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Skin cancer is a common and potentially fatal disease that necessitates early and precise 

diagnosis for effective treatment. In recent years, artificial intelligence has shown promise 

in aiding dermatologists in the diagnosis of skin cancer. However, the inability of AI models 

to be interpreted hinders their adoption in clinical practice. This paper presents the design 

of an AI-based architecture for the real-time diagnosis of skin cancer in an effort to address 

such issues. The proposed system employs a collection of artificial intelligence (AI) 

models, including Decision Trees, Rule-Based Models, Logistic Regression, and Deep 

Forest Models, to achieve accurate and interpretable skin cancer diagnosis. Each model 

contributes its strengths to the ensemble, thereby enhancing the performance and 

interpretability of the whole. The ensemble method combines the benefits of various models 

to compensate for their shortcomings. The effectiveness of the proposed system is 

demonstrated by the analysis of a Skin Cancer MNIST, ISIC, and Mendeley Skin Cancer 

Datasets with nearly 250K samples, with 98.9% accuracy, 99.5% precision, and 98.5% 

recall. The system outperforms existing skin cancer diagnosis methods. The achieved 

accuracy and performance metrics indicate the system's potential as a reliable real-time 

diagnostic tool for dermatologists. The proposed system's use cases are diverse. 

Dermatologists can use the real-time skin cancer diagnosis system to accelerate the 

screening process, improve diagnostic accuracy, and improve patient outcomes in clinical 

settings. The models are selected for their ability to capture complex relationships in data, 

with each model contributing its individual strengths to the ensemble, thereby enhancing 

the performance and interpretability of the whole. In addition, the system can be integrated 

into telemedicine platforms, allowing remote patients to receive preliminary assessments 

and guidance from AI models prior to seeking additional medical care scenarios. 
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1. INTRODUCTION

AI-based approaches, specifically machine learning 

algorithms, have demonstrated great potential for assisting 

dermatologists with skin cancer diagnosis. However, one of 

the major obstacles to adopting AI models in clinical practice 

is their need for interpretability, which hinders medical 

professionals' trust, transparency, and acceptance levels via 

the Optimized Convolutional Network (OCNN) process [1-3]. 

This paper presents the design of an AI layer for real-time 

skin cancer diagnosis to address the interpretability problem. 

The primary objective is to develop an AI system that not only 

achieves high diagnostic accuracy but also explains its 

decisions, allowing dermatologists to comprehend and 

validate the underlying reasoning process. The proposed 

system employs an ensemble of artificial intelligence (AI) 

models, including Decision Trees, Rule-Based Models, 

Logistic Regression, and Deep Forest Models, to capitalize on 

the strengths of each model and improve the interpretability 

and performance of the overall system. 

This work is necessitated by the growing demand for 

accurate and explicable AI models in the medical field, 

specifically in the diagnosis of skin cancer. While AI models 

have demonstrated impressive diagnostic capabilities, their 

"black-box" nature prevents their clinical adoption. 

Dermatologists need insight into the decision-making process 

of AI models in order to trust their recommendations and make 

informed treatment decisions. The proposed system aims to 

bridge this interpretability gap and facilitate collaboration 

between AI models and medical professionals by providing 

explanations for its decisions. 

The proposed system's use cases are diverse and have 

enormous potential in clinical practice. In dermatology clinics, 

the real-time skin cancer diagnosis system can be a valuable 

resource for dermatologists, aiding in the screening process, 

improving diagnostic accuracy, and enhancing patient care. 

The system is able to evaluate images of skin lesions, extract 

pertinent characteristics, and generate interpretable 
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justifications for its diagnostic decisions. Dermatologists are 

capable of validating these explanations, correlating them with 

their knowledge, and making well-informed treatment 

recommendations via Combined Decision of Deep Learners 

(CDDL) processes [4-6]. 

In addition, integrating the proposed system into 

telemedicine platforms can increase its reach and influence. 

Patients at a distance can upload images of their skin lesions 

and receive preliminary assessments from the AI models, 

directing them to seek immediate medical attention or to 

schedule an in-person consultation. This capability can 

improve the efficiency and efficacy of healthcare delivery for 

underserved populations, remote areas, and regions with 

limited access to dermatologists. 

The proposed system is superior to existing methods due to 

its ensemble approach and interpretability. The ensemble of 

AI models combines Decision Trees, Rule-Based Models, 

Logistic Regression, and Deep Forest Models to improve 

diagnostic accuracy and performance by capitalizing on their 

strengths. The interpretability of the system enables 

dermatologists to gain insight into the decision rules and 

importance of features, thereby fostering confidence in the AI 

models and facilitating meaningful collaboration. The 

selection of these AI models is used in the ensemble model as 

this model demonstrated the ability to provide better 

performance and enhanced interpretability compared to other 

models. Decision Trees excel in capturing complex decision 

boundaries, Rule-Based Models offer explicit and easily 

understandable decision rules, and Logistic Regression 

provides a probabilistic framework for interpretation. By 

combining these models, the ensemble aims to leverage the 

individual strengths of each algorithm, mitigating their 

respective weaknesses. This diverse set of models contributes 

to improved interpretability, making the ensemble more 

transparent and understandable for end-users and facilitating 

informed decision-making in the context of skin cancer 

diagnosis. In addition, the achieved accuracy, precision, and 

recall metrics surpass those of existing methods, establishing 

the system as a reliable and effective tool for skin cancer 

diagnosis in real-time.  

This paper aims to address the interpretability challenge in 

AI-based diagnostic systems by introducing an AI layer for the 

diagnosis of skin cancer in real time. By utilizing an ensemble 

of AI models and providing explanations for its decisions, the 

proposed system provides dermatologists with a valuable tool, 

thereby enhancing the diagnostic process and enhancing 

patient care. The subsequent sections of this paper will 

examine the system's design, methodology, evaluation, and 

results, demonstrating its efficacy and highlighting its 

potential impact on the field of skin cancer diagnosis. 

 

 

2. REVIEW OF EXISTING METHODS FOR SKIN 

CANCER ANALYSIS 

 

Diverse machine learning and deep learning models have 

been developed and evaluated to aid dermatologists in 

enhancing diagnostic precision and efficacy. This literature 

review aims to provide an overview of existing models for 

detecting skin cancer and to highlight their strengths and 

weaknesses. 

Convolutional Neural Networks (CNNs): CNNs [7-9] are 

utilized in the detection of skin cancer due to their ability to 

automatically learn relevant image features. Multiple studies 

have demonstrated that CNNs are effective for accurately 

classifying malignant and benign skin lesions. CNN 

architectures that have been pre-trained, such as VGGNet, 

ResNet, and InceptionNet, have been applied to skin cancer 

detection tasks. The interpretability of CNNs remains difficult, 

as their decision-making process is frequently regarded as 

opaque. 

Support Vector Machines (SVMs) & Deep Learning 

Models: SVMs [10-12] and Deep Learning Models that use 

CECNN have been extensively investigated in the detection of 

skin cancer. SVMs seek to identify an optimal hyperplane that 

distinguishes between distinct classes of skin lesions using 

extracted features. SVMs have demonstrated promising results 

in distinguishing between malignant and benign lesions, 

achieving high rates of accuracy. However, the interpretability 

of SVMs is limited due to the fact that the learned decision 

boundaries may not provide clear insights into the 

classification-contributing features. 

Decision Trees [13-15]: Decision Trees have been used 

extensively in dermatology to diagnose skin cancer. These 

models generate a tree-like structure of decision rules using 

extracted features from images of skin lesions. As each node 

and branch represents a decision rule or characteristic, 

Decision Trees are interpretable and provide insight into the 

decision-making process. When dealing with complex and 

high-dimensional datasets, however, the performance of 

Decision Trees can be limited. 

Ensemble Models [16-18]: In skin cancer detection, 

ensemble models, such as Random Forests and Gradient 

Boosting Models, have gained popularity. These models 

predict by combining multiple individual classifiers. 

Ensemble methods can enhance classification accuracy and 

robustness by leveraging the diversity of multiple models. In 

addition, ensemble models can provide measures of feature 

importance, which indicate the relative significance of features 

when making predictions. This improves the models' 

interpretability and facilitates comprehension of the 

underlying decision rules. 

Rule-Based Models [19, 20]: Dermatologists have utilized 

rule-based models, such as expert systems and knowledge-

based systems, to detect skin cancer. These diagnostic models 

use predefined rules derived from expert knowledge. Rule-

based models provide interpretability, as dermatologists can 

easily comprehend and validate decision rules. However, the 

reliance on predefined rules may limit the adaptability of these 

models to handle cases that are complex and diverse for 

clinical scenarios [21-23]. 

Overall, existing models [24, 25] for the detection of skin 

cancer demonstrate promising accuracy and performance. 

However, interpretability remains essential to their clinical 

acceptance and incorporation into dermatology practice. 

Attempts are being made to improve the interpretability of 

these models by incorporating AI techniques, such as decision 

rule integration, feature importance analysis, and visualization 

methods. To aid dermatologists in making well-informed 

clinical decisions, additional research is required to develop 

models that are not only highly accurate but also transparent 

and interpretable in their decision-making processes. 

This study [26] presents an ensemble deep-learning 

approach for early-stage melanoma-type classification that is 

accurate. The suggested model identifies the type of melanoma, 

enabling early virus detection and rapid isolation and therapy 

to stop the disease from spreading further. In the study [27], a 

system is developed for very accurate categorization of 
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cutaneous lesions. This makes use of MobileNet, a pretrained 

model, and transfer learning. This system identifies eight 

different types of skin lesions. 

 

 

3. PROPOSED DESIGN OF AN AI LAYER FOR REAL-

TIME SKIN CANCER DIAGNOSIS 

 

The proposed model aims to develop an ensemble system 

with XAI for skin cancer detection by combining the strengths 

of Decision Trees, Rule-Based Models, Logistic Regression, 

and Deep Forest Models. This ensemble XAI approach, as 

observed in Figure 1, leverages the diverse capabilities of 

these models to enhance diagnostic accuracy and 

interpretability levels. Decision Trees are widely used in skin 

cancer detection because of their interpretability and ability to 

capture complex relationships in the datasets & samples. A 

Decision Tree represents a tree-like structure of decisions and 

their consequences. 

 

 
 

Figure 1. Design of ensemble learning process for detection 

of skin cancer types 

 

The selection of interpretable AI models, such as Decision 

Trees, Rule-Based Models, Logistic Regression, and Deep 

Forest Models, is the initial step in the design process. These 

models have been shown to be comprehensible and are capable 

of revealing information about the decision-making process. 

Using the individual strengths of these models to make up for 

their collective flaws, the ensemble technique combines 

various models. The ensemble produces a robust and 

trustworthy diagnostic system by combining the advantages of 

various models. 

The AI layer uses methods like rule extraction and feature 

importance analysis to assure interpretability. Dermatologists 

can comprehend the reasoning behind the system's predictions 

by using rule extraction methods to produce rules that are 

understandable to humans from sophisticated models like deep 

neural networks. The most important aspects of each diagnosis 

are determined by feature importance analysis, which aids in 

the discovery of important elements influencing the diagnosis 

of skin cancer types. 

To perform this task, the Decision Tree initially calculates 

an information gain via Eq. (1): 

 

𝐼𝐺(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ (
|𝑆(𝑉)|

|𝑆|
) ∗

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆(𝑉))  
(1) 

 

where, S represents input skin images, and S(v) represents the 

subset of instances for value V of attribute A, which represents 

different skin disease classes. Entropy levels measure the 

impurity or disorder in the dataset and are estimated via Eq. 

(2): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −∑ (𝑝(𝑖) ∗ 𝑙𝑜𝑔2(𝑝(𝑖))) (2) 

 

where, p(i) represents the Proportion of instances belonging to 

class i in set S for different disease types. Each tree is split 

based on a Gini Index (GI), which is estimated via Eq. (3): 

 

𝐺𝐼(𝑆) = 1 − ∑(𝑝(𝑖)2) (3) 

 

This Gini Index measures the impurity of a node in terms of 

the probability of misclassifying a stochastically chosen 

element in the given class. 

Based on these impurity levels, input images are classified 

via a simple thresholding process. The threshold is estimated 

via Eq. (4): 

 

𝑡ℎ = √𝐼𝐺 ∗ 𝐺𝐼 (4) 

 

If any pixel level has a value which is higher than the 

threshold, then go to the left branch. Else, go to the right 

branch. The decision rules of a Decision Tree guide the 

traversal of the tree to make predictions based on feature 

thresholds. 

Similar to Decision Trees, XAI Rule-Based Models employ 

predefined rules to make predictions, providing 

interpretability and transparency for different contexts. These 

models consist of "if-then" statements that assign class labels 

based on specific conditions. It estimates Asymmetry, Border 

irregularity, Colour variegation, Diameter, and Evolution for 

the skin images. 

Asymmetry refers to the lack of symmetry or unevenness in 

the shape of a skin lesion. To determine asymmetry, the lesion 

is divided in half and the areas of each half are determined. To 

calculate the asymmetry score, the difference between the 

areas of the two halves is divided by the total area of the lesion. 

The higher the score, the greater the asymmetry levels. To 

evaluate this, the lesion is typically divided into two halves, 

and the areas of each half are measured. The asymmetry score 

can be calculated via Eq. (5): 

 

𝐴𝑆𝑌𝑀 =
|𝐴1−𝐴2|

𝐴1+𝐴2
  (5) 

 

where, A1 and A2 are the areas of the two halves of the lesions. 

In a skin lesion, border irregularity refers to the presence of 

irregular defined edges. For border irregularity evaluation, the 
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perimeter of the lesion is determined. In addition, the 

circumference of a circle with the same area as the lesion is 

determined. Comparing the actual perimeter to the perimeter 

of the corresponding circle yields the irregularity score. A 

higher score indicates a border with greater irregularity levels. 

Border irregularity is often assessed by measuring the 

smoothness of the lesion's border compared to a circle with the 

same perimeter. One common XAI method is to calculate the 

difference between the actual perimeter of the lesion (C1) and 

the perimeter of a circle (C2) with the same area as the lesions. 

The border irregularity score is estimated via Eq. (6): 

 

𝐵𝑂𝑅 =
𝐶1−𝐶2

𝐶1
  (6) 

 

Variegation of color refers to color variations within an 

augmented set of skin lesions. Examining the lesion visually 

for the presence of multiple colors or shades is required for the 

evaluation of color variation levels. This can be subjective, and 

there is no specific formula for color variation levels. As color 

variegation refers to variations in color within a set of lesions. 

It is typically assessed through visual inspection rather than 

mathematical calculations. 

Diameter is the measurement of the largest dimension of a 

skin lesion. It is typically determined by measuring the width 

or length of the lesions. If the diameter exceeds a 

predetermined threshold (for example, 6 mm), it may be 

regarded as an augmented set of significant diagnostic factors.  

Evolution refers to any changes observed in a skin lesion 

over time, including growth, shape and color changes. This 

evaluation is based on a comparison between previous images 

or records of the lesion and its current state. Rather than a 

specific equation, the presence or absence of evolution is 

determined through observation and clinical judgments. 

Based on these evaluations, the XAI rule-based engine 

works as per the following operations: 

• If the lesion is asymmetric, assign a value of ASYM=1; 

otherwise, assign a value of ASYM=0 

• If the lesion has irregular borders, assign a value of BOR=1; 

otherwise, assign a value of BOR=0 

• If the lesion exhibits color variegation, assign a value of 

COL=1; otherwise, assign a value of COL=0 

• If the lesion's diameter is larger than a certain threshold 

(e.g., 6 mm), assign a value of DIAM=1; otherwise, assign 

a value of DIAM=0 

• If the lesion has shown recent growth or changes, assign a 

value of EVO=1; otherwise, assign a value of EVO=0 

Based on these rules, evaluate an Effective Total Score 

(ETS) via Eq. (7): 

 

𝐸𝑇𝑆 =
1

5
∗ (𝐴𝑆𝑌𝑀 + 𝐵𝑂𝑅 + 𝐶𝑂𝐿 + 𝐷𝐼𝐴𝑀 +

𝐷𝐼𝐴𝑀)  
(7) 

 

If the value of ETS is above an empirically selected 

threshold (e.g., 3), diagnose the lesion as potentially cancerous; 

otherwise, diagnose it as benign under clinical scenarios. 

After these 2 operations, an efficient Logistic Regression 

layer for XAI, which is a statistical model used for binary 

classification tasks, is used to further identify skin cancer types. 

It simulates the association between input characteristics and 

the likelihood of falling into a particular class. The model 

initially evaluates a logistic function via Eq. (8): 

 

𝑃(𝑌 = 1|𝑋) =
1

1+𝑒−𝑧  (8) 

where, z is calculated for each image pixel sets, via Eq. (9): 

 

𝑧 = 𝑏0 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2+. . . +𝑏𝑛 ∗ 𝑥𝑛  (9) 

 

Using a linear combination of input characteristics, the 

logistic function creates a probability value between 0 and 1, 

using input pixels x, and bias factors b for different scenarios. 

Similarly, the log-odds (logit) of the probability are estimated 

via Eq. (10): 

 

𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) = 𝑙𝑛 (
𝑃(𝑌 = 1|𝑋)

1−𝑃(𝑌 = 1|𝑋)
)  (10) 

 

The log-odds ratio represents the logarithm of the ratio of 

probability of benign class to probability of malignant class. 

Using these log levels, coefficients of maximum likelihood are 

estimated via Eq. (11): 

 

𝐿(𝑏0, 𝑏1, . . . , 𝑏𝑛) = ∏ (𝑃(𝑌(𝑖) = 𝑦(𝑖)|𝑋(𝑖))
𝑦(𝑖)

∗

(1 − 𝑃(𝑌(𝑖) = 𝑦(𝑖)|𝑋(𝑖)))
1−𝑦(𝑖)

)  
(11) 

 

The likelihood function represents the joint probability of 

observing the given labels for the training instances. Similarly, 

the cost function (log loss) used in logistic regression is 

estimated via Eq. (12), 

 

𝐽(𝑏0, 𝑏1, . . . , 𝑏𝑛) = −∑ (𝑦(𝑖) ∗

𝑙𝑜𝑔 (𝑃(𝑌(𝑖) = 𝑦(𝑖)|𝑋(𝑖))) + (1 − 𝑦(𝑖)) ∗

𝑙𝑜𝑔 (1 − 𝑃(𝑌(𝑖) = 𝑦(𝑖)|𝑋(𝑖))))  

(12) 

 

The cost function measures discrepancy between predicted 

probabilities and true labels. Using this cost function, the 

biases are updated based on gradient descent via Eq. (13): 

 

𝑏(𝑗) = 𝑏(𝑗) − 𝐿𝑅 ∗
𝜕𝐽

𝜕𝑏(𝑗)
  (13) 

 

where, LR is Learning Rate for the Logistic Regression 

process. Gradient descent updates model's coefficients based 

on derivative of cost function with respect to each of 

coefficients. This process is repeated till loss function is 

minimized, and based on this function, and output class z is 

estimated for different input pixels. 

A combination of Decision Trees is used to train Deep 

Forest Models with XAI & deep learning techniques to 

improve classification accuracy in skin cancer detection 

scenarios. These models consist of multiple layers of decision 

trees that capture hierarchical representations of the datasets & 

samples. The first layer of decision trees extracts features from 

the input datasets & samples. These features are used for 

capturing hierarchical representations in subsequent layers via 

Eq. (14): 

 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑖) =
∑𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑧(𝑖))

𝑁𝑇
  (14) 

 

where, z is the output of the Decision Tree, while NT 

represents a total number of trees utilized for classification 

process. The Softmax function normalizes the outputs of 

decision trees within a layer, and the outputs are combined to 

obtain the layer's outputs for different classes. Outputs from 
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all layers in a Deep Forest Model are combined via Eq. (15): 

 

𝑂𝑢𝑡𝑝𝑢𝑡 =
∑𝑂𝑢𝑡𝑝𝑢𝑡(𝑖)

𝑁𝐿
  (15) 

 

where, NL represents total number of layers, and the outputs 

of each layer are aggregated to obtain the final output of the 

Deep Forest Models. The output is tuned by calculating the 

loss function in training via Eq. (16): 

 

𝐿𝑜𝑠𝑠 =  ∑(𝐿𝐹(𝐺𝑇, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))  (16) 

 

where, LF represents the loss function, which is estimated via 

Eq. (17), which GT represents the Ground Truth levels. 

 

𝐿𝐹(𝑥, 𝑦) =
1

𝑁
√∑ (𝑥(𝑖) − 𝑦(𝑖))

2𝑁
𝑖=1   (17) 

 

where, N represents total number of images that are being 

evaluated during the process. The loss function measures the 

discrepancy between predicted outputs and true labels. To 

reduce loss levels, the model’s parameters are updated using 

the backpropagation process via Eq. (18): 

 
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
=

𝜕(𝐿𝑜𝑠𝑠)

𝜕𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
∗

𝜕(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

𝜕(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)
  (18) 

 

Backpropagation is used to compute the gradients of the 

parameters for loss, allowing parameter updates in subsequent 

training iterations for optimal classification performance 

levels.  

The proposed model combines the predictions of individual 

models through an ensemble process to make final decisions 

under clinical scenarios. Each model contributes its prediction 

based on its strengths and characteristics. The ensemble 

process employes weighted averaging to estimate the final 

class via Eq. (19): 

 

𝑐(𝑜𝑢𝑡) = 𝐴(𝐷𝑇) ∗ 𝑐(𝐷𝑇) + 𝐴(𝐷𝐹) ∗ 𝑐(𝐷𝐹) +
𝐴(𝑅𝐵) ∗ 𝑐(𝑅𝐵) + 𝐴(𝐿𝑅) ∗ 𝑐(𝐿𝑅)  

(19) 

 

where, A & c represents the accuracy and output class for the 

given set of classifiers. Because of ensemble operations, 

model is able to improve classification performance under 

real-time scenarios. 

 

 

4. COMPARATIVE RESULT ANALYSIS 

 

This model for Skin Cancer Analysis uses a fusion of 

Decision Trees, Rule-Based Models, Logistic Regression, and 

Deep Forest for identification of different skin cancer types. 

To estimate its performance, model was tested with variety of 

skin cancer datasets, that include: 

Skin Cancer MNIST Dataset 

(https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-

ham10000) 

Skin Cancer ISIC Dataset 

(https://www.kaggle.com/datasets/nodoubttome/skin-

cancer9-classesisic) 

Mendeley Skin Cancer Dataset 

(https://data.mendeley.com/datasets/d48b5zybck) 

A total of 250k samples were created from all of these sets, 

of which 160k were used for training and 45k each for 

validation and testing operations. Based on this strategy, the 

accuracy (A) was estimated via Eq. (20): 

 

𝐴 =
1

𝑁𝐶
∑

𝑡𝑝(𝑖)+𝑡𝑛(𝑖)

𝑡𝑝(𝑖)+𝑡𝑛(𝑖)+

𝑓𝑝(𝑖)+𝑓𝑛(𝑖)

𝑁𝐶
𝑖=1   (20) 

 

where, tp, tn, fp, fn are total number of images correctly 

classified, incorrectly classified, classified correctly but under 

incorrect type, classified incorrectly but under correct types, 

while 𝑁𝐶  are total images used to test the classification 

process. Similarly, the Precision, Recall & F1 Scores were 

calculated via Eqs. (21), (22), (23) as follows: 

 

𝑃 =
1

𝑁𝐶
∑

𝑡𝑝(𝑖)

𝑡𝑝(𝑖)+𝑓𝑝(𝑖)

𝑁𝐶
𝑖=1   (21) 

 

𝑅 =
1

𝑁𝐶
∑

𝑡𝑝(𝑖)

𝑡𝑝(𝑖)+𝑡𝑛(𝑖)+

𝑓𝑝(𝑖)+𝑓𝑛(𝑖)

𝑁𝐶
𝑖=1   (22) 

 

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅
  (23) 

 

Based on this evaluation, the accuracy levels were estimated 

for OCNN [2], CDDL [6], and CECNN [12], on similar 

datasets & samples. These levels were compared with the 

proposed model demonstrated in Figure 2. 

 

 
 

Figure 2. Accuracy achieved during skin cancer diagnosis 

 

 
 

Figure 3. Precision achieved during skin cancer diagnosis 

 

Based on this evaluation, compared to OCNN [2], CDDL 

[6], and CECNN [12] in real-time scenarios, this model 

improves skin cancer diagnosis accuracy by 4.9%, 8.3%, and 

5.5%, respectively. This accuracy is enhanced by application 
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of high-performance Logistic Regression and Rule-Based 

Models, as well as the extraction of probabilistic features, 

which aids in accurate prediction of cancer types for various 

skin tones (Figure 3).  

Based on this evaluation, under real-time conditions, it can 

be seen that the proposed model is able to increase skin cancer 

diagnosis precision by 3.5% when compared with OCNN [2], 

8.3% when compared with CDDL [6], and 4.5% when 

compared with CECNN [12]. The use of Deep Forest with 

Decision Tree Models and extraction of probabilistic features, 

which aid in the accurate prediction of cancer types for various 

skin tones, improves these precision levels. Similarly, the 

recall obtained during these evaluations is demonstrated in 

Figure 4. 

 

 
 

Figure 4. Recall achieved during skin cancer diagnosis 

 

This evaluation shows that this model outperforms OCNN 

[2], CDDL [6], and CECNN [12] in terms of recall for skin 

cancer diagnosis in real-time scenarios by 4.5, 8.5, and 9.5%, 

respectively. The efficient prediction of cancer types for 

different skin tones is aided by the use of high-efficiency Deep 

Forest Models, the extraction of probabilistic features, and the 

use of Ensemble Classifications to improve recall levels. 

Based on this, the AUC of skin cancer detection for different 

skin types is demonstrated in Figure 5. 

 

 
 

Figure 5. F1 Levels achieved during skin cancer diagnosis 

 

The evaluation shows proposed model is able to improve 

AUC of skin cancer detection under real-time scenarios by 

4.8% when compared with OCNN [2], 3.5% when compared 

with CDDL [6], and 8.3% when compared with CECNN [12]. 

This AUC has increased as a result of improvements in the 

levels of precision and recall for different scenarios. Similarly, 

the AUC obtained during these evaluations is demonstrated in 

Figure 6. 

 

 
 

Figure 6. AUC achieved during skin cancer diagnosis 

 

The evaluation shows proposed model can improve AUC of 

skin cancer detection by 3.9% compared to OCNN [2], 4.5% 

compared to CDDL [6, and 8.0% compared to CECNN [12] in 

real-time scenarios. This AUC is enhanced through the use of 

Rule-based Engines with high-performance Ensemble Models 

and the extraction of probabilistic features, which aids in the 

accurate prediction of cancer classes for various skin tones. 

Similarly, the delay needed for these evaluations is 

demonstrated in Figure 7. 

 

 
 

Figure 7. Delay needed during skin cancer diagnosis 

 

The evaluation shows proposed model reduces the delay 

required for skin cancer detection by 10.5% compared to 

OCNN [2], 8.3% compared to CDDL [6], and 9.5% compared 

to CECNN [12] in real-time scenarios. This delay is decreased 

as a result of the application of a low-complexity ensemble 

learning process with the extraction of probabilistic features, 

which aids in the accurate prediction of cancer classes for 

various skin tones. Because of these optimizations, the 

proposed model is highly applicable to a vast array of real-time 

scenarios requiring the processing of multiple skin types. 
 

 

5. CONCLUSION AND FUTURE SCOPE 

 

The design of an AI layer for real-time skin cancer diagnosis 

is presented in this paper, and it shows appreciable 

improvements in accuracy, precision, recall, and AUC when 

0

20

40

60

80

100

120

3
2
k

4
8
k

6
4
k

8
0
k

9
5
k

1
1
3

k

1
3
0

k

1
4
5

k

1
6
0

k

1
7
5

k

1
9
4

k

2
0
0

k

2
2
5

k

2
4
0

k

2
6
0

k

2
7
5

k

2
9
0

k

3
0
0

k

3
2
0

k

3
4
0

k

3
4
5

k

3
7
0

k

3
8
0

k

4
0
0

k

OCNN [2] CDDL [6] CECNN [12] Proposed

0

20

40

60

80

100

120

3
2
k

4
8
k

6
4
k

8
0
k

9
5
k

1
1
3

k

1
3
0

k

1
4
5

k

1
6
0

k

1
7
5

k

1
9
4

k

2
0
0

k

2
2
5

k

2
4
0

k

2
6
0

k

2
7
5

k

2
9
0

k

3
0
0

k

3
2
0

k

3
4
0

k

3
4
5

k

3
7
0

k

3
8
0

k

4
0
0

k

OCNN [2] CDDL [6] CECNN [12] Proposed

0

20

40

60

80

100

120

3
2
k

4
8
k

6
4
k

8
0
k

9
5
k

1
1
3

k

1
3
0

k

1
4
5

k

1
6
0

k

1
7
5

k

1
9
4

k

2
0
0

k

2
2
5

k

2
4
0

k

2
6
0

k

2
7
5

k

2
9
0

k

3
0
0

k

3
2
0

k

3
4
0

k

3
4
5

k

3
7
0

k

3
8
0

k

4
0
0

k

OCNN [2] CDDL [6] CECNN [12] Proposed

0

20

40

60

80

100

120

140

160

3
2

k

4
8

k

6
4

k

8
0

k

9
5

k

1
1

3
k

1
3

0
k

1
4

5
k

1
6

0
k

1
7

5
k

1
9

4
k

2
0

0
k

2
2

5
k

2
4

0
k

2
6

0
k

2
7

5
k

2
9

0
k

3
0

0
k

3
2

0
k

3
4

0
k

3
4

5
k

3
7

0
k

3
8

0
k

4
0

0
k

OCNN [2] CDDL [6] CECNN [12] Proposed

382



 

compared to current state-of-the-art models. The suggested 

model uses a number of different methods, including high-

efficiency Logistic Regression & Rule Based Models, Deep 

Forest with Decision Tree Models, Ensemble Classifications, 

and Rule-based Engines with high-efficiency Ensemble 

Models. These methods aid in the accurate classification of 

cancer types for various skin tones, along with the extraction 

of probabilistic features. 

The proposed model outperforms OCNN, CDDL, and 

CECNN in terms of accuracy, precision, recall, and AUC 

under real-time scenarios. These models are chosen as baseline 

models because they operate on similar datasets and prioritize 

explainability, establishing a comparative foundation for 

evaluating the proposed model's performance. Particularly 

noteworthy are the increases in accuracy of 4.9% compared to 

OCNN, 8.3% compared to CDDL, and 5.5% compared to 

CECNN. Similar improvements in recall by 4.5%, 8.5%, and 

9.5% and improvements in precision by 3.5%, 8.3%, and 4.5% 

show how effective the suggested model is at correctly 

identifying and diagnosing skin cancer. 

Additionally, the suggested model improves on AUC 

noticeably, outperforming OCNN, CDDL, and CECNN by 

4.8%, 3.5%, and 8.3%, respectively. The model's 

improvements in precision and recall levels are responsible for 

this improvement. The proposed model successfully addresses 

the issues posed by various skin tones by incorporating deep 

forest models, ensemble learning procedures, and rule-based 

engines, making it appropriate for a variety of real-time 

scenarios. 

The suggested model not only improves diagnostic 

performance but also addresses the issue of delay in skin 

cancer detection. In real-time scenarios, the model reduces the 

necessary processing time by 10.5% compared to OCNN, 8.3% 

compared to CDDL, and 9.5% compared to CECNN. The use 

of low complexity ensemble learning processes, which enable 

quicker and more accurate predictions of cancer classes, 

allows for this reduction in delay. 

The research described in this paper introduces a unique and 

successful method for the immediate diagnosis of skin cancer. 

The proposed model significantly improves accuracy, 

precision, recall, and AUC while also reducing processing 

delay by combining a number of cutting-edge techniques, such 

as logistic regression, deep forest models, rule-based engines, 

and ensemble learning. These results demonstrate the model's 

potential to advance the field of skin cancer diagnosis and 

demonstrate its high applicability to a variety of real-world 

scenarios involving various skin types. As the proposed model 

has good efficiency; the work can articulate a compelling 

value proposition for healthcare systems. This involves 

assessing the potential reduction in unnecessary diagnostic 

procedures, improved treatment planning, and enhanced 

overall healthcare delivery.  

Model Complexity: In proposed work the bagging-based 

models are used in ensemble as it has less complexity than 

boosting. Bagging models, such as Random Forests (an 

ensemble of decision trees), operate in parallel, making them 

easier to parallelize and less sensitive to overfitting. 

 

 

6. FUTURE SCOPES 

 

There are several suggestions for additional research and 

development in this area based on these findings. 

Integration of additional data sources: The integration of 

various data sources, such as genetic data, environmental 

factors, and patient history, can be beneficial for the proposed 

model. The diagnostic procedure may be improved by 

including these extra data points, which may increase the 

model's predictive power and enhance its performance across 

various skin cancer types and demographics. 

Investigation of cutting-edge deep learning methods 

Although deep forest models and ensemble learning 

techniques are used in this paper, more research into advanced 

deep learning techniques such as convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and 

transformers may produce even better results. These methods 

excel at identifying intricate patterns and connections in 

medical images and sequences, which is essential for correctly 

identifying skin cancer. 

Enhancements to interpretability and explainability: The 

proposed model seeks to be explicable, so future research can 

concentrate on creating more complex techniques for 

understanding and explaining the model's predictions. By 

enabling trust and transparency in the model's 

recommendations, methods like attention mechanisms, 

saliency maps, and feature visualization can offer deeper 

insights into the decision-making process. 

Expansion to other dermatological conditions: This paper 

presents research on the detection of skin cancer. The 

suggested model, though, can also be used to treat other 

dermatological conditions. The model can be modified to 

perform precise and real-time diagnosis for conditions like 

eczema, psoriasis, and melanoma by training it on a diverse 

dataset containing a variety of skin conditions. 

Validation and clinical trials: Additional validation and 

clinical trials are necessary to guarantee the proposed model's 

practical applicability. Collaborations with medical 

institutions and professionals can make it easier to gather 

massive amounts of data, rigorously assess the model's 

performance, and gauge its influence in actual clinical settings. 

Applications for mobile and telemedicine: With the 

growing use of mobile devices and telemedicine, 

incorporating the suggested model into mobile applications or 

telemedicine platforms can greatly improve access to skin 

cancer diagnosis. Users would be able to receive prompt and 

accurate diagnoses from the comfort of their homes, lessening 

the burden on medical facilities and enhancing patient 

outcomes. 

Generalization to diverse populations: The paper 

emphasizes how important it is to consider various skin tones 

when diagnosing skin cancer. Future studies can concentrate 

on ensuring that the suggested model can be applied to a 

variety of populations, including people with darker skin tones. 

This can entail assembling more representative datasets and 

researching methods that consider potential bias and guarantee 

fair and accurate diagnoses for everyone. 

Real-time feedback and continuous learning: The 

performance and adaptability of the suggested model can be 

improved by implementing real-time feedback and continuous 

learning mechanisms by integrating image dataset with 

multimodal dataset (real-time feedback) settings. The model 

can continuously enhance its diagnostic abilities and stay up 

to date with new information and trends in the field by 

gathering dermatologist feedback and incorporating it into the 

training process. 

The study, in conclusion, opens up a number of promising 

directions for further investigation into the diagnosis of skin 

cancer. The proposed model can further enhance diagnostic 
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performance and accuracy by investigating the integration of 

additional data sources, cutting-edge deep learning methods, 

and improving interpretability. Furthermore, clinical 

validation, expansion to other dermatological conditions, and 

incorporation into mobile and telemedicine applications can 

all help this technology become more widely used and 

practical, ultimately benefiting both patients and healthcare 

professionals. 
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