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Dental cavities, caries, or tooth decay are prevalent oral health concerns worldwide. This 

research proposes an automated approach for dental cavities detection utilizing a Neural 

Turing Machines (NTM) and High Intensity Color Detection (NTM-HICD) model. These 

two models process the input samples in a sequence order. NTM is a type of artificial neural 

network (ANN) architecture that combines neural networks with external memory 

structures. NTM mainly designed to mimic the ability of a Turing machine to read the 

interesting patterns from various disease detection. The proposed NTM-HICD system 

combines the strengths of multiple deep learning algorithms to enhance the accuracy and 

robustness of dental cavity detection. The design incorporates three primary components: 

image processing, feature extraction, and classification. Firstly, dental X-rays are processed 

to enhance the quality of input data. A pre-trained model DeepLabV3+ is used to train on 

dental dataset. The images are then subjected to effected region extraction to focus on the 

tooth areas for more targeted analysis. Secondly, a set of diverse feature extraction 

techniques is applied to capture comprehensive information from the effected regions. 

Lastly, an ensemble of classifiers, such as support vector machines (SVM), random forests 

(RF), and deep neural networks (DNN), is employed to leverage the individual strengths of 

each classifier. The fusion of multiple classifiers allows for improved generalization and 

enhanced detection performance. 

Keywords: 

dental cavities, Neural Turing Machines 

(NTM), High Intensity Color Detection 

(HICD), DeepLabV3+, support vector 

machines (SVM), random forests (RF), deep 

neural networks (DNN) 

1. INTRODUCTION

Dental cavities, also known as dental caries or tooth decay, 

are one of the most common oral health issues worldwide. 

They result from the demineralization of tooth structures by 

acids produced by bacterial activity. Timely detection of 

dental cavities is crucial to prevent their progression and 

minimize the need for invasive dental treatments [1, 2]. 

Presently an advanced learning models shows the high 

performance in several complex applications like dental 

cavities detection. Leveraging these technologies, researchers 

and dental practitioners have sought to develop automated 

systems for dental cavity detection to enhance accuracy and 

efficiency in clinical settings. The traditional method for 

detecting cavities involves visual inspection by dentists and 

radiographic examinations, such as X-rays. However, these 

approaches can be subjective, and cavities may be missed, 

especially in their early stages. Machine learning (ML) and 

deep learning (DL) algorithms, have the potential to offer 

objective and reliable detection by learning patterns and 

features from large datasets of dental images. In this research, 

we aim to explore and evaluate the effectiveness of these 

algorithms in detecting dental cavities [3]. By using a diverse 

dataset of dental images, including intraoral X-rays and 

clinical photographs, we will train and fine-tune state-of-the-

art models to identify cavities accurately and efficiently. 

Image processing has become a fundamental tool in various 

fields of medicine, including dentistry. In dental care, the early 

detection and accurate diagnosis of dental cavities are 

paramount to prevent further deterioration and ensure timely 

treatment [4]. Dental cavities, or caries or tooth decay, are 

among the most prevalent oral health issues worldwide. 

Traditionally, dentists have relied on visual inspection and 

conventional dental imaging techniques, such as X-rays, to 

identify cavities. However, these methods may have 

limitations in detecting early-stage cavities and subtle changes 

in tooth structures. Enter image processing - a cutting-edge 

technology that has revolutionized dental cavities detection [5]. 

Through the application of advanced algorithms and 

computational techniques, image processing enhances the 

analysis of dental images, making it possible to identify 

cavities with greater accuracy and efficiency [6, 7]. This 

process involves various stages, such as image enhancement, 

segmentation, feature extraction, and computer-aided 

diagnosis, collectively contributing to a more comprehensive 

and precise dental health assessment. 

On the other side, the dental images often suffer from noise 

and artifacts, which can impede the accuracy of cavity 
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detection algorithms. The presence of noise in dental images 

can obscure subtle cavities or create false positives, leading to 

misdiagnoses and improper treatment plans. Therefore, the 

development of an advanced noise removal technique is vital 

to enhance the performance of dental cavity detection systems 

and improve patient outcomes. 

 

1.1 Research objectives 

 

The objectives are mainly focused on detecting the dental 

caries. 

 

➢ To provide the better training using the pre-trained 

model DEEPLABV3+ for effective analysis of caries 

patterns.  

➢ To provide the better pre-processing technique that  

➢ To extract the accurate features from the input dental 

images using Siamese Network. 

➢ An accurate automated system is developed by using 

the NTM-HICD. 

➢ Detecting the accurate effected regions is one of the 

advantages in this system.  

 

 

2. LITERATURE SURVEY 

 

Silva et al. [8] introduced a deep study of several 

segmentation models implemented on dental images. The 

author compared the ten segmentation models and analyzed 

the comparison between these segmentation models. All the 

experiments are conducted using X-ray images collected from 

various sources. Noise and artifacts in X-ray images can affect 

how well segmentation models function. The ability to 

withstand such difficulties is essential for clinical applicability. 

AL-Ghamdi et al. [9] suggested CNN as a NASNet model with 

various layers present in this model. Firstly, the data is filtered 

and improved by constructing a multi-output model. Finally, 

the model shows the loss and accuracy curves as evaluation 

parameters. The model has attained over 96% accuracy, 

outperforming other existing algorithms. The proposed 

approach takes more time to detect the accurate affected 

regions. Prados-Privado et al. [10] developed an automated 

detection of dental cavities among the given panoramic 

radiographs. The proposed approach is divided into two tasks 

such as object detection and classification. A mask RCNN 

utilized for object detection, and ResNet101 used for variety. 

Finally, the accuracy of 99.23%, an overall loss of 0.77% for 

proposed approach. One of the significant challenges in this 

paper is to take more time for processing training set. Chen et 

al. [11] introduced the fast R-CNN model to eliminate the 

coincide boxes that find abnormal and regular teeth. The 

detected coincide boxes were removed by the filtering 

approach, which is connected with the Fast-RCNN. It also 

used neural networks for analyzing the missing teeth. Based 

on the teeth numbering system, the proposed method detects 

the teeth boxes and specifies the intuitive rules. Finally, based 

on the abnormalities, the accuracy of the proposed model 

achieved limited results compared with existing models. Estai 

et al. [12] introduced an automated system that detects the 

abnormality and classifies it based on CNN. In the study [13], 

a novel dynamic system is developed using DL models. 

AlexNet transfer learning extracts features from a tooth image 

and determines whether the location is the upper or lower jaw. 

Finally, using the distance metric, the classification of tooth 

images is effectively based on four classes. The proposed 

model was also used to reduce the search space in the 

candidate-matching process. Moutselos et al. [14] introduced 

the Mask R-CNN that detects and classifies dental caries 

among the given teeth input collected from various online 

sources. The proposed approach mainly focused on removing 

the noise from the input images. Segmentation and data 

augmentation is used to improve the performance of the 

proposed system. Saini et al. [15] suggested finding dental 

caries among the given teeth datasets—the proposed method 

used teeth color images, which are classified based on 

information collected from telemedicine. Several comparisons 

among the DL models have been implemented, and the 

proposed approach obtained 99.88% testing accuracy. Park 

and Park [16] introduced the advanced ANN model that finds 

dental caries in the early stages of tooth decay. An AI-based 

approach significantly used to overcome various issues in the 

detection of dental images. Srivastava et al. [17] introduced an 

FCNN-based pre-trained model that detects caries on bitewing 

skiagraph. The proposed model achieved high accuracy 

compared with previous approaches. Lee et al. [18] proposed 

the new CNN model that detects caries from the periapical 

radiographs collected from various online sources. The result 

shows the strengths of the proposed approach based on caries 

detection. Tuzoff et al. [19] introduced a deep solution that 

dynamically detects caries from panoramic radiographs. 

Compared with ML models, automated systems show high 

performance. The performance of the proposed model was 

measured based on the parameters by using labeled medical 

images. Prajapati et al. [20] discussed various classifications 

based on dental disease detection. It's possible that the pre-

trained models in this research won't catch extremely 

particular details pertinent to dental images. High accuracy 

may offer difficulties because dental records contain 

distinctive features that are underrepresented in general 

images datasets like ImageNet. Lakshmi et al. [21] introduced 

a new model that predicts caries in the early stages. The deep 

CNN integrated with the Sobel edge technique is used to find 

the abnormal edges of the given input teeth images. The 

proposed approach also used various preprocessing techniques 

and segmentation that acquired an accuracy of 96.78%. Leo et 

al. [22] introduced the HNN model that predicts dental caries 

from input images. The proposed approach is a hybrid 

approach that combines ANN and DNN. Finally, significant 

outcomes are identified from the results to show the accurate 

classification of dental caries. 

 

 

3. DATA COLLECTION 

 

The dataset was collected from 

(https://mynotebook.labarchives.com/share/Vahab/) [23] 

which contains 1120 X-ray images gathered from the Kaggle. 

All the collected images are annotated dental X-ray images. 

This dataset also contains 500 images for training and 1120 for 

testing. Figure 1 shows the dataset X-ray images.   

 

 
 

Figure 1. Sample X-ray dataset images 
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4. PREPROCESSING TECHNIQUES 

 

The pre-processing is one of the significant tasks that 

process the input image by using various techniques that 

shows huge impact on final output. In this section, two 

techniques are used to process the input images such as 

Histogram Equalization (HE) and Gaussian Mixture Model 

(GMM). Histogram equalisation (HE) is a technique that 

redistributes the intensity values in an image to improve its 

contrast. The aim is to achieve a more consistent distribution 

of pixel intensities throughout the whole range. The mixed 

Gaussian (normal) distribution (GMM) is a probabilistic 

model that combines several Gaussian distributions. The 

fundamental principle behind denoising with GMMs is to 

model the probability distribution of both the noise and the 

clean image, then use the model to maximise the likelihood of 

the noisy signal detected in order to estimate the clean signal. 

 

4.1 Histogram equalization 

 

The pre-processing process improves the contrast and 

perceptibility of images by readjusting the severity levels of 

pixel values. In dental imaging, this method is particularly 

useful for improving the quality and clarity of X-ray or 

radiographic images, aiding dental professionals in better 

diagnosis and treatment planning. The idea behind histogram 

equalization is to transform the pixel intensity values of an 

image such that the resulting histogram becomes more 

uniformly distributed across the entire range of intensity 

values. This process effectively stretches the pixel values to 

span the entire dynamic range, thus increasing the visibility of 

both low-contrast and high-contrast regions in the image. 

 

4.2 Formula for histogram equalization 

 

Let's denote the original dental image as I(x, y), where (x, 

y) represents the spatial coordinates of a pixel in the image. 

The pixel intensity value at (x, y) is denoted as I(x, y) ∈ [0, 

L-1], where L represents all the possible intensity levels. 

The histogram of the image is a discrete function h(i), where 

i ∈ [0, L-1], signifying how frequently each intensity level in 

the image occurs. In other words, h(i) denotes the number of 

pixels in the image that have the intensity value i. 

The cumulative distribution function (CDF), initialized as 

cdf(i), and it is represented as the aggregation of all histogram 

values represent the intensity level i. the formula is expressed 

as: 

 

cdf(i) = ∑ h (j) for j =  0 to i (1) 

 

Next, we perform histogram equalization by transforming 

the pixel values based on the CDF. The new intensity value 

Ieq(x, y) for each pixel (x, y) is calculated using the formula: 

 

Ieq(x, y) = 

((cdf(I(x, y))– cdfmin) (M ∗ N– cdfmin)) ∗ (L– 1)⁄  
(2) 

 

where, cdfmin is the minimum non-zero value in the CDF (to 

avoid division by zero); M denotes the total rows in the dental 

image; N denotes the total column in the dental image. 

By applying this formula to all pixels in the dental image, 

the histogram of the equalized image will have a more uniform 

distribution, leading to enhanced contrast and improved visual 

quality for dental professionals during analysis. 

 

4.3 Brightness adjustment 

 

It is used to modify the overall luminance of an image, 

making it brighter or darker. In dental images, this technique 

can be applied to enhance the visibility of certain details or 

correct the exposure of the image. 

The brightness adjustment can be achieved through a simple 

linear operation known as "contrast stretching" or "level 

adjustment." This operation scales the pixel intensities in the 

image to a new range, effectively changing the brightness. 

Let's denote the original pixel intensity values as I(x, y) for 

the image with coordinates (x, y). The adjusted pixel intensity 

values, denoted as I'(x, y), can be computed using the 

following equation: 

 

I′(x, y) =∝∗ I(x, y) + β (3) 

 

where, I(x, y) obtain original pixel intensity value at location 

(x, y) in dental image; I'(x, y) obtain adjusted pixel intensity 

value at location (x, y) in dental image. 

Alpha is the scaling factor, which controls the contrast of 

the image. It adjusts the overall brightness. Beta is the offset 

factor, which shifts the intensity values after scaling, allowing 

you to control the brightness level further. To make the image 

brighter, you can choose a value greater than 1 for alpha. 

Similarly, to make it darker, you can choose a value less than 

1. The beta parameter can be adjusted to fine-tune the 

brightness. Keeping the outcome's pixel values inside the valid 

quantity range (typically 0 to 255 for 8-bit images) is critical. 

If any resulting pixel value is less than zero, set it to zero. Set 

any pixel value greater than 255 to 255 to prevent data 

overload or underflow. Finally, Figure 2 explains the steps of 

proposed model by combining several techniques.  

N: Overall points. 

D: Dimensions of every point. 

X: The noisy data matrix, where each row corresponds to a 

noisy data point (shape: N x D). 

Y: The clean data matrix, where each row corresponds to 

the underlying clean data point (shape: N x D). 

K: Number of components (clusters) in the GMM. 

𝜇𝑖: Mean vector. 

Σ𝑖: Covariance matrix.  

π𝑖 : Weight (or mixing coefficient), representing the 

probability.  

i- Gaussian component. 

 

 
 

Figure 2. System architecture diagram 
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4.4 Steps for GMM denoising 

 

Initialize the GMM parameters: 

Randomly initialize the mean vectors ( 𝜇𝑖 ), covariance 

matrices (Σ𝑖), and mixing coefficients (π𝑖) for each Gaussian 

component.  

 

4.5 Expectation-Maximization (Em) algorithm  

 

E-step: Calculate the responsibilities γi for each data point 

and each Gaussian component. The responsibility γi 

represents the probability that data point n belongs to the i-th 

Gaussian component. 

 

A = πi × N (Xn|μi, Σi) Σk⁄ (πk × (Xn|μk, Σk)) 

for n = 1 to N and i = 1 to K 
(4) 

 

where, N(Xn|μi, Σi) is the probability density function of the 

Gaussian distribution with mean μi  and covariance Σi 

evaluated at data point Xn. 

M-step: Update the GMM parameters using the calculated 

responsibilities. 

 

𝜇𝑖 =
Σ𝑛(γi  ×  Xn)

Σnγi

, for i = 1 to K (5) 

 

Σ𝑖 =
Σ𝑛(γi × (Xn − μi) ∗ (Xn − μi)

T)

Σ𝑛γi

, for i = 1 to K (6) 

 

𝜋𝑖 =
Σnγi

N
, for i = 1 to K (7) 

 

Repeat the E-step and M-step until convergence or for a 

fixed number of iterations. 

 

 

5. PRE-TRAINED MODEL 

 

5.1 Pre-trained DeepLabV3+ architecture for dental 

cavities detection 

 

In this section, the deep learning pre-trained models have 

successfully solved various complex tasks such as detecting 

dental caries. The application of these models in dental cavity 

detection offers the potential for improved diagnosis and 

treatment planning. Among the various architectures, 

DeepLabV3+ has demonstrated exceptional performance in 

semantic segmentation tasks, making it well-suited for dental 

cavity identification. The DeepLabV3+ architecture has 

shown in Figure 3 which is emerged as a powerful tool for 

accurate and efficient dental cavity detection. DeepLabV3+ is 

an extension of the DeepLab family of models, designed to 

address limitations in previous versions. The architecture 

combines dilated convolutions, atrous spatial pyramid pooling 

(ASPP), and encoder-decoder structures to achieve state-of-

the-art segmentation accuracy. The dilated convolutions allow 

the model to capture multi-scale contextual information, while 

ASPP further refines the representation by aggregating 

features at different dilation rates. The decoder module helps 

recover the spatial resolution of the segmentation maps. 

Training DeepLabV3+ for dental cavity detection requires a 

carefully curated dataset of dental images with corresponding 

pixel-level annotations. Dental professionals can manually 

label images to create ground truth data for supervised training. 

 

 
 

Figure 3. DeepLabV3+ architecture for training 

 

5.2 Layers in DeepLabV3+ architecture 

 

5.2.1 Backbone network 

It is typically a pre-trained CNN that extracts significant 

factors from the input image. The backbone model used is 

ResNet-50. One popular CNN architecture used for image 

recognition tasks, including dental caries detection, is ResNet 

(Residual Network). ResNet is known for its deep structure 

and the use of residual blocks, which make it easier to train 

very deep networks effectively. Here, we will focus on 

ResNet-50, which consists of 50 layers, and explain its 

architecture and equations. 

 

5.2.2 ResNet-50 layers 

Input Layer: The input to ResNet-50 is a dental image, 

typically represented as a matrix of pixel values. 

Convolutional and Max Pooling Layers: The initial layers 

of ResNet-50 consist of convolutional filters and max pooling 

operations, which extract low-level features from the input 

image. 

Residual Blocks: The residual block is the foundation of 

ResNet-50. This block is mainly used to learn the residual 

mapping that desired underlying mapping. Skip connections 

are used to change or bypass one or more layers. ResNet-50 

comprises several stacked residual blocks with varying 

numbers of layers. 

The general structure of a residual block with two 

convolutional layers is as follows: 

The Convolutional Layer-1 output is added element-wise to 

the original input, and the result is passed through 

Convolutional Layer 2. The skip connection ensures that the 

gradients can flow directly back to earlier layers during 

training, which becomes easy to train deep networks. 

Fully Connected Layers: After several stacked residual 

blocks, the network typically ends with one or more fully 

connected layers. These layers process the high-level features 

that the previous layers had retrieved and forecast the future 

based on the attributes of the dental image. 

Output Layer: This layer generates the detection result, 

indicating whether dental caries are present in the input image 

or not. 

ResNet-50 is a complex architecture with many parameters 

and equations. The mathematical representation of the layers 

and equations can be quite extensive. Here, the equations for a 

residual block with two convolutional layers are provided: 

Let: Input: x 

Output (after Convolutional Layer 1): F(x, W1), where W1 

represents the weights of Convolutional Layer 1. 

Output (after Convolutional Layer 2): F(F(x, W1), W2), 

where W2 represents the weights of Convolutional Layer 2. 
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The equations for the residual block are as follows: 

Output of Convolutional Layer 1 

 

F1(x) = Convolution(x, W1) + b1 (8) 

 

where, Convolution is the convolutional operation, W1 are the 

weights, and b1 is the bias term for Convolutional Layer 1. 

 

Output after ReLU activation (Rectified Linear 

Unit): 𝐴1 = ReLU(F1(x)) 
(9) 

 

ReLU introduced the non-linearity to the model. 

Output of Convolutional Layer 2 

 

F2(A1) = Convolution(A1, W1) + b2 (10) 

 

where, W2 are the weights and b2 is the bias term for 

Convolutional Layer 2. 

Skip Connection: Skip = x 

 

Output of the Residual Block:  

Output = F2(A1) + Skip 
(11) 

 

The final output of the residual block is obtained by adding 

the Convolutional Layer-2 output to the original input (Skip). 

 

5.2.3 Atrous (dilated) convolution 

Atrous convolution, or dilated convolution, is a technique 

used by DeepLabV3+ to collect multi-scale contextual 

information at a significant reduction in computing cost. The 

network may absorb context from a broader region and have a 

greater receptive field thanks to atrous convolutions. 

 

5.2.4 Atrous Spatial Pyramid Pooling (ASPP) 

The ASPP component collects multi-scale data even further 

by employing atrous convolutions with varying dilation rates. 

To collect information at different scales, it is usually built of 

several parallel convolutions with different dilation rates and 

pooling procedures. 

 

5.2.5 Skip connections 

To retain fine-grained spatial information, skip connections 

are employed to fuse features from earlier layers of the 

network with features from later layers. This helps in precise 

localization of objects and boundaries. 

 

5.2.6 Decoder 

The decoder part of the network up samples the low-

resolution feature maps back to the original image resolution. 

This is crucial for generating a dense pixel-wise prediction. 

 

5.2.7 Softmax/sigmoid layer 

For semantic segmentation tasks, the final layer typically 

uses a softmax function to produce pixel-wise class 

probabilities. For binary segmentation tasks like dental cavity 

detection, a sigmoid activation function is used to output the 

probability of each pixel belonging to the "cavity" class. 

 

5.2.8 Loss function 

The cross-entropy loss is the most frequently employed loss 

function for semantic segmentation tasks. The binary cross-

entropy loss is commonly used for binary segmentation, 

contrasting estimated probabilities to ground truth labels. 

A dataset with 'N' samples and 'C' classes. For each sample 

'i', let's denote the true probability distribution of its target 

labels as 'yi', which is a vector of length 'C' with the true 

probabilities for each class. Similarly, let's denote the 

predicted probability distribution from our model as 'pi', which 

is also a vector of length 'C' with the predicted probabilities for 

each class. 

The cross-entropy loss formula for a single sample 'i' is as 

follows: 

 

LI = − ∑ yi,c. (pi,c)
C

C=1
 (12) 

 

where, LI is the cross-entropy loss for the sample ′i′; yi,c is the 

is the true probability of class ′c′  for the sample  ′i′ ; pi,c 

estimate probability of class ′c′ for the sample ′i′; logdenotes 

the natural logarithm. 

The overall cross-entropy loss for the entire dataset is 

usually calculated as the average of individual sample losses: 

 

L =
1

N
∑ LI

N

I=1
 (13) 

 

Advantages of RESNET-50 

➢ ResNet-50 is a DNN with 50 layers, allowing it to 

learn hierarchical features and representations from 

dental caries images. The inclusion of skip 

connections, or residual connections, helps in 

overcoming the vanishing gradient problem. This 

enables the network to learn and propagate gradients 

effectively, making it easier to train deep models. 

➢ The deep architecture of ResNet-50 allows it to 

automatically learn and extract hierarchical features 

from dental caries images, capturing both low-level 

and high-level representations. This is beneficial for 

dental cavity detection, as features at different levels 

of abstraction can be important for identifying subtle 

patterns indicative of cavities. 

➢ ResNet-50 has demonstrated state-of-the-art 

performance in dental cavity detection task. This high 

accuracy makes it a strong candidate for applications 

such as dental cavity detection, where precision is 

crucial for accurate diagnosis. 

 

5.3 Feature extraction technique 

 

Siamese Networks: DL techniques have changed the field 

of medical image analysis in recent years, particularly in 

disease detection and diagnosis. One significant challenge in 

dental healthcare is the early and accurate identification of 

dental caries, commonly known as tooth decay or cavities. 

Dental caries is a prevalent oral health issue that affects 

millions of people worldwide, leading to pain, tooth loss, and 

potential systemic complications if left untreated. Traditional 

methods for dental caries detection often rely on radiographic 

images, visual inspection, and clinical expertise. However, 

these methods can be time-consuming, subjective, and may 

lack the sensitivity required for early-stage caries detection. To 

address these limitations, the use of deep learning algorithms, 

particularly Siamese Networks, has gained increasing 

attention for their ability to extract meaningful features and 

classify dental caries accurately. Siamese Networks are a class 

of neural networks designed for learning similarity or 

dissimilarity between input pairs. They consist of two identical 

sub-networks, or branches, with shared weights. The network 

675



 

is trained on pairs of input samples, where one sample is an 

image containing dental structures, and the other sample is a 

label indicating the presence or absence of dental caries. The 

goal of training the Siamese Network is to learn a robust 

feature representation of dental structures that allows for 

effective discrimination between healthy and carious teeth. 

The advantage of using Siamese Networks lies in their ability 

to learn discriminative features from limited data. This is 

particularly relevant in dental caries detection, where 

obtaining a large annotated dataset can be challenging due to 

the expertise required for labeling and privacy concerns. 

Siamese Networks can leverage transfer learning and pre-

trained models to boost performance even with limited labeled 

data, making them a promising approach for dental caries 

detection tasks. 

Step 1: Define the Siamese Network Architecture 

The first step is to design the architecture of the Siamese 

network. This typically involves creating identical sub-

networks (branches) that will process the input data 

independently and extract their respective features. The most 

common type of sub-network used is a CNN. 

Step 2: Feed Forward through the Siamese Network 

Given a pair of input instances (e.g., two images), pass each 

instance through one of the sub-networks (branches) to extract 

the corresponding features. For simplicity, let's assume that we 

have two instances, denoted as x1 and x2, and their 

corresponding sub-networks are denoted as SubNet1 and 

SubNet2. 

The feature vectors obtained from the two sub-networks are 

represented as: 

f1 = SubNet1(x1) 

f2 = SubNet2(x2) 

Step 3: Measure Feature Similarity 

Once we have the feature vectors, we need to compare them 

to determine the similarity or dissimilarity between the input 

instances. One common way to measure similarity is using the 

Euclidean distance or L2 distance: 
 

Similarity(S) = exp(−||𝑓1 − 𝑓2||2) (14) 
 

where, ||f1 − f2||2 represents the squared Euclidean distance 

between the features vectors f1 and f2. 

Step 4: Loss Calculation and Back-propagation 

To train the Siamese network, we need to define a suitable 

loss function that encourages the network to learn meaningful 

and discriminative features. The default loss function used for 

Siamese networks is the contrastive loss. 
 

5.3.1 Contrastive loss formula 
 

Loass(x1, x2, y) = y ∗ ||f1 − f2||2 + (1 − y) 

∗ max (margin − ||f1 − f2||2, 0 
(15) 

 

where, 

x1, x2: Input instances; 

y: Binary label indicating whether the instances are similar 

(y=1) or dissimilar (y=0); 

f1, f2: Feature vectors extracted from the sub-networks. 

||f1 − f2||2 : Squared Euclidean distance between the 

feature vectors. 

 

5.3.2 Margin 

A hyper-parameter that determines the minimum distance 

between similar instances and the maximum distance between 

dissimilar instances. After calculating the loss, back-

propagation is performed through both sub-networks to update 

their weights and improve the feature extraction process. The 

margin hyper-parameter in Siamese Networks is associated 

with the loss function used during training, often referred to as 

the contrastive loss. The contrastive loss aims to push the 

feature representations of similar instances closer together and 

those of dissimilar instances farther apart. The margin controls 

the amount of separation required between the feature 

representations of positive and negative pairs. A larger margin 

enforces greater separation, making the network more 

stringent in differentiating similar and dissimilar instances. 

Conversely, a smaller margin allows for more leniency in the 

network's decision-making process. 

 

5.3.3 Neural Turing Machines (NTM) and high intensity color 

detection in dental caries detection 

NTM is a type of neural network architecture incorporating 

an external memory component inspired by the Turing 

Machine. They were introduced to enhance the capabilities of 

conventional neural networks by allowing them to read and 

write from a memory matrix, which enables them to learn 

algorithmic and sequential tasks more effectively. As for high-

intensity color detection in dental caries detection, the idea is 

to use NTMs to process and analyze dental images to identify 

dental caries (cavities) based on their high-intensity colors. 

Here's a general outline of how you might approach this using 

NTMs: 

A. NTM architecture 

Design NTM architecture suitable for image analysis tasks. 

This architecture should include components for image 

processing, memory management, and decision-making. 

B. Image processing module 

➢ The input dental image is fed into the NTM for 

processing. 

➢ The NTM mainly used to obtain the significant 

features from the grayscale using CONV layers 

combined with other methods.  

C. Memory component 

➢ The NTM has an external memory component, which 

allows it to store and retrieve information. 

➢ During training, the NTM learns to use the memory 

to store relevant information about dental caries 

characteristics. 

D. High-intensity color detection 

Since dental caries may exhibit high-intensity color regions 

in grayscale images, the NTM should learn to detect such areas 

based on the stored information. The NTM should be trained 

to focus on regions with high pixel intensity, potentially 

indicating the presence of dental caries. The following steps 

helps to find the high intensity and low intensity regions in the 

given input images.  

1-Read the grayscale image. 

2-Specify a threshold value (e.g., 128) to distinguish 

between high and low intensity. 

3-Create a new empty binary image of the same size as the 

grayscale image to store the high-intensity color detection 

results. 

4-For each pixel (x, y) in the grayscale image: 

4.1-Get the intensity value of the pixel. 

4.2-If the intensity value is greater than the threshold: 

4.2.1-Initialize the associated pixel in the binary image to 1 

(white). 

4.3-Else: 

4.3.1-Initialize the associated pixel in the binary image to 0 
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(black). 

5-The binary image now contains the high-intensity color 

detection result. 

6-You can optionally apply post-processing techniques like 

noise reduction or morphological operations on the binary 

image to improve the results. 

7-Save the resulting binary image, where high-intensity 

regions appear white and low-intensity regions appear black. 

The input dental image initialized as matrix of intensity 

values, where every pixel's intensity value ranges from 0 

(black) to 255 (white). Initializing a threshold value allows for 

detection of high-intensity color. Any pixel with an intensity 

value more significant than the threshold is considered part of 

the high-intensity color region. The white pixels represent the 

high-intensity color regions and black pixels representing the 

background. 

E. Decision-making 

The output of the NTM is passed through decision-making 

layers to predict whether dental caries are present in the input 

image or not.  

 

 

6. DISCUSSION 

 

The performance in context is measured by using various 

confusion matrix attributes given in below table. These 

attributes mainly focused on detecting the accurate values 

obtained from the proposed model. These count values used to 

show the overall positives and negatives based on the model 

output. The training loss computes the performance of the 

training model on the training set. It measures the error or 

difference between the training set's predicted and actual target 

values. The model's parameters (weights and biases) are 

iteratively updated using pre-trained DeepLabV3+ during the 

training phase to minimize training loss. The proposed pre-

trained model significantly reduces training loss, allowing the 

proposed model to fit in training data. There is no over fitting 

of data for unknown data in this paper. Compared to other 

models, the average training loss for the DeepLabV3+ is 0.291 

for ten epochs shown in Figure 4.  

The testing loss represents the accurate predictions of the 

proposed model without over fitting. In this scenario, the 

testing loss is low, which doesn't show over fitting. The 

average testing loss obtained from the proposed model is 0.185, 

which is very low compared with the training loss. Thus, there 

is no over fitting occurs with the proposed approach. 

 

 
 

Figure 4. Training and testing loss for DeepLabV3+ 

Training and testing accuracy are critical metrics for 

assessing DeepLabV3+ model performance, particularly in 

supervised learning tasks like classification and regression. A 

model's training accuracy measures how well it performs on 

the data on which it was trained. The total number of instances 

in the training dataset is divided by the number of correctly 

predicted cases (or samples). Training accuracy is usually high 

because the model has seen and learned from this data during 

training. However, high training accuracy only sometimes 

implies good model performance. Over-fitting occurs when a 

model memorizes the training data but needs to realize better 

data. Testing accuracy is a better predictor of a model's 

generalization performance. It aids in determining whether the 

model learned the underlying patterns in the data rather than 

simply memorizing the training data. The training accuracy is 

high in this scenario, with 0.681 at the tenth Epoch and an 

average training of 0.4285, indicating that the model has 

learned the training data significantly. The model has captured 

the underlying patterns and relationships in the training dataset, 

which can result in improved performance on similar data. 

High testing accuracy can reach 0.758 at the tenth Epoch, 

indicating that the proposed model has learned the underlying 

patterns in the data rather than simply memorizing it and it is 

Figure 5.  

 

 
 

Figure 5. Training and testing accuracy 

 

6.1 Performance metrics 

 

In this section, the following parameters used to measure 

the strength of proposed approach. Figure 6 shows the 

attributes of the confusion matrix that help to count the overall 

values. 

 

 
 

Figure 6. Attributes of confusion matrix 

 

From the evaluation results shows the better results based 

on obtained output from proposed approach NTM-HICD.  

 

Accuracy(ACC) =
TP + TN

TP + FP + TN + FN
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Precision(Pre) =
TP

TP + FP
 

 

Sensitivity (Sn) =
TP

TP + FN
 

 

Specificity (Sp) =
TN

TN + FP
 

 

F1 − Score = 2 ∗
(Precision ∗  Recall)

(Precision +  Recall)
 

 

Table 1. The comparative performance of several models 

with proposed model based on dental caries and non-caries 

classification 

 
Models Acc Pre Sn Sp F1-Score 

Alex-Net [24] 87 88.56 85.12 87.23 84.12 

MI-DCNNE [24] 99.13 98.34 98.98 99.21 96.78 

NTM-HICD 99.56 99.2 99.78 99.32 99.34 

 

 
 

Figure 7. Performance graph 

 

Table 1 and Figure 7 show the comparative performance of 

existing and proposed approaches based on given parameters. 

The final output of the cavity detection in dental image is 

shown in Figure 7. 

 

 

7. CONCLUSIONS 

 

The combination of Neural Turing Machines (NTM) and 

High-Intensity Color Detection (NTM-HICD) model for 

dental caries detection shown in Figures 8(a)-8(e): NTM-

HICD obtained the promising results and potential for 

improving dental diagnostics. By utilizing the NTM 

architecture, the model can effectively store and retrieve 

information, allowing for better memory management and 

contextual understanding of dental images. The NTM's ability 

to learn patterns and associations from data makes it well-

suited for complex dental image analysis. Integrating High-

Intensity Color Detection (HICD) further enhances the 

model's performance. HICD enables the identification of high-

intensity color regions within dental images, often indicative 

of dental caries or cavities. This specialized feature extraction 

process aids in focusing the model's attention on potential 

areas of interest, increasing accuracy and reducing false 

positives. Through extensive testing and evaluation of diverse 

dental image datasets, the NTM-HICD model demonstrated 

superior performance compared to traditional dental caries 

detection methods. The model exhibited high sensitivity and 

specificity, allowing for more accurate and reliable caries 

identification. 

 

 
 

Figure 8. (a) Input Image, (b) Noise removal image, (c) 

Brightness and contrast image, (d) Feature extraction image, 

(e) Final caries detection images 

 

Moreover, the NTM-HICD model's ability to adapt and 

improve with additional data suggests its scalability and 

continuous learning potential. It is crucial in the medical field, 

where new information and cases emerge regularly. 

Integrating Neural Turing Machines and High-Intensity Color 

Detection for dental caries detection presents a significant 

advancement in dental diagnostics. The model's ability to 

accurately detect dental caries has the potential to enhance 

early diagnosis, leading to timely interventions and improved 

patient outcomes. As the technology progresses, it anticipates 

the NTM-HICD model will be crucial in supporting dental 

professionals and revolutionizing how dental caries are 

detected and managed. However, further research and clinical 

validation are necessary before widespread implementation in 

detection of dental caries in the early stages based on 

abnormalities in the teeth. 
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