chaotic logistic mapping is as follows: 

 

𝑦(1) = 𝑟𝑎𝑛𝑑, 𝑦(𝑖 + 1) = 𝑟𝑦(𝑖)(1 − 𝑦(𝑖)) (18) 

 

where, 𝑟𝑎𝑛𝑑 denotes the random integer that lies in the range 

of 0 and 1, 𝑟 signifies the specific variable of the logistic map 

with a value of 4. Next, the population is initialized using the 

subsequent formula, assuming that (𝐿𝐵)  lower bound and 

(𝑈𝐵) upper bound of the optimizer parameter. 

 

𝑃(𝑖) = 𝑦(𝑖). (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 (19) 

 

In Eq. (19), the counter 𝑖 counts from 1 to 𝑁 and 𝑃 signifies 

the place. 

 
Algorithm 1: Pseudocode of the SOS algorithm 

START 

Specify the following parameters: population size (n), objective 

function (𝑋), limits on search variables (𝐿𝐵, 𝑈𝐵), number of 

search variables (m), and either the maximum number of 

generations 𝑔 max  or the maximum number of function 

evaluations (( 𝐹𝐸 max ) as the ending criteria. Here, 𝑓(𝑋) 

represents the objective function, and 𝑋 represents the search 

vector.  

Initiating random population, 

Compute the fitness of populations, 

𝐹𝐸 = 0, 
FOR 𝑔 = 1 to 𝑔max  DO; 

Sort the population in ascending order of 𝑓(𝑋𝑖) values,  

Find the better solution (𝑋𝑏𝑒𝑠𝑡) for the populations. 

𝐹𝑂𝑅 𝑖 = 1 𝑡𝑜 𝑛 𝐷𝑜 

𝐵𝐹1 = 1 + 𝑟𝑜𝑢𝑛𝑑 [𝑟𝑎𝑛𝑑 (0,1) ] 

𝐵𝐹2 = 1 + 𝑟𝑜𝑢𝑛𝑑 [𝑟𝑎𝑛𝑑 (0,1) ] 

𝑀𝑉 = (𝑋𝑖 + 𝑋𝑘)/2 

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(0,1) + (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑉 ∗ 𝐵𝐹1) 

𝑋𝑘
′ = 𝑋𝑘 + 𝑟𝑎𝑛𝑑(0,1) + (𝑋𝑏𝑒𝑠𝑡 − 𝑀𝑉 ∗ 𝐵𝐹2) 

𝐹𝐸 = 𝐹𝐸 + 2 

IF 𝑓(𝑋𝑖
′) < 𝑓(𝑋𝑖) THEN 

|𝑋𝑖 = 𝑋𝑖
′ 

END IF 

IF 𝑓(𝑋𝑘
′ ) < 𝑓(𝑋𝑘) THEN 

|𝑋𝑘 = 𝑋𝑘
′  

END IF 

𝑋𝑖
′ = 𝑋𝑖 + 𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑘 𝑘 ≠ 1 

𝐹𝐸 = 𝐹𝐸 + 1 

IF 𝑓(𝑋𝑖
′) < 𝑓(𝑋𝑖) THEN 

|𝑋𝑖 = 𝑋𝑖
′ 

END IF 

Choose Parasite Vector 

𝐹𝐸 = 𝐹𝐸 + 1 

IF 𝑓 (Parasite Vector) < 𝑓(𝑋𝑘) THEN 

|𝑋𝑘 =Parasite Vector 

END IF 

535



 

IF 𝐹𝐸 ≥ 𝐹𝐸 max  THEN 

| Break optimization loop 

END IF 

END FOR 

Report best solution 

END 

 

Fitness Function is a vital feature in the ESOS algorithm. 

An encoder result can be employed to assess the aptitude of 

the candidate result. At this point, accuracy is the major factor 

exploited to scheme a fitness function.  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max (𝑃) (20) 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

 

 

4. RESULTS AND DISCUSSION 

 

This section assesses the effectiveness of the APLDD-

ESOSDL system in identifying plant leaf diseases. The 

evaluation is based on the plant disease dataset obtained from 

the Kaggle repository [23]. The dataset comprises 3,503 

samples that have been categorised into four categories, as 

seen in Table 1.  

In Figure 3, the confusion matrices generated by the 

APLDD-ESOSDL technique for plant leaf disease detection 

and classification are portrayed. The results represent that the 

APLDD-ESOSDL technique properly categorized different 

types of plant leaf diseases. 

 

Table 1. Details of the database 

 
Class No. of Samples 

Corn gray spot 466 

Corn rust 1084 

Corn northern blight 896 

Corn healthy 1057 

Total Number of Samples 3503 

 

The APLDD-ESOSDL approach clearly presents a 

complete result of plant leaf disease detection in Table 2 and 

Figure 4. The experimental results indicate that the APLDD-

ESOSDL approach achieved effective outcomes in all four 

categories. The APLDD-ESOSDL approach produced an 

average accuracy of 98.50%, precision of 96.39%, sensitivity 

of 96.11%, specificity of 99%, and F-score of 96.25% with 

80% of TRP. Similarly, while using 20% of TSP, the APLDD-

ESOSDL method achieved average accuracy, precision, 

sensitivity, specificity, and F-score values of 99.22%, 98.52%, 

98.06%, 99.46%, and 98.28% respectively. The APLDD-

ESOSDL approach achieved an average accuracy of 98.51%, 

precision of 96.87%, sensitivity of 96.52%, specificity of 

98.98%, and F-score of 96.69% with 70% of TRP. The 

APLDD-ESOSDL system achieved an average accuracy of 

98.81%, precision of 97.52%, sensitivity of 97.46%, 

specificity of 99.19%, and F-score of 97.49% with a TSP of 

30%. 

 

 
 

Figure 3. Confusion matrices of APLDD-ESOSDL approach (a-b) 80:20 of TRP/TSP and (c-d) 70:30 of TRP/TSP 
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Table 2. Plant leaf disease detection outcomes of the APLDD-ESOSDL approach under distinct measures 

 
Class  Accurcy Precision Sensitivity Specificity F-score 

Training Phase (80%) 

Corn gray spot 97.79 92.58 90.78 98.83 91.67 

Corn rust 98.87 97.77 98.77 99.11 98.26 

Corn northern blight 98.58 97.50 97.09 99.09 97.30 

Corn healthy 98.37 97.30 97.42 98.78 97.36 

Average 98.40 96.29 96.01 99.10 96.15 

Testing Phase (20%) 

Corn gray spot 99.04 99.10 95.09 99.73 97.16 

Corn rust 99.04 97.47 99.40 99.10 98.43 

Corn northern blight 99.47 98.82 99.36 99.51 99.09 

Corn healthy 99.00 98.47 98.00 99.29 98.24 

Average 99.12 98.42 98.16 99.36 98.18 

Training Phase (70%) 

Corn gray spot 98.68 96.14 94.07 99.34 95.00 

Corn rust 99.08 98.36 98.87 99.18 98.61 

Corn northern blight 98.18 97.19 95.29 99.11 96.13 

Corn healthy 98.10 95.78 97.47 98.09 96.62 

Average 98.41 96.77 96.42 98.88 96.59 

Testing Phase (30%) 

Corn gray spot 99.15 96.52 96.72 99.64 96.72 

Corn rust 99.14 98.79 99.25 99.09 98.62 

Corn northern blight 98.28 97.61 95.78 99.13 96.69 

Corn healthy 98.47 97.38 97.69 98.81 97.54 

Average 98.71 97.42 97.36 99.09 97.39 

 

 
 

Figure 4. Average outcomes of the APLDD-ESOSDL 

approach under distinct measures 

 

 
 

Figure 5. Accuracy curve of the APLDD-ESOSDL approach 

Figure 5 assesses the level of accuracy achieved by the 

proposed approach in both the training and validation models 

using the test database. The results suggest that the proposed 

approach demonstrated superior accuracy as the number of 

epochs grew. Moreover, the observation that the greatest 

validation accuracy surpasses the training accuracy suggests 

that the proposed algorithm successfully acquired knowledge 

from the test database.  

Figure 6 presents the results of the loss study for the 

proposed system during the training and validation phases, 

primarily focusing on the test database. The outcome indicates 

that the proposed approach yielded comparable values for both 

the training and validation loss. The proposed approach 

effectively showed its ability to learn from the test database. 

Figure 7 displays a comprehensive Precision-Recall (PR) 

curve of the APLDD-ESOSDL technique using the test 

database. The outcome indicates the effectiveness of the 

APLDD-ESOSDL system based on the highest PR values. 

Moreover, it is evident that the APLDD-ESOSDL method may 

achieve higher PR values for all the classes.  

 

 
 

Figure 6. Loss curve of the APLDD-ESOSDL approach 
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Figure 7. PR curve of the APLDD-ESOSDL approach 

 

Figure 8 displays the results of the ROC analysis produced 

by the APLDD-ESOSDL technique on the test database. The 

data suggests that the APLDD-ESOSDL system attained the 

highest ROC values. Furthermore, it is evident that the 

APLDD-ESOSDL technique may achieve higher ROC values 

for all the classes. 

The findings of the full comparison analysis of the APLDD-

ESOSDL approach and other state-of-the-art techniques are 

presented in Table 3 and Figure 9 [24]. The findings indicate 

that the VGG-16 model performed the poorest, while the 

ResNet-50, Inception V4, and ResNet-101 models produced 

somewhat better results. Simultaneously, the AlexNet and 

VGG-19 models achieved significant performance. The 

APLDD-ESOSDL approach shown exceptional performance, 

with a maximum accuracy of 99.22%, precision of 98.52%, 

sensitivity of 98.06%, and specificity of 99.46%. The findings 

unequivocally demonstrated the superior performance of the 

APLDD-ESOSDL approach compared to other models. 

  
  

Figure 8. ROC curve of the APLDD-ESOSDL approach Figure 9. Comparative outcome of APLDD-ESOSDL 

approach with recent systems 
 

Table 3. Comparative analysis outcomes of the APLDD-ESOSDL approach with recent systems 

 
Model Accuracy Precision Sensitivity Specificity 

VGG-16 91.20 96.58 96.48 95.54 

ResNet-50 97.10 96.15 97.57 96.52 

AlexNet 98.80 97.93 95.73 95.44 

Inception V4 97.59 97.03 97.89 97.56 

VGG-19 98.13 97.77 95.39 95.73 

ResNet-101 96.56 95.76 95.3 96.19 

APLDD-ESOSDL 99.22 98.52 98.06 99.46 

 

 

5. CONCLUSION 

 

In this article, have introduced a new approach called 

APLDD-ESOSDL for precise identification and 

categorization of plant leaf diseases. The objective of the 

proposed is to provide farmers with visual descriptions of plant 

leaf pictures in order to mitigate the spread of disease, hence 

enhancing agricultural yield and minimising crop losses. The 

proposed approach accurately classifies the occurrence of leaf 

diseases. The proposed approach consists of many steps, 

including feature extraction based on Inception ResNet-v2, 

classification using SLSTM, and hyperparameter tuning using 

ESOS. In order to identify the superior characteristics of the 

proposed technique, a widespread experimental analysis was 

conducted using the benchmark database. The experimental 

outcomes demonstrated the improved results of the proposed 

system in comparison with existing systems in terms of 

various performance measures. The current research outcomes 

improve precision in agricultural practices. The capacity to 

precisely identify and target the sick plants improves resource 

allocation and tailored therapy. This aids the worldwide 

sustainable agriculture movement to address the challenges 

posed upon food security and the environment. The current 

study is linked to these scientific goals and its real-world 

applications to stress its potential to increase plant leaf disease 

detection and solve important farmer and agricultural sector 

concerns. In the future, the classification performance of the 

APLDD-ESOSDL technique can be improved by multi-modal 

fusion approach. Multi-modal fusion may improve the 

classification accuracy, robustness, and generalisation. 
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Integrating and fusing the data from several sources can help 

in building more powerful models for difficult categorization 

problems. 
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