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Player performance is the most critical parameter for a match’s outcome. The selection of 

a certain set of players according to various parameters, including consistency, Form, 

performance against the particular opponent, performance in the specific venue, the 

tournament in which the match is being played, the pressure of the type of match, etc., 

elevates the probability of a team winning the game. The following research aims to analyze 

and predict the player’s performance based on the player’s performance parameters. The 

problem is segmented into two parts, i.e., batting performance and bowling performance. 

The problem is presumed to be a classification problem. Runs scored, and wickets taken 

are classified in distinct ranges. Naïve Bayes’, Decision Tree, Random Forest, and Support 

Vector Machine (SVM) are the algorithms used in the research. Random Forest and 

Decision Tree were almost identical and, hence, the most accurate for the result. 
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1. INTRODUCTION

Two teams of eleven players each compete in a game of 

cricket, with each team getting to bat and bowl against the 

other based on the outcome of a necessary act called a toss, 

which involves flipping a coin and asking for the face of the 

coin to land on the ground. If the call is accurate, the side 

selects whether to bat first or ball first. The teams are selected 

based on performance parameters like consistency, Form, 

venue, opposition, and weather. The role of a batsman is to 

score the maximum runs, while the role of the bowlers of the 

same team is to defend the total runs scored by the batter of 

their team. The performance parameter includes four basic 

parameters: the performance of a player throughout their 

career, the performance of a player in the last certain months, 

called Form, the performance of the player against the 

opponent, and the performance of the player at the particular 

venue [1]. Other parameters include weather, pitch, toss, type 

of match, etc. The role of a captain and team management is 

to pick a set of players that can perform better in both innings, 

i.e., batting and bowling. Generally, a team consists of four

types of players: batters, wicketkeepers, all-rounders, and

bowlers. Batters are the players that bat mostly; they start the

game and go down to five wickets. The wicketkeeper is the

player who bats and does wicketkeeping only; they do not do

bowling. Bowlers are the players who are good at bowling and

do not have much of a batting record. All-rounders are the 

players who bat and bowl in the match and have a considerable 

record in both [2]. 

The following research aims to analyze the performance 

parameters of each player, including consistency, Form, 

performance against opposition, and performance at a venue 

in a One Day International (ODI) match based on supervised 

machine learning algorithms by segmenting the problem into 

a set of two problems: batsman performance prediction and 

bowler performance prediction. 

The data was classified into different class labels depending 

on a certain range and then calculated as the performance 

parameter. The labeled class is given a weighted average 

according to its impact on performance. The resultant 

parameter reflects a certain class label for the runs a batsman 

will score or the wickets a bowler will take in a match. 

The primary objective of this research was to enhance 

predictive analysis within the context of cricket matches. To 

further develop and extend this study, an initial approach 

involves conducting similar research across various cricket 

matches. This expansion is deemed essential for a 

comprehensive predictive analysis application, considering 

the substantial impact of match characteristics on outcomes. 

Future work in this research could incorporate additional 

diverse inputs, such as the player’s role on the field (e.g., 

Opening Batsman, All-rounder, Captain, WK), the specific 
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tournament in which the match is played (categorized into 

Two Team Tournament, Three-Four Team Tournament, and 

Five Team Tournament), and factors influencing performance, 

including the psychological aspect denoted by the Toss and 

Pressure attributes. 

The Toss attribute acknowledges the psychological 

advantage associated with winning the coin toss. At the same 

time, pressure quantifies the mental stress a player faces, 

ranging from 1 to 5 and varying based on the match type, such 

as normal matches, quarterfinals, semifinals, and finals. These 

additional dimensions aim to enrich the predictive capabilities 

of the analysis, providing a more nuanced understanding of 

cricket match dynamics. 

 

 

2. LITERATURE SURVEY 

 

Despite the thorough web search, relatively few papers 

addressed the topic of cricket players’ capability to foresee 

their performance. The performance of cricket players has 

been the focus of relatively few research studies. Muthuswamy 

and Lam [3] surveyed the effectiveness of Indian bowlers 

against seven foreign teams frequently encountered by the 

Indian cricket team. They utilized the backpropagation system 

and the radial basis network function to predict a bowler’s 

potential runs conceded, and wickets were taken in an ODI 

match. Wickramasinghe [4] employed the hierarchical linear 

model to forecast batters’s performance in a test series. In 

limited-overs cricket, Barr and Kantor [5] evaluated and 

selected batters based on a 2D graphical depiction with strike 

rate on one axis and P(out) on the alternative, introducing a 

new measure, P(out), representing the probability of getting 

out. Their selection criterion considered batting average, strike 

rate, and P(out). Iyer and Sharda [6] employed neural networks 

to classify bowlers and batters into three categories: performer, 

middling, and failure, considering players’ historical ratings to 

recommend squad inclusions for the 2007 World Cup. 

Jhawar and Pudi [7] predicted cricket match results by 

evaluating individual player performances in both teams. 

Using algorithms, algorithms, they algorithms, they simulated 

bowlers’ a Lemmer [8] introduced the combined bowling rate 

as a novel metric to evaluate bowlers’ performances. 

Bhattacharjee and Pahinkar [9] analyzed IPL bowlers’ 

performances by combining economy, strike rate, and bowling 

average, identifying additional variables affecting 

performance through a multiple regression model. Mukherjee 

[10] used social network analysis to rate bowlers and batters 

in team performance, creating networks from ODI and test 

cricket player data. Shah [11] proposed new metrics for player 

performance assessment. The new batting metrics now 

incorporate the quality of each batter a batsman encounters, 

while the bowlers’ metrics consider the quality of each batter 

they bowl to. The overall performance index for a batsman is 

determined by summing up individual performances against 

each bowler. 

Similarly, a bowler’s overall performance index is 

calculated as the sum of their performances against each 

batter. Parker et al. [12] introduced a model for assessing 

player value in the IPL auction, considering variables such as 

a player’s experience, strike rate, and prior bidding price. The 

batting index and bowling index were introduced by Prakash 

et al. [13] to rate individual players’ performances for their 

algorithms to anticipate IPL match results. A mathematical 

model was used by Bukiet and Ovens [14] to recommend 

excellent batting orders for one-day internationals. Schumaker 

et al. explained the application of statistical simulations in 

predictive modeling for various sports [15]. Haghighat et al. 

[16] examined the data mining techniques applied to forecast 

sports and discussed the pros and cons of each approach. 

Football match outcomes were predicted using machine 

learning approaches by Hucaljuk and Rakipović [17]. Neural 

networks were used by McCullagh [18] in the Australian 

Football League for the selection of players. 

The initial approach to this research with the data 

interpretation and preprocessing change. They took each entry, 

irrespective of the value it represented. They used the record 

of not batted and bowled and replaced the null and empty 

values with the class average, which enhanced the class 

imbalance, and hence, the accuracy was slightly low. The 

approach was significant [19]. This research was enhanced 

with more precise data cleaning. The parameters are the same, 

but the initial data is segmented differently according to the 

required filters. 

The current challenge is creating a reliable prediction model 

to assess cricket player performance with an emphasis on 

batting and bowling traits. Analytic Hierarchy Process (AHP)-

determined attribute weights, scaling strategies, and attribute 

ratings should all be successfully integrated into the model. 

The study also evaluates how four supervised learning 

algorithms (Decision Tree, Random Forest, SVM, and Naïve 

Bayes) predict player performance measures. The aim is to 

find the best algorithm for this task while considering variables 

like predicted accuracy and computing efficiency, leading to 

the following research objectives. 

• Develop a predictive model for assessing cricket 

batting and bowling performance. 

• Evaluate the effectiveness of Naïve Bayes, Decision 

Tree, Random Forest, and SVM algorithms for 

prediction. 

• Investigate the impact of attribute ratings and scaling 

techniques on predictive accuracy. 

• Assess the significance of attribute weights 

determined using the AHP. 

• To determine the most suitable approach, compare 

algorithm performance, considering factors like 

computational complexity and predictive accuracy. 

By using sophisticated data pretreatment methods and 

machine learning algorithms, this work seeks to solve the 

inherent difficulties in evaluating the performance of cricket 

players. Combining attribute ratings with weights derived 

from the AHP, the study aims to create a complete framework 

for assessing player form, consistency, and performance 

against various opponents and locations. The study attempts to 

determine the best method for forecasting player performance 

metrics by weighing the relative value of different 

performance variables and applying supervised learning 

algorithms, including Naïve Bayes, Decision Tree, Random 

Forest, and SVM. It is anticipated that the results of this study 

will greatly improve the precision and dependability of cricket 

player performance evaluation, offering insightful information 

on talent discovery to selectors, coaches, and team managers. 

Additionally, the paper advances sports analytics by 

presenting new approaches to predictive modeling and data 

pretreatment in cricket. By highlighting the importance of 

attribute ratings, scaling strategies, and algorithm selection, 

the study provides useful information transferable to different 

sports domains. The study contributes to our cricket player 

performance dynamics knowledge by developing and 
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assessing prediction models. It also serves as a useful resource 

for scholars and professionals in the wider sports analytics area. 

This work is important because it has the potential to transform 

cricket management techniques, enhance talent discovery 

procedures, and push the boundaries of sports performance 

evaluation. 

This study starts by outlining the background and context of 

evaluating cricket players' performances while emphasizing 

the difficulties and complications of using more conventional 

approaches. The research goals are then presented using 

machine learning algorithms and sophisticated data 

pretreatment approaches to solve these issues. The problem 

formulation statement, which clarifies the research questions 

and hypotheses under examination, is next given and based on 

the literature review. The study's importance and uniqueness 

are then explored, focusing on how it could affect cricket 

management strategies and the larger sports analytics 

community. The paper concludes by outlining the format of 

the following sections: methodology, results, discussion, and 

conclusions. These sections contribute to thoroughly 

comprehending the suggested framework for cricket player 

performance. 

 

 

3. DATA AND TOOLS 

 

The initial data for the research is extracted directly from 

the ESPNcricinfo website and categorized by innings, i.e., 

each inning played by a player and their score listed in Table 

1. Some general attributes included name, country, opposition, 

runs scored, and minutes batted. The aim is to select the most 

accurate data to analyze and fit. 

 

Table 1. Covariance Matrix of Initial Data 

 

Category 
Innings Batted 

Flag 

Innings Not Out 

Flag 
50’s 100’s 

Innings Bowled 

Flag 

4 

Wickets 

5 

Wickets 

10 

Wickets 

Innings Batted Flag 1 0.212341 0.171422 0.079958 NaN NaN NaN NaN 

Innings Not Out 

Flag 
0.212341 1 0.05685 0.088069 NaN NaN NaN NaN 

50’s 0.171422 0.05685 1 
-

0.051716 
NaN NaN NaN NaN 

100’s 0.079958 0.088069 
-

0.051716 
1 NaN NaN NaN NaN 

Innings Bowled 

Flag 
NaN NaN NaN NaN 1 -0.0705 0.0705 NaN 

4 Wickets NaN NaN NaN NaN -0.0705 1 -1 NaN 

5 Wickets NaN NaN NaN NaN 0.0705 -1 1 NaN 

10 Wickets NaN NaN NaN NaN NaN NaN NaN NaN 

In the data, the two challenges were data redundancy and 

missing data. The duplicate values are initially replaced to 

eliminate the data redundancy using the data mining approach. 

The dataset with exactly 1/3 of the initial data was eliminated, 

which was further divided into attributes of batting and 

bowling proportions. 

Data about innings flag signaling that helps remove players 

who had not batted or bowled in a particular inning was 

extracted. Now, the data available is precise and accurate and 

has no irregularity. For analysis purposes, model fitting, and 

prediction, Python 3.7 is used with Windows 10. 

 

3.1 Analysis 

 

The analysis is done based on four performance parameters, 

i.e., a. consistency (data on the overall performance of a player 

throughout his career); b. Form (data on the performance of 

the player in the last year); Opposition (data of the overall 

performance of a player throughout his career against 

particular oppositions); and venue (data of the overall 

performance of a player at a particular venue). Table 2 reveals 

the estimation of inherited attributes of both the batsman and 

bowlers.

Table 2. Inherited Attributes 

 
For Batting For Bowling 

Total Innings: Sum of the Batted Flag. 

Average: Runs scored per times dismissals, i.e., 

Average=
Total Runs Scored 

Total dismissals
 

Strike Rate: The average of the strike rate attribute. 

Fifties: Count of 50s. 

Centuries: Count of 100s. 

Zeros: It is, 

Zeros=Total Innings-Not Out Flags Count 

Highest Score: The career-highest score of the individual 

Total Innings: Sum of the Batted Flag. 

Overs: Total overs bowled in the career. 

Average: Runs conceded scored per wicket, i.e., 

Average=
Total Runs Conceded

Total Wickets
 

Strike Rate: Balls bowled per wicket taken, i.e., 

Strike rate=
Balls Bowled

Wickets Taken
 

FFs: Total count of 4 & 5 wickets hauls. 

3.2 Attribute ratings 

 

Following the selection of attributes, the major concern was 

the scale of the data. For example, the batsman’s score may 

vary from 0 to 264. To counter that, an important aspect of 

data preprocessing is used: Attribute Rating. It means 

replacing existing values with new ones that reflect a certain 

range of data. For example, a score between 50 and 99 is 

considered a fifty, while a score between 100 and 200 is 

counted as 100 only. Hence, the data can be rated as the range 

of runs a player will score. Where 1 will represent the score of 

1-24. The predicted class, i.e., the number of runs a batter will 

score or wickets a bowler will take, is kept only in the venue 

data table, as the score of the batsman majorly depends upon 

451



 

the venue of the match irrespective of the opponent. For 

example, a player performs better while playing against a 

particular opposition at home rather than away or neutral. 

Hence, the data is considered for each player’s venue. Suppose 

the value of opposition or venue is not available. In that case, 

i.e., the player has never played a match against a particular 

opposition or at a particular venue, this condition voluntarily 

reflects the value to the lowest rating of the player’s 

performance parameter, where the rating for 0 lies. Hence, a 

major concern regarding data values is countered as each type 

of value is present in the data while the other values are given. 

Hence, the data unavailability is canceled out. 

The common operation applied on all four tables is grouped 

by player name for consistency and Form after filtering the 

form table with data from only the previous year and recorded 

in Table 3. 

In Table 3, the consistency parameter serves as a metric for 

assessing a batter’s overall performance across innings. It 

categorizes each batter according to the number of centuries, 

fifties, and zeros scored out of their total innings. The other 

attribute, Form, focuses on a more limited set of innings to 

analyze and categorize a batter’s performance. Specifically, it 

assesses performance based on the most recent 15 innings, 

providing insights into the batter’s current Form and recent 

achievements. The third attribute, assessing a batter’s 

performance against various oppositions, the number of 

innings played against each opponent, and the occurrences of 

centuries, fifties, and zeros, is the basis for the class above 

labels. Scaling these values enables us to analyze and 

determine the level of comfort a batter exhibits when playing 

against different oppositions, helping identify the opponents 

perceived as more favorable or challenging by the batter. 

The fourth attribute is taken to evaluate the batter’s 

performance across various venues, and the analysis involves 

considering the number of innings played at each location, 

along with whether the batter achieved centuries, fifties, or 

zeros. As previously mentioned, these parameters are utilized 

to assign class labels. Scaling these values facilitates a 

comprehensive examination, allowing us to discern the venues 

where a batter is most comfortable playing and identify those 

deemed more challenging. The common ratings for all 

attributes are shown in Table 4. 

A common practice is to employ ratings bucketing to 

analyze multiple common ratings, such as average and strike 

rate, which often involve decimal values. This process entails 

grouping these numerical values into distinct buckets or ranges, 

enabling a more manageable and insightful analysis. By 

categorizing the ratings this way, trends and patterns can be 

identified more easily, facilitating a comprehensive 

examination of the data. Now, the bowling performance 

parameters are reported in Table 5. 

 

Table 3. Batting attributes performance parameter 

 
Attributes Consistency Form Opposition Venue 

No. of Innings 

1–49: 1 

50–99: 2 

100–124: 3 

125–149: 4 

>=150: 5 

1–4: 1 

5–9: 2 

10–11: 3 

12–14: 4 

>=15: 5 

1–2: 1 

3–4: 2 

5–6: 3 

7–9: 4 

>=10: 5 

1: 1 

2: 2 

3: 3 

4: 4 

>=5: 5 

Centuries 

1–4: 1 

5–9: 2 

10–14: 3 

15–19: 4 

>=20: 5 

1: 1 

2: 2 

3: 3 

4: 4 

>=5: 5 

1: 3 

2: 4 

>=3: 5 

1: 4 

>=2: 5 

Fifties 

1–9: 1 

10–19: 2 

20–29: 3 

30–39: 4 

>=40: 5 

1–2: 1 

3–4: 2 

5–6: 3 

7–9: 4 

>=10: 5 

1–2: 1 

3–4: 2 

5–6: 3 

7–9: 4 

>=10: 5 

1: 4 

>=2:5 

Zeros 

1–4: 1 

5–9: 2 

10–14: 3 

15–19: 4 

>=20: 5 

1: 1 

2: 2 

3: 3 

4: 4 

>=5: 5 

1: 1 

2: 2 

3: 3 

4: 4 

>=5: 5 

1–24: –1 

25–49: 2 

50–99: 3 

100–150: 4 

>=150: 5 

Highest Score 

(For Venue Only): 

 

Table 4. Common ratings of a batsman’s performance 

 

Batting Average 

0.0-9.99: 1 

10.00-19.99: 2 

20.00-29.99: 3 

30.00-39.99: 4 

>=40: 5 

Batting Strike Rate 

0.0-49.99: 1 

50.00-59.99: 2 

60.00-79.99: 3 

80.00-100.00: 4 

>=100.00: 5 
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Table 5. Bowling attributes performance parameter 

 
Attributes Consistency Form Opposition Venue 

No. of Innings 

1–49: 1 

50–99: 2 

100–124: 3 

125–149: 4 

>=150: 5 

1–4: 1 

5–9: 2 

10–11: 3 

12–14: 4 

>=15: 5 

1–2: 1 

3–4: 2 

5–6: 3 

7–9: 4 

>=10: 5 

1: 1 

2: 2 

3: 3 

4: 4 

>=5: 5 

Overs: 

1–99: 1 

100–249: 2 

250–499: 3 

500–1000: 4 

>=1000: 5 

1–9: 1 

10–24: 2 

25–49: 3 

50–100: 4 

>=100: 5 

1–9: 1 

10–24: 2 

25–49: 3 

50–100: 4 

>=100: 5 

1–9: 1 

10–19: 2 

20–29: 3 

30–39: 4 

>=40: 5 

Four/Five Wicket Haul: 

1–2: 3 

3–4: 4 

>=5: 5 

1–2: 4 

>=3: 5 

1–2: 4 

>=3: 5 

1–2: 4 

>=3: 5 

 

In Table 5, data for the consistency parameter functions as 

a metric to evaluate a bowler’s overall performance 

throughout innings. It classifies each bowler based on the total 

number of innings bowled, overs delivered, and the 

occurrences of five or four-wicket hauls concerning their 

overall innings. This classification provides insights into a 

bowler’s effectiveness and consistency in achieving 

significant milestones during their bowling spells. The other 

parameter form concentrates on a narrower set of innings to 

systematically assess and categorize a bowler’s performance. 

Specifically, it scrutinizes the bowler’s recent achievements 

and current Form based on the most recent 15 innings. This 

approach offers valuable insights into the bowler’s present 

effectiveness and highlights their recent accomplishments on 

the field. 

In assessing a bowler’s performance against various 

oppositions, key parameters such as the number of innings 

bowled, occurrences of five-wicket and four-wicket hauls, 

total overs bowled, and total innings come into play for 

classifying performance. By scaling these values, a 

comprehensive analysis can be conducted to determine the 

comfort level of a bowler against different opponents. This 

approach allows us to identify the oppositions where a bowler 

excels and those where they find it more challenging, 

contributing to a nuanced understanding of their effectiveness. 

Further, in evaluating a bowler’s performance across various 

venues, the classification considers key parameters such as the 

number of innings bowled, occurrences of five-wicket and 

four-wicket hauls, total overs bowled, and total innings 

bowled. By scaling these values, a detailed analysis can be 

conducted to ascertain the comfort level of a bowler at 

different venues. This approach allows for identifying venues 

where a bowler performs exceptionally well and encounters 

greater challenges, contributing to a nuanced understanding of 

their overall effectiveness across different playing 

environments. The common rating for bowling performance is 

shown in Table 6. 
 

Table 6. Common ratings of a bowling performance 

 

Bowling Average 

0.00-24.99: 5 

25.00-29.99: 4 

30.00-34.99: 3 

35.00-49.99: 2 

>=50.00: 1 

Bowling Strike Rate 

0.00-29.99: 5 

30.00-39.99: 4 

40.00-49.99: 3 

50.00-59.99: 2 

>=60.00: 1 

Utilizing common ratings bucketing is a valuable approach 

for scaling multiple common ratings in bowling, such as 

bowling average and bowling strike rate, especially given the 

prevalence of decimal values. This method categorizes these 

numerical ratings into specific buckets or ranges, allowing for 

a more straightforward and insightful analysis. By grouping 

the data this way, trends and patterns can be more easily 

identified, facilitating a comprehensive examination of the 

bowling performance metrics. 

 

3.3 Weighing attributes 

 

Different attributes reflect different characteristics of a 

player’s career, but every attribute has a unique impact, and no 

two attributes can have the same impact and priority. For 

example, the strike rate doesn’t play an important role as the 

average. Hence, the average weight must be more than the 

strike rates. To do that, weights were determined using a 

technique known as the Analytic Hierarchy Process (AHP) 

[20]. This technique gave each attribute a certain weighted 

value according to their priorities and impact. Every aspect of 

decision-making, both subjective and objective, is covered by 

the Analytic Hierarchy Process (AHP). By having the decision 

maker compare each assessment criterion pairwise, AHP 

generates weights for each criterion [21]. The higher the 

weight, the greater the importance assigned to the 

corresponding criterion. Subsequently, AHP assigns scores to 

each option for a fixed criterion based on the decision maker’s 

pairwise comparisons of the options within that criterion. A 

greater score denotes an improved choice performance 

concerning the criterion under consideration. Ultimately, AHP 

combines the criteria weights and the alternatives’ scores to 

produce a global score for every option and a corresponding 

ranking. A particular option’s global score is the weighted 

total of the ratings it received for each criterion. The four 

performance parameters to be calculated are: 

 

i. Consistency of Batting 

Performance=0.4262*average+0.2566*no. of 

innings+0.1510*SR+0.0787*Centuries+0.0556*Fift

ies–0.0328*Zeros 

ii. Consistency of Batting Performance=0.4174*no. of 

overs+0.2634*no. of 

innings+0.1602*SR+0.0975*average+0.0615*FF 

iii. Form of Batting 

Performance=0.4262*average+0.2566*no. of 

innings+0.1510*SR+0.0787*Centuries+0.0556*Fift

ies–0.0328*Zeros 

iv. Form of Bowling Performance=0.3269*no. of 
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overs+0.2846*no. of 

innings+0.1877*SR+0.1210*average+0.0798*FF 

v. Player Batting performance in 

opposition=0.4262*average+0.2566*no. of 

innings+0.1510*SR+0.0787*Centuries+0.0556*Fift

ies–0.0328*Zeros 

vi. Player Bowling performance in 

opposition=0.3177*no. of overs+0.3177*no. of 

innings+0.1933*SR+0.1465*average+0.0943*FF 

vii. Player Batting performance in particular 

venue=0.4262*average+0.2566*no. of 

innings+0.1510*SR+0.0787*Centuries+0.0556*Fift

ies+0.0328*HS 

viii. Player Bowling performance in particular 

venue=0.3018*no. of overs+0.2783*no. of 

innings+0.1836*SR+0.1391*average+0.0972*FF 

 

The predicted classification output in the ratings is shown 

in Table 7 below: 

 

Table 7. Predicted class labels 

 

Runs 

1–24: 1 

25–49: 2 

50–74: 3 

75–99: 4 

>=100: 5 

Wickets 

0: 1 

1: 2 

2: 3 

3:4 

>=4:5 

 

Table 7 signifies the class labels the model predicts upon 

mapping the output labels. Based on the inputs, it can be 

estimated how much or in which range the batter will score 

runs or take wickets. For four estimation purposes, the four 

supervised algorithms, i.e., Naïve Bayes’, Decision Tree, 

Random Forest, and SVM, are used to train the model and fit 

the data. 

(a). Naïve Bayes’: Bayesian classifiers are statistical tools 

used for predicting the probability that a given tuple belongs 

to a specific class [22]. The Naïve Bayes classifier, a Bayesian 

classifier, operates under the assumption that each attribute 

independently affects the class label, regardless of the values 

of other attributes. This assumption is known as class-

conditional independence. Bayesian classifiers rely on Bayes’ 

theorem for their foundation. 

Bayes’ Theorem: Let X be a data tuple and C a class label. 

Let X belongs to class C, then (Eq. (1)): 

 

𝑃(𝐶|𝑋) = (𝑃(𝑋|𝐶) ∗ 𝑃(𝐶))

𝑃(𝑋)
 (1) 

 

where, 

• 𝑃(𝐶 ∣ 𝑋) is the posterior probability of the 𝐶 given 

predictor 𝑋. 

• 𝑃(𝐶) is the prior probability of class. 

• ( )P X C∣  is the posterior probability of 𝑋 given the 

class 𝐶. 

• 𝑃(𝑋) is the prior probability of predictor. 

The classifier computes 𝑃(𝐶 ∣ 𝑋)  for each class 𝐶𝑖  with 

respect to a given tuple 𝑋 . Subsequently, it predicts that 𝑋 

belongs to the class with the highest posterior probability 

conditioned on 𝑋.That is 𝑋 belongs to class 𝐶𝑖 (Eq. (2)): 

 

𝑃(𝐶𝑖|𝑋) > 𝑃(𝐶𝑗|𝑋)𝑓𝑜𝑟1 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑖 (2) 

 

(b). Decision Tree: Creating decision trees for class-labeled 

training tuples is the method referred to as decision tree 

induction. A decision tree is a flowchart in a tree structure [23]. 

Every internal node in it represents a test for a certain 

characteristic, and every branch depicts the test’s result. A 

class label is known as a leaf node. The root node is the initial 

node at the tree’s top. Starting from the root node all the way 

downwards to the leaf node, where the class prediction of the 

tuple is stored, the attributes of the tuple are evaluated beside 

the decision tree to classify the tuple. In his publication, Ross 

Quinlan described the ID3 decision tree algorithm [24]. Later, 

in the study [25], Lou et al. unveiled ID3’s substitute, C4.5, to 

address a few drawbacks, such as over-fitting. C4.5 is 

competent enough to handle training data with missing values, 

characteristics with diverse prices, and both continuous and 

discrete characteristics, unlike ID3. Each training pair is 

placed at the root node at the start of a simple decision tree 

induction process. Next, the tuples are partitioned recursively 

according to predetermined attributes. An attribute selection 

approach that outlines a heuristic method for figuring out the 

splitting criteria is used to choose attributes. If all of the 

training tuples are used, all of the training tuples belong to the 

identical class, or there are no more attributes for partitioning, 

the algorithm stops. ID3 employs an attribute choice metric 

known as information gain, the difference between the 

information essential for tuple classification and the 

information essential after a split. These two may be 

articulated in the following way: Anticipated data required for 

categorizing a pair in a training set 𝐷 (Eq. (3)): 

Information Gain 

 

(𝐷, 𝐴) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑ (
|𝐷𝑖|

|𝐷|
) ∗ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑖) (3) 

 

where, pi represents the non-zero probability that a tuple in 𝐷 

belongs to class 𝐶𝑖. 

Information needed after the split (Eq. (4)): 

Information Needed 

 

(𝐷, 𝐴) = ∑ (
|𝐷𝑖|

|𝐷|
) ∗ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑖) (4) 

 

where, 𝐴 is the attribute on which the tuples are to be divided. 

Then, information gain (Eq. (5)): 

 

𝑔𝑎𝑖𝑛(𝐴) = 𝑖𝑛𝑓(𝐷) − 𝑖𝑛𝑓𝐴(𝐷) (5) 

 

The attribute with the maximum information gain is elected 

as the splitting attribute. 

(c). Random Forest: Random Forests, an ensemble 

approach applicable to classification and regression, consists 

of decision trees where each relies on an independently 

sampled vector, maintaining the same distribution across the 

entire forest [26]. The algorithm recurrently generates decision 

trees, creating a forest. Random attributes are selected at each 

node to assess the split [27]. Ho [28] presented the first random 

forest technique, which emphasized the idea of a random 

subspace. Later, Breiman [29] improved the method and called 

it Random Forests. A dataset D of d tuples is the first step in 
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the random forests decision tree construction process. To 

construct k decision trees, a training set Di of d tuples is 

selected with replacement from D for each iteration, k. A 

subset of attributes is randomly chosen at each node for 

potential splits, aiding in constructing a decision tree classifier. 

Trees are developed using the CART methods and left 

unpruned after reaching full growth. CART, a non-parametric 

decision tree induction method, recursively selects rules based 

on variable values to identify the best split. The splitting 

process stops when further gain is unattainable or specific 

predetermined criteria are met [30]. 

(d). SVM, or support vector machine: In their work [31], 

introduced the idea of a support vector machine. SVMs have a 

lower propensity for overfitting and are quite accurate. SVMs 

are useful for both classification and numerical prediction. 

Using a nonlinear mapping, SVM raises the original data into 

a higher dimension [32]. Next, this new dimension looks for a 

linear optimum hyperplane that divides the tuples of one class 

from another. Tuples from two classes may always be 

separated by a hyperplane given a suitable mapping to a high 

enough dimension. The method locates this hyperplane using 

support vectors and margins that are determined by the support 

vectors. The algorithm’s support vector discoveries provide a 

compact explanation of the learned prediction model. One way 

to express a separating hyperplane is (Eq. (6)): 

 

. 0W X b+ =  (6) 

where, W denotes a weight vector, n represents the quantity of 

attributes, denoted by a, and b as a scalar commonly referred 

to as a bias. If two attributes, A1 and A2, are provided as inputs, 

training tuples become 2-D. 

 

 

4. RESULTS 

 

The data was preprocessed using Microsoft Power Query 

before being processed in Python for modeling purposes. The 

dataset was first divided into four subsets: 40% for testing and 

60% for training, 30% for testing and 70% for training, 20% 

for testing and 80% for training, and 10% for testing and 90% 

for training. The four supervised algorithms were used for the 

learning process: Naïve Bayes’, Decision Tree, Random 

Forest, and SVM. Table 8 shows the accuracy for batting data 

and Table 9 for bowling data. 

The performance of each algorithm (For Batting Data, For 

Bowling Data) as per the data is as follows- 

(a). Naïve Bayes’: For naïve bayes classification, Gaussian 

naïve bayes was used. It did not succeed in providing high 

accuracy as the amount of data was comparatively large, and 

probabilities were not accurate. 

(b). Decision Tree: The decision tree classifier was applied 

with the “Entropy” criteria with a maximum depth of 25 as the 

data was large. It scored the highest accuracy for the learning 

data and predicted class, as shown in Figure 1. 

 

 
 

Figure 1. Decision Tree 

 

Table 8. Accuracy of Model for Batting Data 

 

Classifier 
Accuracy 

60%|40% 70%|30% 80%|20% 90%|10% 

Naïve Bayes’ 67.7703 67.8193 67.5458 68.137 

Decision Tree 97.4492 97.4512 97.4089 97.3407 

Random Forest 97.071 97.139 97.182 97.248 

SVM 69.6355 69.3076 69.6465 69.7863 

 

Table 9. Accuracy of Model for Batting Data 

 

Classifier 
Accuracy 

60%|40% 70%|30% 80%|20% 90%|10% 

Naïve Bayes’ 91.5327 91.4588 91.7994 91.3459 

Decision Tree 94.8974 94.7866 94.9045 94.7383 

Random Forest 94.9078 94.7728 94.9183 94.7314 

SVM 91.5327 91.4588 91.7994 91.3459 
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(c). Random Forest: Random Forest is the enhanced 

decision tree with more robust functions. The random forest 

was modeled with the default number of trees, i.e., 100 

estimators. The accuracies were significant as the number of 

trees was less and increased with higher estimators. 

(d). Support Vector Machine: SVM was trained with “rbf” 

kernel at a random state. It performed lower than expected as 

the data was huge, but the class labeling did not support the 

algorithm, and it performed closely to the Naïve Bayes’. 

The study produced several significant findings that 

clarified how well various machine learning algorithms 

predicted the performance of cricket players. First, the 

decision tree classifier proved robust and reliable in processing 

cricket performance data, consistently outperforming 

competing algorithms across a range of training-test splits. 

According to this research, decision trees may effectively 

predict performance outcomes and represent intricate 

interactions among cricket player traits. 

Furthermore, because of the high entropy of the data, the 

Random Forest classifier was shown to be the best-fit model 

for the dataset. The Random Forest model's adaptability and 

effectiveness in capturing complex patterns and variations in 

player performance across many qualities and settings are 

highlighted by its capacity to handle high-entropy data. This 

finding emphasizes how crucial it is to use ensemble learning 

strategies in sports analytics, such as Random Forest, to 

improve model performance and forecast accuracy. 

Additionally, compared to decision trees and Random 

Forests, the study found that the Naïve Bayes and SVM 

classifiers performed comparatively worse. This research 

implies that decision trees and ensemble approaches may be 

more successful in forecasting cricket player performance than 

Naïve Bayes and SVM classifiers, even though they may have 

certain benefits in particular situations, such as managing 

smaller datasets or nonlinear connections. 

The study's findings highlight how important it is to use 

ensemble methods and sophisticated machine learning 

algorithms in sports analytics to enhance player performance 

prediction and guide managerial and coaching decisions in 

cricket. 

 

4.1 Implications of the study 

 

This study has implications for sports analytics and cricket 

management in several areas. First, the suggested framework 

for evaluating cricket player performance provides an 

organized methodology that may help managers, coaches, and 

selectors make well-informed choices about player selection, 

team composition, and long-term planning. The platform uses 

machine learning algorithms and sophisticated data 

preparation techniques to deliver insightful information about 

player form, consistency, and performance versus certain 

opponents and settings. 

The study's conclusions also benefit the larger area of sports 

analytics as they show how useful it is to use complex 

analytical techniques when assessing player performance. An 

effective framework for deciphering complicated sports data 

and identifying patterns and trends may be obtained by 

applying the AHP and ensemble learning algorithms like 

Random Forest. Consequently, the research emphasizes how 

crucial it is for sports managers to implement data-driven 

strategies to improve decision-making and maximize team 

output. 

 

5. CONCLUSIONS 

 

This research investigated how well different machine 

learning algorithms could forecast cricket player performance 

using various characteristics. The results of determining the 

resilience and reliability of decision tree classifiers in 

modeling complicated interactions within cricket player data 

showed that they consistently beat other methods. Furthermore, 

because of its capacity to handle high-entropy data and 

recognize complex patterns in player performance, the 

Random Forest classifier was shown to be the best-fit model 

for the dataset. 

The study did note, however, that the Naïve Bayes and SVM 

classifiers performed substantially worse than the ensemble 

techniques and decision trees, indicating that these algorithms 

may not be as good at predicting the performance of cricket 

players. The results show the importance of using cutting-edge 

machine learning methods in sports analytics, including 

decision trees and Random Forests, to improve forecast 

accuracy and guide managerial and coaching decisions about 

cricket. 

Future studies may concentrate on enhancing current 

models and investigating new factors to increase prediction 

accuracy. Furthermore, exploring deep learning methods and 

integrating real-time data streams may provide fresh 

perspectives on the dynamics of player performance and 

further the development of sports analytics in cricket and other 

sports. 
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