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The purpose of this paper is to study approaches to the intellectual processing of Russian-

language textual medical information concerning the thyroid cytopathology description to 

solve the issues of their classification and generation of the text of the medical report, as 

well as augmentation of descriptions in their acute shortage. Over the past decade, the field 

of biomedicine has not undergone significant changes. Approaches to analyzing patients' 

problems are mostly based on manual processing and expert knowledge of doctors. The 

paper considers the creation of a machine-learning pipeline containing a full cycle of data 

preprocessing and model training in the field of thyroid nodules fine-needle aspiration 

classification according to the Bethesda thyroid cytopathology reporting system. Sequential 

and transformer neural networks were used to design the architecture of deep learning 

models. The paper proposes approaches for cleaning and preprocessing raw medical 

descriptions to the required type. The obtained results show that sequential neural networks 

have greater accuracy on small data sets, and transformation architectures are superior to 

others when generating cytopathological reports on large amounts of data. The solution 

obtained in the study can be used as an additional reference tool for thyroid cytologists. 
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1. INTRODUCTION

Attempts to integrate natural language processing (NLP) 

methods in areas where only classical approaches have existed 

for a long time become increasingly evident. The use of new 

approaches is justified by the fact that classical methods often 

do not give the desired results and require constant 

improvements. Therefore, modern natural language text 

processing technologies are being introduced increasingly 

often into areas not previously covered by them. 

One of these areas is medicine, where natural language is 

used to record individual results. Having the fixed signs of the 

disease described by the doctor in natural language, one needs 

to solve the issues of classifying the disease according to the 

accepted scale and automatically generating the text of the 

medical report indicating all parameters used for subsequent 

treatment. 

Let us consider the formulation and solution of the tasks of 

working with medical texts written in natural language in the 

case of classification and generation of a medical opinion on 

the description in the field of cytological studies of the thyroid 

gland. 

The initial data are: 

- The Bethesda System for Reporting Thyroid

Cytopathology (TBSRTC) [1, 2] according to which a thyroid 

nodule fine needle aspiration (FNA) material is classified into 

one of six diagnostic categories with different corresponding 

malignancy risk (ranging from 4 to 97%), that helps to 

determine patient further management tactics. 

- A corpus of pairs of real texts (1. description and 2.

Conclusion-a TBSRTC category) made by cytopathologists of 

the National Medical Research Center for Endocrinology. 

However, in this case, in many pairs, the first element (a 

description) is missing due to its placement in another field 

along with the diagnostic category. 

It is necessary to build a sequence of mathematical models 

(pipeline) for the formation of a medical opinion according to 

the description indicating the Bethesda category. The results 

of the work may be of interest as a part of a thyroid 

cytopathology automated analysis system and can be used to 

generate a description and the corresponding category for a 

FNA sample. 

The task in its general formulation in different fields of 

activity was solved by several research groups. Therefore, it is 

reasonable to consider the closest approaches to the 

classification and generation of text tokens and problems of 

time complexity, spatial storage, and processing of raw text 

arrays. 

The related works are discussed further in section 2. Section 

3 outlines the proposed approach to the automatic generation 
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of Bethesda categories. In section 4, the results of the 

conducted quality studies of the proposed approach are 

discussed, and in section 5, similar works are described. 

Finally, section 6 summarizes the results of the study with 

conclusions and possibilities for its development.  

This study primarily aims to innovate in the field of medical 

text processing by developing deep learning models tailored 

for Russian-language thyroid cytopathology reports. We 

specifically focus on utilizing Sequential and Transformer 

neural networks to classify diseases and generate 

comprehensive medical reports. The scope of this research is 

carefully defined to include an in-depth analysis of these 

neural network models, particularly assessing their 

performance in handling datasets of varying sizes. 

 

 

2. LITERATURE REVIEW 

 

Currently, several review papers offer text classification 

algorithms or put forward interesting ideas for evaluating 

medical text corpora. Thus, in the research [3], the use of 

complex approaches based on autoencoders and the use of 

convolutional networks for the classification of medical texts 

is discussed. The idea of mixing the received and generated 

data during learning as a method of improving the quality of 

the final model is interesting. This is important for us since to 

increase the body of raw data of missing medical descriptions, 

we have to solve the task of augmenting them based on 

available medical reports. 

In the research [4], which focuses on learning text 

classification algorithms from scratch and obtaining the best 

representation only on similar data, approaches to obtaining 

training results on raw data are described, as opposed to 

widespread approaches to retraining architectures like BERT 

(Bidirectional Encoder Representations from Transformers). 

The authors of the papers [5-7] involve architectures based 

on sequential and transformer networks to solve analytical 

medical problems, which can be applied to our task for the 

transfer of knowledge in the cross-domain field. 

One of the tasks of this work is the classification according 

to a cytopathology description text, i.e., the formation of the 

Bethesda category [8] using deep learning. Using new 

approaches for text preprocessing and model training, both 

canonical transformers and their modifications, we will try to 

increase the accuracy of predictions relative to a given target 

threshold.  

The solution to this problem lies in the way of creating a 

pipeline for preprocessing data and extracting key information 

from raw medical text corpora. The pipeline model is both a 

classifier of the Bethesda target label and a generator of a 

medical opinion on the medical description of the patient's 

problems. 

The structure of this study is presented in the form of a 

sequence of sections. The first section describes the 

approaches in the preprocessing of the source data. In the 

second, a basic statistical model is created, according to which 

more advanced architectures will be evaluated. The following 

sections describe sequential approaches aimed at producing a 

short conclusions (diagnostic categories) based on a 

cytopathological description. Next, the transformer 

technologies and their training options are discussed. In 

conclusion, the results are summed up, and the validation of 

the resulting models is performed. 

In the realm of medical text processing, various techniques 

have been explored in the literature. Sequential neural 

networks, known for their simplicity and effectiveness in small 

data scenarios, have been widely used for structured data 

analysis. They excel in tasks where data points are 

interdependent, such as time-series analysis. On the other hand, 

Transformer neural networks, a more recent development, are 

noted for their ability to handle larger datasets efficiently.  

Their architecture, based on self-attention mechanisms, 

allows them to process data points in parallel, making them 

particularly suitable for complex tasks like language 

translation and large-scale text generation. The literature also 

highlights hybrid approaches, combining the strengths of 

different models to optimize performance. These comparisons 

underscore the importance of choosing the right technique 

based on the specific requirements of the dataset and the task 

at hand. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Data preparation 

 

Working with medical reports on the classification of 

thyroid nodules raises the task of marking and clearing data. 

The corpus of real data used in the study contains more than 

27 thousand thyroid cytopathology reports gathered in the 

Laboratory of Cytology and Cytogenetics of the Department 

of Pathomorphology of the Center for Endocrinology over ten 

years of work (2013-2023). The data was received in a blinded 

form (without personal information).  

Medical texts have a weak internal structure, which leads to 

problems of clearing data from unnecessary tokens and 

highlighting the basic information necessary for further 

generation of signs.  

There may be several Bethesda labels in one medical 

description. For example, "p11-1: uninformative material: 

peripheral blood cells, thyrocytes were not detected in the 

smear against the background of a thick colloid (according to 

Bethesda Thyroid Classification, category I)"; further in the 

same description: "l11-2: a node of colloidal to varying 

degrees proliferating goiter with cystic changes has been 

punctured (according to Bethesda Thyroid Classification, 

category II)". 

Solving problems in the order of allocation of the target 

Bethesda label and key description tokens on an untagged set 

of data, we place the main emphasis on the primary use of 

regular expressions and probabilistic search for the most 

frequently encountered sentence tokens. To search for this 

pattern, a regular expression of the type '[IV]+' is used, which 

helps to find all possible combinations of the Bethesda label in 

the considered text. Sentences from the original data corpus, 

after clearing the data with the generated labels, can be 

grouped by class, getting the percentage of occurrence (Table 

1). 

 

Table 1. Percentage occurrence of labels in the case 

 

Class (Index) 
Number of Class 

Entries 

Bethesda Entry 

Percentage 

1 3.409 12.43 

2 17,799 69.42 

3 1,050 3.83 

4 2,160 7.88 

5 1,076 3.92 

6 952 3.47 

730



 

In this table, the general target field is presented after 

splitting groups of complex text queries into basic ones (with 

one class label), which expands the original groups with a class 

zero, without affecting the distribution of Bethesda labels 

previously affixed by doctors. 

Part of the process of preprocessing raw data to obtain a 

more voluminous object space is the search for the number of 

sentences in the text and the probability of words appearing in 

each sentence, which is a hyperparameter for various types of 

data augmentation and validation of the obtained medical 

assessment reports. At the preprocessing stage, long text 

conclusions of patients, who had gone through multiple FNA 

due to having a multinodular goitre and therefore had several 

conclusions (Bethesda diagnostic categories), were divided. 

When dividing the data into logical elements, where each 

element was a sentence with a Bethesda label, the feature field 

expanded by 7.5%. 

Further, after separating the classifier labels by 

cytopathological descriptions and diagnostic categories, the 

necessary tokens were allocated. 

After cleaning and creating the resulting dataset with 

separated Bethesda labels in the range from 1 to 6, we obtained 

completely separated data to solve the problems of classifying 

the Bethesda label and generating a diagnostic category based 

on the medical description of the thyroid problem. Examples 

of cytopathological descriptions are presented in Table 2. 

 

Table 2. Examples of cytopathological descriptions and 

corresponding labels (Bethesda diagnostic categories) 

 
Cytopathological Descriptions Label 

The material is not informative enough: Single 

dystrophic thyrocytes were found in thick smears with 

an abundant admixture of erythrocytes 

1 

In the smears, the cytogram is characteristic of a 

colloidal, to varying degrees proliferating B-cell 

goiter with areas of adenomatosis and cystic 

degeneration 

2 

In the smear with a heterogeneous cellular 

composition, among the abundance of erythrocytes 

and colloid, there are both groups of polymorphic 

thyrocytes with signs of goiter transformation and 

clusters of enlarged epithelial cells of irregular shape, 

with, sparse chromatin, densely located in shapeless 

and papillary-like structures  

3 

In the smear of high cellularity with a large admixture 

of blood against the background of the contents of the 

cystic hemorrhagic cavity, there are clusters of large 

epithelial cells with a wide cytoplasm, eccentric 

nuclei, pronounced degenerative changes, forming 

predominantly mixed structures and located 

separately, more suspicious in terms of the follicular 

formation of the thyroid gland from B cells  

4 

The sample consists of complexes of atypical epithelial 

cells with single intracellular pseudoinclusions 

against the background of cystic hemorrhagic changes 

and lymphocytic inflammation 

5 

Numerous isolated groups of thyroid papillary cancer 

cells have been found in the smear, forming trabecular 

and papillary structures with single intra-row pseudo-

inclusions 

6 

 

The preprocessed source data (the main keyword tokens and 

the cleaned raw data) were saved in .csv format. 

Ethical expertise. The protocol of the study was reviewed 

and approved by the local Ethical Committee of the National 

Medical Research Center for Endocrinology (Protocol No. 14 

dated 25.07.2023). 

 

3.2 Creation of a statistical model 
 

When building a complex system for classification 

according to Bethesda and generating a diagnostic category 

based on a cytopathological description, it is necessary to be 

sure that the model can be effective in terms of temporal and 

spatial complexity. 

In the previously reviewed papers, CNN (convolutional 

neural networks) and LSTM (long short-term memory) 

networks with modifications of the original algorithm were 

used to solve these problems. Such approaches work well for 

the task but are difficult to interpret and also slow, which leads 

to time costs. 

Basic models are suitable for estimating temporal and 

spatial capacities, which will be emphasized in the validation 

of the final architecture in the future. 

To solve problems step by step, one wants to combine the 

embedding approach (a numerical vector derived from words) 

and clustering methods to determine the class label. This 

choice helps to optimize the query execution time [9]. In this 

study, we use FastText-based approaches [5] and methods for 

normalizing the final vector representations. 

The first method we will consider uses document token 

norms and clustering using the K-means algorithm. This 

method allows us to quickly determine the Bethesda label. 

After normalization and training of the algorithm, we make 

predictions and compare them with the target labels of the test 

dataset. 

The algorithm divides the set of vector space elements into 

a pre-known number of clusters k. The main idea is that at each 

iteration the center of mass is recalculated for each cluster 

obtained at the previous step, then the vectors are divided into 

clusters again in accordance with which of the new centers 

turned out to be closer according to the selected metric. The 

algorithm ends when at some iteration there is no change in 

the intra-cluster distance. This happens in a finite number of 

iterations, since the number of possible partitions of a finite set 

is finite, and at each step the total square deviation decreases, 

so looping is impossible. 

In the proposed method, at each step, we select the largest 

cluster to maximize the f-beta-score metric as a harmonic 

mean between completeness and accuracy, which will allow 

us to obtain an average value between two significant metrics 

in the problem. Since there is no bijective mapping of clusters 

to previously obtained data in the K-means algorithm, the best 

set of labels of the target class is first assigned a label and then 

removed from the label pool. Not to lose information, we first 

consider the largest clusters, and then gradually move on to 

smaller clusters, since when a cluster is deleted, its label is lost. 

 

Table 3. Label clustering matrix 

 
 0 1 2 3 4 5 6 

0 592 1.131 987 1,039 2,085 1,066 771 

1 1 - 3,126 - - 1 - 

2 259 2,254 27 5 2 1 5 

3 5 1 6,041 - - - - 

4 93 5 2,306 3 15 1 5 

5 20 16 2,978 3 57 8 170 

6 2 2 2,334 1 1 - 1 

 

In our experiment we use a square partition matrix into 

seven clusters where we try to find the best non-parametric 
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partition for the data. 

This approach is characterized by a strong overlap of classes. 

Therefore, when assigning the same target label to several 

classes at the same time, we use a greedy algorithm for 

selecting features, and we get a distribution of labels by classes, 

as in Table 3. 

After calculating FB (f-beta-score) using a formula of the 

harmonic mean: 

 

𝐹𝐵 = (1 + 𝐵2) ∗ (𝑃𝑅 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)
1

𝐵2 ∗ (𝑃𝑅 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (1) 

 

where, PR is the accuracy, Recall is the completeness, and B 

is a configurable parameter of the offset between accuracy and 

completeness. We see that after a cycle of training and 

prediction, the f-beta-score exceeds the threshold of 0.52 only 

in classes I and IV. 

This approach does not work well on the entire set of data, 

and changing the priorities of classes does not change anything 

since a significant number of points overlap each other. 

When considering the clustering problem, we immediately 

note the impossibility of using the basic implementations of 

the density-based spatial clustering of applications with noise 

(DBSCAN) and ordering points to identify the clustering 

structure (OPTICS) algorithms [9]. We are interested in the 

full field of predictions, and these algorithms do not have a 

parameter for configuring the number of clusters because they 

are based on the ideas of availability points. 

At this stage, we wanted to obtain FB>= 0.91. As we did not 

obtain it using embedding texts, we moved on to more 

advanced methods from the NLP field. 

 

3.3 Recurrent approaches 

 

Recurrent neural networks (RNNs) are very popular today 

in processing and analyzing data sequences, such as texts, time 

series, and audio or video streams. These architectures contain 

a cyclic layer that allows one to transfer information from the 

previous step in time to the next and to remember and use the 

previous contextual information for making decisions in the 

present. Formally, RNN is defined by the following equations: 

 

ℎ𝑡 = 𝜎ℎ(𝑊𝑥ℎ ∗ 𝑥𝑡 + 𝑊ℎℎ ∗ ℎ𝑡−1 + 𝑏ℎ) (2) 

 

𝑦𝑡 = 𝜎𝑦(𝑊ℎ𝑦 ∗ ℎ𝑡 + 𝑏𝑦) (3) 

 

where, 𝑥𝑡 is the input data at the current step, ℎ𝑡 is the hidden 

state at the current step, 𝑦𝑡  is the output data at the current step, 

W and b are the matrices of weights and offsets, respectively, 

and 𝜎h and 𝜎y are activation functions for the hidden and 

output layers, respectively. 

One of the NLP tasks, where RNNs have proven to be very 

effective, is to predict the diagnosis according to the 

description of thyroid disease. Using RNN, it is possible to 

analyze the results of the patient's studies and predict the 

diagnosis with high accuracy. A research team from the 

University of Leiden in the Netherlands conducted a study 

where they used an RNN to determine the diagnosis of thyroid 

diseases based on patient blood test data [9]. The study showed 

that RNN demonstrated higher prediction accuracy compared 

to traditional methods.  

Last year, another group of researchers from Stanford 

University and Google Brain developed a new architecture for 

solving NLP problems, including predicting a diagnosis based 

on thyroid analysis [10]. In this study, RNNs were used in 

combination with an attention mechanism that allowed the 

network to focus on the most significant elements of the 

sequence.  

The results of the study also showed the high efficiency of 

the proposed method. The use of RNNs in the task of 

predicting the diagnosis based on thyroid analysis data allows 

us to obtain more accurate results and significantly reduce the 

diagnostic time, which is also confirmed by the author of the 

article on the use of neural networks in healthcare [10]. 

One of the most common approaches is the use of RNNs 

with LSTM cells. LSTM cells allow one to save information 

about previous network states and store it for a long time. An 

LSTM cell has the following components. 

The use of LSTM cells allows an RNN to store and use 

information about previous states for a long time, which makes 

it especially effective for processing sequential data with long-

term dependencies [11]. This is especially important when 

thyroid tests are collected several times over a certain period. 

Another approach is the use of CNNs with 1D convolutions. 

This approach is especially useful when processing data that 

can be represented as time series, such as multiple thyroid 

assays over a certain period, which can be written as functions 

of time: 

 

(exit) = Conv1D(input, filters) -> Activation -> Pooling -> 

Straightening -> Fully connected layers(output size) 

 

In this case, 1D convolutions allow us to identify important 

temporal signs, such as peaks and trends, and use them to 

predict the diagnosis [12]. 

Finally, there are hybrid models combining several different 

neural network architectures that can be more efficient than 

each of them individually [13]. To illustrate this statement, a 

comparative analysis of the results of RNNs with LSTM cells, 

CNNs with 1D convolutions, and hybrid models combining 

both types of models was carried out. The results of the 

experiment, the purpose of which was to identify the most 

suitable solution for class label prediction are shown in Table 

4. 

 

Table 4. Model comparison 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

RNN + 

LSTM 
80.7 81.5 79.9 80.7 

CNN + 1D 

Conv 
86.4 85.9 87.2 86.5 

Hybrid 

Model 
89.2 89.8 88.6 89.2 

 

The table shows that the hybrid model, which combined 

RNN and CNN, showed the best results for all metrics. 

However, the CNN model with 1D convolutions came pretty 

close to the results and also showed great learning speed and 

ease of use. 

 

3.4 Applying pre-trained models 

 

Today, there are a large number of deep-learning models 

used for processing medical texts. The largest number of such 

models work in the English-speaking field of text analysis [14, 

15]. However, some models have been pre-trained in Russian. 

To build such models, the well-known transformers BERT and 
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RoBERTa (Robustly Optimized BERT Approach) were used, 

which had already been pre-trained on common-language 

corpora [16].  

In this paper, two other models are used, pre-trained on the 

Russian-language Wikipedia, and additionally on a special 

Taiga data corpus created by the SberDevice team [17, 18]. 

Both of these models were further transferably trained on 

publicly available medical and biomedical texts. Due to such 

training, RuBioBERT and RuBioRoBERTa models were 

obtained [19-21]. 

For a better understanding of the work of RuBioBERT and 

RuBioRoBERTa, we recall the basic principle of BERT. It 

consists of the fact that when training a neural network, a word 

is masked not only at the end of a sentence but also inside it. 

Such a task is called a masked language modeling task [14].  

This approach allows the neural network to simultaneously 

learn (learn token embeddings) in both directions, thereby 

achieving deep bidirectionality, which means that the model 

considers the context on both sides of the word [22]. This 

architecture uses the attention mechanism, which helps to 

highlight the context and the relationship of words with each 

other. 

The RoBERTa model is the same BERT model but with 

optimized hyperparameters and dynamic word masking. 

During the pre-training, RoBERTa is trained only to predict 

the masked word, whereas, in the BERT architecture, the 

model was also pre-trained on the task of next sentence 

prediction, i.e., it predicted whether the second sentence in a 

pair of sentences was a continuation of the first one [16, 23, 

24]. 

For the task of determining the relationship between a 

cytopathological description and assigned Bethesda category, 

both of these models were used to understand which of them 

worked better when solving the classification problem. To 

compare RuBioBERT and RuBioRoBERTa, the following 

model parameters were used (Table 5). 

 

Table 5. RuBioBERT and RuBioRoBERTa parameters 

 
Parameter Value 

Learning rate 2e-5 

Weight decay 0.01 

Train epochs 5 

Optimization Adam 

 

Table 6. The RuBioBERT learning process 

 
Step Train Loss Validation Loss Accuracy F1 

1,000 0.32 0.24 0.946 0.945 

2,000 0.14 0.17 0.961 0.960 

3,000 0.1 0.24 0.93 0.935 

4,000 0.08 0.18 0.96 0.959 

5,000 0.06 0.22 0.95 0.951 

 

Table 7. The RuBioRoBERTa learning process 

 
Step Train Loss Validation Loss Accuracy F1 

1,000 0.26 0.20 0.953 0.952 

2,000 0.14 0.19 0.961 0.961 

3,000 0.10 0.17 0.970 0.969 

4,000 0.08 0.20 0.960 0.960 

5,000 0.06 0.19 0.953 0.961 

 

The learning process in each of the models was recorded 

after every 1,000 steps and tested. As a result, the results of 

model training were obtained (Tables 6 and 7). 

It can be seen from the tables that RuBioRoBERTa showed 

higher accuracy than RuBioBERT. 

A significant difference between the RuBioRoBERTa 

model and RuBioBERT is a significant training time (3 times 

higher than the time of the other model) and a significantly 

greater weight of the model itself. Depending on the frequency 

of the necessary retraining, both the first and second models 

can be selected for classification according to Bethesda. 

 

3.5 Text data augmentation 

 

In the real corpus of 27,000 pairs of description and 

diagnostic category data used in this study, real descriptions 

are present only in 6,300 pairs. The description text can also 

be moved to the diagnostic category field. In the remaining 

data pairs, only a diagnostic category is present.  

Considering that the quality of the model increases with an 

increase in the training sample, the task of augmenting the 

missing descriptions was additionally set. To do this, we 

trained a Russian-language T5-base model made by Sberbank 

to restore the text of a cytophatological description based on 

text of conclusion. 

Augmentation (which took much more time than fine-

tuning the T5-base model) increased the sample of pairs by 

almost 4 times to 24,600 examples. The analysis of the 

augmented data showed that: 

- the average number of words in the original (36.2) and 

augmented (51.9) texts of descriptions did not differ much; 

- the maximum number of words in the original texts was 

177 and in the augmented texts 125. 

 

 
 

Figure 1. Distribution of descriptions within topics in real 

descriptions 

 

 
 

Figure 2. Distribution of descriptions within topics in 

augmented descriptions 
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To analyze the properties of the source and synthetic data, 

thematic modeling of LDA (Latent Dirichlet Placement) was 

carried out using the genism library, where the initial class (the 

first category according to Bethesda) is marked with zero and 

further increases. The number of topics was taken equal to 6, 

according to the number of Bethesda categories. 

The distribution was sorted by increasing probabilities to be 

able to see the general pattern. The distributions of the original 

and synthetic data are very similar (Figures 1 and 2). 

In addition to the distribution of the descriptions by topic, 

the distribution of topics by words was constructed to highlight 

the top words describing a specific topic (Tables 8 and 9). 

 

Table 8. Top tokens of the original descriptions 

 
Topic Top Words 

0 Cell, detect, gland, thyroid, background 

1 Goiter, colloidal, nodular, punctured, element 

2 Cell, cluster, background, preparation, position 

3 Quantity, small, smear, thyrocyte, background 

4 Epithelium, cell, follicular, detect, background 

5 Allow, recommend, observation, dynamic, nodal 

 

Table 9. Top tokens of synthetic descriptions 

 
Topic Top Words 

0 Element, blood, peripheral, naked, nucleus 

1 Erythrocyte, rounded, nucleus, monomorphic, relatively 

2 Element, goiter, colloidal, nodular, lymphocytic 

3 
Characteristic, cytogram, goiter, colloidal, change, 

follicular 

4 Papillary, thyroid, gland, erythrocyte 

5 Erythrocyte, change, background, group, colloid 

 

The vocabulary in the topics almost does not match, but 

structurally the descriptions are similar. 

 

 

4. RESULTS 

 

Fine-tuning of the Russian-language T5-base model to 

solve the problem of generating a diagnostic category based 

on a description was carried out on augmented (24,600 

examples) and initial (6,200 examples) samples. 

Then, with the help of a trained model, predicted diagnostic 

categories were generated based on the available source 

descriptions, using regular expressions. According to the 

initial and predicted cytopathological descriptions, the 

Bethesda classes were obtained.  

The accuracy of training and validation of the neural 

network model used for automatic classification of the disease 

description by Bethesda is shown in Figure 3. 

To assess the quality of the created models of automatic 

generation of diagnostic categories on the text of the FNA 

description, a set of metrics for summarizing the text of 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 

(ROUGE-1, ROUGE-2, ROUGE-L) was used.  

It is considered that the indicators ROUGE-2 and ROUGE-

L are well suited for the tasks of abstracting individual 

documents, and ROUGE-1 and ROUGE-L show good results 

in evaluating short abstracts. Considering that the medical 

report can be both short and medium in length, we used all 

three indicators. 

ROUGE automatically generated descriptions with 

references or a set of references (human created descriptions). 

ROUGE scores range from 0 to 1, with higher scores 

indicating greater similarity between automatically generated 

descriptions and references. Examples of formulas for 

calculating ROUGE: 

 

𝑅𝑂𝑈𝐺𝐸 − 1 =
𝑁𝑢𝑚 𝑤𝑜𝑟𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑁𝑢𝑚 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

 

𝑅𝑂𝑈𝐺𝐸 − 2 =
𝑁𝑢𝑚 𝑏𝑖𝑔𝑟𝑎𝑚 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑁𝑢𝑚 𝑏𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

 

 

 
 

Figure 3. Graphs of the accuracy of training and validation 

of the neural network model in classification 

 

The key idea of the ROUGE family metrics is to estimate 

the intersection by n-grams between the source text and the 

generated one (in our case, between the text written by the 

doctor and the text generated by the model). The ROUGE-1 

metric considers only individual words (unigrams), adhering 

to the bag of words philosophy, which does not allow 

evaluating the quality of word combinations.  
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Figure 4. Graph of the loss function 

 

 

 

 
 

Figure 5. Graphs of ROUGE summarization metrics 

 

This problem is partially eliminated by ROUGE-2 and 

ROUGE-L, as they evaluate matches by bigrams and the 

longest sequence of words, respectively. The last two metrics 

are more demanding to text generation than ROUGE-1. The 

change in the logistic loss function (loss) and the metrics of 

the ROUGE family depending on the step of the butch 

optimization of the neural network architecture can be seen in 

Figures 4 and 5. 

The texts of most of the generated medical assessment 

reports coincide with the texts of the medical assessment 

reports written by doctors. Examples of differing medical 

assessment reports are given in Table 10. 

 

Table 10. Examples of medical assessment reports 

 
Suggested by the Doctor Generated 

L p/p 21. A benign nodule of 

the thyroid gland, diagnostic 

category II according to the 

criteria of the Bethesda 

classification system. L n/3 21. 

An atypical structure of 

unclear significance, 

diagnostic category III 

according to the criteria of the 

Bethesda classification system 

L n/3 21. An atypical structure 

of unclear significance, 

diagnostic category III 

according to the criteria of the 

Bethesda classification system. 

L n/3 21. Benign nodules of 

both lobes of the thyroid gland, 

diagnostic category II 

according to the criteria of the 

Bethesda classification system 

Cells of a neoplasm suspected 

of malignancy (papillary 

thyroid carcinoma?) 

Suspicion of a malignant 

neoplasm, diagnostic category 

VI according to the criteria of 

the Bethesda classification 

system 

A neoplasm suspected of 

malignancy, diagnostic 

category V according to the 

criteria of the Bethesda 

classification system 

A thyroid neoplasm of unclear 

malignant potential, diagnostic 

category IV according to the 

criteria of the Bethesda 

classification system 

 

Now we can conduct statistical tests for the two 

subproblems being solved, classification and generation. In 

the first case, the value will be f-score, in the second the 

resulting Rouge-2 values, the values are presented in Table 11. 

 
Table 11. TestInd 

 
Type F1 Identic ROUGE2 Identic P_Value 

Classification 0.09 - 0.05 

Generation - 0.05 0.08 

 

For classification values, we took the basic p-value 

threshold for text generation tasks, we set more stringent 

measures and take the threshold for accepting the null 

hypothesis equal to 0.08. 

 

 
5. DISCUSSION 

 

Methods of converting natural language texts for medical 

purposes are currently being actively developed. 

The tasks being solved are difficult in terms of data 

processing and further training of the model since errors in the 

domains of medical tasks are critical. This forces us to collect 

data more carefully with an understanding of what results we 

want to achieve with augmentation using ready-made or 

trained models. Approaches to generating and evaluating data 

arrays are discussed in papers [9, 10].  

However, in our task, based on a corpus of ready-made texts, 

the main focus was on converting raw data and not on attempts 

to anonymize the personal data of patients, which had been 

done by other people in advance. The ideas of preprocessing 

formed the basis for obtaining data clusters but this did not 

show the expected tangible increase in target metrics in the 

future. 
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In the broader context of text classification, similar studies 

have encountered challenges related to preprocessing efficacy. 

For instance, the studies [25, 26] faced a comparable situation 

where traditional preprocessing methods alone did not yield 

significant advancements in target metrics. This parallel 

underscores the inherent intricacies of text data, particularly in 

medical narratives, and the need for nuanced preprocessing 

strategies. 

The main approaches that could help solve the problem 

were based on the sequential generation of matrix kernels in 

recurrent networks and architectures based on convolutions. 

These approaches are not new but necessary for generating the 

required labels of the class under study, and the ideas of the 

applied methods are partially covered in study [13, 14]. 

The approaches proposed in the paper to solving the 

problems of data preprocessing, classification, and 

augmentation proved to be good at generating Bethesda labels 

but were not effective enough for complex token sequences.  

This leads to an understanding of the issue of insufficient 

data in the training sample. To solve it, attempts were made to 

use ready-made pre-trained architectures with additional 

training on the target data set. Such techniques are based on 

the algorithms proposed in study [16]. 

Comparing our approach with similar studies in the field, 

we observed that [27] encountered a similar data insufficiency 

issue in their research. They addressed this challenge by 

employing a transfer learning strategy, achieving significant 

improvements in their model's performance. In our case, 

leveraging pre-trained architectures allowed us to navigate the 

data limitations, resulting in enhanced accuracy and 

robustness in handling complex token sequences. 

To obtain the text of a complete description, as a result of 

generating a sequence of tokens of a medical opinion, 

previously pre-trained BERT models can be used. However, 

to expand the feature space, data augmentation and additional 

training of transformer models on the existing corpus of texts 

are required. This is what will allow for obtaining more 

accurate and complete medical reports at the output of the 

model. 

In our study, we employed two primary models for the 

classification of thyroid cytopathology reports in the Russian 

language: Sequential neural networks and Transformer neural 

networks. Both models demonstrated commendable 

performance, but a closer examination reveals nuanced 

differences in their effectiveness. 

The choice of model depended on the scale of the dataset. 

Sequential neural networks shone in resource-constrained 

scenarios, offering robust performance, while Transformer 

neural networks demonstrated their prowess when dealing 

with larger datasets, where their ability to handle complex 

token sequences yielded even higher accuracy. 

 

 

6. CONCLUSIONS 

 

This study addressed the challenge of processing Russian-

language thyroid cytopathology reports using deep learning 

models. We utilized Sequential and Transformer neural 

networks, comparing their effectiveness in disease 

classification and report generation across different dataset 

sizes. 

Our findings revealed that Sequential neural networks are 

more suited for smaller datasets, showing high accuracy and 

efficiency. In contrast, Transformer models demonstrated 

superior performance with larger datasets, excelling in 

complex text processing tasks. These insights are crucial for 

advancing the application of deep learning in medical text 

analysis, particularly in non-English contexts. 

The result of this work was the creation of a pipeline. At its 

first stage, statistical methods were used to clean and pre-

process raw data, which worked faster than neural networks 

with almost the same qualitative result. 

Next, models of a transformer operating in two modes were 

trained as a Bethesda label generator and as a medical 

assessment report token generator based on the input 

description. 

The proposed pipeline has an interface for preprocessing 

and retraining the model and can be converted into a 

serializable .pkl file. 

Since the work was done in a high-level Python language, 

the final developments can be scaled. With the help of sklearn 

libraries to scale the interface and with the help of transformers 

to replace individual steps of the converter of the tasks being 

solved, the methods of preprocessing data from other medical 

fields can be left unchanged. 

In terms of research metrics, an improvement of 2% was 

achieved, which is due to the proposed approaches to 

processing Russian-language data and combining methods of 

retraining ready-made architectures. 

The practical significance of our results lies in their 

potential to make the classification of thyroid cytopathology 

reports easier, reduce manual labor, optimize resources, and 

pave the way for improved healthcare efficiency. 

This work can be implemented in systems that rely on the 

automation of medical predictions and can help doctors make 

predictions much faster than using manual methods. 

Considering the ethical component of this work, we note 

that the resulting pipeline is not yet a replacement for a doctor 

but is positioned as an assistant and interlocutor when forming 

a medical assessment report on the patient's problems. 
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