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Rice, a global staple crop, plays a crucial role in feeding approximately half of the global 
population. Nevertheless, the persistent spread of diseases poses a significant threat to rice 
production. Therefore, accurately identifying rice diseases is of paramount practical 
importance. The proposed approach introduces an innovative hybrid architecture for image 
classification, harnessing the strengths of both Vision Transformers (ViT) and 
Convolutional Neural Networks (CNNs). This research investigates five primary diseases 
affecting rice crops: Blast, Brown Spot, Tungro, False smut, and Bacterial Sheath Blight. 
Approximately 8000 images of these specific rice leaf diseases were employed for training 
purposes in the study. What distinguishes this method is its unique integration of a CNN 
block within the transformer layers, deviating from the traditional ViT architecture. Vision 
Transformers (ViTs), recognized for their exceptional performance in image classification, 
excel in providing global insights through attention-based mechanisms. Nevertheless, their 
model complexity can obscure the decision-making process, and ambiguous attention maps 
can lead to erroneous correlations among image patches. The incorporation of CNNs in 
this approach serves to address these challenges by effectively capturing local patterns. 
This synergistic combination enhances the model's robustness to variations in input data, 
such as changes in scale, perspective, or context. With the utilization of the proposed hybrid 
ViT-CNN model architecture, the model achieves remarkable results, boasting 100 percent 
accuracy and top-5 accuracy, along with a precision of 93.84 percent. Through this hybrid 
model, we have obtained satisfactory outcomes, surpassing the performance of the latest 
transformer models in the realm of rice leaf disease identification. 
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1. INTRODUCTION

The global population is anticipated to expand by around 2
billion people over the next three decades, reaching 9.7 billion 
by 2050 from the current 7.7 billion and possibly reaching a 
peak of nearly 11 billion by the year 2100 [1]. Rice stands as 
a fundamental grain for a large portion of the global population, 
providing a substantial calorie source for more than half of the 
Earth's inhabitants [2]. Rice holds a crucial position in India, 
occupying one-fourth of the total cultivated land. India, 
ranking second only to China in worldwide rice production, 
produced a total of 125 million tonnes of rice in the 2022-23 
fiscal year. Rice cultivation covered an expansive 45.5 million 
hectares of land, with an average yield of approximately 4.1 
tonnes per hectare. In India, paddy is predominantly grown 
during the Kharif season and thrives in tropical and sub-
tropical regions characterized by hot and humid climates. 
Nevertheless, rice crops are vulnerable to a variety of diseases, 
posing a considerable threat to overall agricultural 
productivity. Paddy diseases can inflict severe damage on rice 
production and the livelihoods of farmers. Failure to detect 
these rice plant diseases in a timely manner can have 
disastrous consequences for food security. The timely 
anticipation and alert systems fulfil a vital function in 

mitigating the onset of rice crop diseases and minimizing the 
unnecessary application of pesticides [3]. 

In recent years, significant advancements have been made 
in utilizing deep learning technology for recognition of 
diseases in plants. Deep learning (DL) technology offers a 
transparent interface for users, making it accessible even to 
researchers in the fields of plant protection and statistics who 
may not have high levels of expertise. Deep learning (DL) has 
the capability to automatically extract features from images 
and categorize disease spots on plants, thereby eliminating the 
labour-intensive processes of feature extraction and classifier 
design commonly associated with traditional image 
recognition technology. Furthermore, deep learning can 
capture the intrinsic characteristics of original images and 
offers an end-to-end approach. These qualities have garnered 
widespread attention for deep learning-based technology in the 
field of plant ailment recognition, making it a prominent and 
highly researched topic. Numerous research papers have 
leveraged deep learning techniques to enhance the 
meticulousness of rice disease recognition [4]. 

Many current research endeavors in agritech are centered 
around the application of computer-based deep learning and 
machine learning based techniques for the detection of 
diseases in rice leaves. Nonetheless, there is ample room for 
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enhancements in this domain, particularly concerning 
decision-support systems aimed at transforming extensive 
datasets into actionable recommendations. While numerous 
studies have utilized deep learning methods to enhance the 
accuracy of rice disease recognition, there exists a significant 
research gap in the broader field of plant disease recognition. 
Specifically, there is insufficient investigation into effectively 
integrating deep learning models within a hybrid architecture 
tailored specifically for plant disease recognition. Furthermore, 
despite the transparency and automated feature extraction 
offered by deep learning technology, there is a crucial need to 
evaluate the suitability and effectiveness of hybrid 
architectures in addressing the challenges inherent in plant 
disease recognition. This involves optimizing classification 
accuracy while taking into account factors such as dataset 
characteristics, model interpretability, and scalability across 
diverse plant species and disease types. 

Presently, the literature predominantly focuses on refining 
the integration of Vision Transformers (ViT) and 
Convolutional Neural Networks (CNNs). However, a more 
comprehensive exploration is required to fill the identified 
gaps and propel advancements in the field of plant disease 
recognition. The primary goal of this research is to develop a 
system that leverages state-of-the-art, refined methodologies 
in integrating ViT and CNNs. The hybrid approach, known as 
Vit-CNN, aims to combine the detailed, localized feature 
recognition abilities of CNNs with the comprehensive, 
contextual understanding offered by ViTs. This system is 
engineered to autonomously and accurately identify, 
categorize, and diagnose rice diseases, including their early 
manifestations, eliminating the need for human intervention. 

The remaining part of this document is structured as follows: 
Starting with an extensive literature review in Section 2, the 
study lays the groundwork for its contributions by scrutinizing 
previous research efforts, thereby establishing a contextual 
framework. In Section 3, we delve into the specifics of the 
obtained images and basics of the base models used. Section 4 
gives an in-depth overview of the proposed approach for 
recognizing crop diseases and also, we delve into the 
experimental analyses, where we conduct comprehensive 
experiments and evaluate the results through comparative 
analysis. It also demonstrates the potential applications of the 
ViT-CNN Model in real-world settings, particularly in its role 
as a decision support system within the field of agriculture. 
Lastly, Section 5 serves as the conclusion and future work of 
the paper.  

2. LITERATURE REVIEW

Deng et al. [5] and their colleagues with a substantial dataset
of 33,026 pictures, encompassed six distinct categories of rice 
ailments. At the core of their approach was an Ensemble 
Model integrating multiple sub-models. The process 
commences with image preprocessing in the methodology 
developed by Haridasan et al. Subsequently, image-based 
segmentation is working to pinpoint the areas of the rice crop 
affected by disease. To accurately recognize and classify 
specific types of paddy plant diseases, the researchers adopt a 
hybrid approach. This approach works well where a classifier 
combining support vector machine with convolutional neural 
network functions. Activation functions like Rectified Linear 
Unit (ReLU) and softmax are utilized within these neural 
networks to ensure precise disease recognition and 

classification [6]. Sharma et al. [7] introduced the application 
of computer vision techniques, specifically CNN, combined 
with traditional machine learning methods. Their primary 
objective is the identification of diseases affecting plant leaves, 
with a specific focus on rice and potato plants. The CNN 
model proposed by the researchers is instrumental in 
effectively classifying diseases that affect these particular 
plant species. Latif et al. [8] have put forth an innovative 
method for the accurate detection and classification of rice leaf 
diseases by leveraging Deep Convolutional Neural Networks 
(DCNN) and transfer learning techniques. This refined 
approach integrates a customized transfer learning 
methodology grounded in the VGG19 architecture. Through 
this adapted system, the identification and diagnosis of six 
distinct disease classes affecting rice leaves can be 
accomplished. 

Santosh Kumar and collaborators present an effective 
methodology for detecting rice plant diseases through the 
utilization of CNNs. The primary focus of their research 
centers on important widely acknowledged rice ailments: 
foliar smut and brown spot, attributed to fungi, and bacterial 
leaf blight, caused by bacterial infection. The paper introduces 
a robust method for the identification and categorization of 
rice crop ailments based on the characteristics of lesions in leaf 
images, encompassing aspects such as size, shape, and color. 
To bolster the precision of disease detection, the suggested 
model integrates Otsu's thresholding on a global scale for 
converting images to binary form, proficiently removing 
circumstantial noise from the images [9]. Chen et al. [10] and 
colleagues undertook a comprehensive exploration of deep 
learning techniques, leading to the creation of an ensemble of 
convolutional networks designed to advance the model's 
capacity to detect nuanced features in plant lesions. Applying 
ensemble learning principles, they amalgamated three 
lightweight CNNs to create an innovative network named "Es-
MbNet." This composite network was specifically crafted for 
the recognition of diverse plant diseases. Zhou et al. [11] and 
colleagues introduced a unique architecture known as the 
"residual-distilled transformer." Drawing inspiration from the 
initial successes of utilizing transformers for computer vision 
tasks, they integrated a distillation strategy to extract and 
refine weights and parameters from pre-trained vision 
transformer models. Subsequently, these extracted features are 
fed into a multi-layer perceptron (MLP) to make predictions. 
Sudhesh et al. [12] presented an innovative approach for 
identifying rice leaf diseases using Dynamic Mode 
Decomposition (DMD) coupled with attention-driven 
preprocessing. They focused on four distinct categories of rice 
leaf diseases which comprises four sets of experiments, 
evaluated the effectiveness of ten pre-trained DCNN models.  

Upadhyay and Kumar [13] devised a straightforward, rapid, 
and efficient deep learning framework for the early detection 
of brown spot disease. This method integrates infection 
severity estimation via image processing techniques. The 
proposed approach involves two main phases: initially, the 
dataset containing brown spot-infected leaf images is divided 
into two subsets, namely early-stage brown spot and 
developed-stage brown spot. Subsequently, a fully connected 
CNN architecture is constructed in the second phase to 
facilitate automatic feature extraction and classification. 
Aristan and Kusuma [14] utilized a dataset containing 79 
different plant classes, sourced from several public domain 
datasets, which they assessed and compared using four CNN 
models: MobileNetV3, EfficientNetB0, Mason model, and 
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ShuffleNetV2. Results from the experiments indicated that the 
Mason model achieved the highest accuracy among the four. 
However, all models experienced a slight decrease in accuracy 
when evaluated on both workstation and mobile devices. In 
terms of resource consumption, MobileNetV3 exhibited lower 

consumption compared to the other models overall. Table 1 
presents a summary of different models categorized by the 
algorithms employed, the addressed problems, as well as their 
respective advantages and disadvantages. 

 
Table 1. Evaluation of various extant models 

 
Ref 
No Methodology Merits Demerits 

[5] 
An Ensemble Model integrating: 

DenseNet-121, SE-ResNet-50, and 
ResNeSt-50 

High accuracy, simplicity, and cost-
effectiveness 

Many parameters, which may affect the 
speed of identification 

[6] Support Vector Machine, CNN CNN surpasses SVM in performance Accuracy can still be enhanced 

[7] Convolutional Neural Network (CNN) The CNN model showed superior accuracy, 
surpassing SVM, KNN and Decision Tree 

Selection of hyperparameters can increase 
the performance of the CNN model 

[8] Deep Convolutional Neural Network 
(DCNN)-VGG19 -based transfer Model 

Attains high accuracy for Non-Normalized and 
Non-Normalized Augmented data 

Still Accuracy should be developed for 
Normalized augmented data 

[9] 
Deep Convolutional Neural Network 

(DCNN) 
Otsu’s global thresholding technique 

Decreases both time and model complexities 
while enhancing performance 

It is expected to perform better when the 
severity of each disease is high 

[10] 
SE-MobileNet, Mobile-DANet, and 

MobileNet V2 are combined as 
ESMbNet 

Efficient in recognizing plant diseases on both 
open-source and local datasets 

Misidentifications of samples with highly 
complex background conditions 

[11] Residual Distilled Transformer 
Vision Transformer 

Effectively highlight the location of rice 
disease Demands high computing resources 

[12] 
10 pre-trained Deep CNN Models 

(DCNN) 
Dynamic Mode Decomposition (DMD) 

Accuracy, Precision, high in models trained on 
DMD pre-processed images 

Identifying the diseased area amidst 
complex backgrounds poses significant 

challenges 

[13] Otsu’s thresholding technique 
Convolutional Neural Network (CNN) 

Can easily handle large data sets and its ability 
to recognize the disease at an early stage 

A threshold of 1% might lead to 
oversensitivity or insufficient segmentation 

[14] MobileNetV3, EfficientNetB0, Mason 
model, and ShuffleNetV 

Mason model is still higher in accuracy than 
EfficientNetB0 and MobileNetV3 for mobile 

devices 

Overfitting obtained in each model. 
Mason model requires higher resource 

consumption 
Note: All articles reviewed in the literature focus on the identification of diseases in rice crops. 

 
 

3. MATERIALS AND METHODS 
 
3.1 Data acquisition 

 
This study examines five major diseases that afflict rice 

plants: Blast, Brown Spot, Tungro, Falsemut, and Bacterial 
Sheath Blight. While many contemporary studies prioritize 
performance metrics derived from publicly available datasets, 
they often overlook the importance of gathering real-world 
data from actual planting environments. Many current datasets, 
such as those from AI Challenger, Plant Village, and research 
institutions' standard sets, have been sourced from online 
platforms or curated by research entities [15, 16]. These 
datasets usually present images with consistent backgrounds 
and lighting conditions, facilitating high predictive accuracy. 
However, this uniformity may not be representative of the 
complexities encountered in genuine farming environments, 
where varying backgrounds and noise interferences prevail. 
Therefore, emphasizing data from real-world settings can 
significantly enhance model robustness. 

In December 2021, real-world data comprising both 
affected and images depicting healthy rice crops were sourced 
from cultivated lands in Melmaruvathur, Kavaraipettai, and 
Gummidipondi regions in Tamilnadu. 

This dataset, consisting of approximately 1500 images, was 
captured using Xiaomi and Redmi smartphones boasting a 48-
megapixel resolution. However, the authenticity of these open-
field captures also meant they were susceptible to 
environmental noises and distortions. These images, available 
in JPG format, showcased a diverse range of backdrops. Some 

depicted other plant leaves or field grass, while others showed 
varied soil colours. On occasion, inadvertent inclusions like 
the photographers' fingers were evident. Additionally, 
inconsistent lighting due to fluctuating weather conditions 
further complicated the dataset. To augment this collection, 
supplementary pictures were procured from numerous 
repositories, including Kaggle's "Rice Leafs Diseases 
Dataset," UCI Machine Learning Repository's "Rice Leaf 
Diseases Dataset," and the "Rice Leaf Diseases Image 
Samples" the dataset curated by Prabira Kumar Sethi, 
published in Computers and Electronics in Agriculture. One of 
the inherent challenges with training CNNs is ensuring 
uniformity in image dimensions, especially when the training 
dataset contains images of varying sizes. To address this, the 
study employed data augmentation techniques to resize all 
images to the CNN's expected 224×224 input dimension. 
Image stabilization was also achieved to counter gradient 
propagation problems. Furthermore, image processing 
techniques such as Erosion, Dilation, Opening, and Closing 
were utilized to enhance image regions with varying 
brightness. In total, the study utilized around 8000 images of 
the aforementioned rice leaf diseases for training. Figure 1 
shows the pictorial representation of rice leaf diseases used in 
this research. 

 
3.2 Base models 
 
3.2.1 Convolutional Neural Network (CNN) 

CNN is a category of deep, feed-forward neural networks 
optimized for interpreting visual data. These networks are 
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engineered to autonomously and dynamically discern spatial 
patterns and structures within images. The power of CNNs 
stems from their capability to autonomously discern spatial 
patterns in data, eliminating the need for manually designed 
features. 

CNNs are versatile, capable of processing various data 
types including images, videos, audio, speech, and natural 
language. In its structural composition, a CNN encompasses 
multiple layers, initiating with a convolutional layer and 
advancing through pooling, Relu activation, ultimately 
culminating in a fully connected layer. As depicted in Figure 
2, each input image undergoes several transformations-
filtering, reduction, and correction-to eventually be 
represented as a vector. The essence of a CNN's power resides 
in its convolutional layers, where it learns the most pertinent 
filters for specific tasks, such as detection. There's also a 
cascading effect: the output from one convolutional layer 
serves as the input for the next. Following the convolutional 
layers, the pooling layer plays a crucial role. It down samples 
the data, leading to significant reductions in computational 
demands, memory needs, and parameter counts 

The fully connected layers, true to their name, maintain 
comprehensive connections to their preceding layers. 
Ordinarily, these layers utilize functions such as "sigmoid" or 
"softmax" in the concluding layer to generate predictions 
regarding classes. Fundamentally, the convolutional layers 
discern features extracted from the input data, which the 
pooling layers subsequently condense. Using the high-level 
features gleaned, the fully connected layers usually classify 
input data into predefined categories in the final stages. 
Furthermore, the classification layer not only categorizes data 
but also extracts features essential for both classification and 
detection activities [17]. 

 

 
 

Figure 1. Ailments impacting rice crops 
 

 
 

Figure 2. CNN architecture 

3.2.2 Visual induced transformer 
The Transformer functions as a groundbreaking 

transduction model, utilizing self-attention exclusively to 
generate representations for its input and output. This 
eliminates the necessity for sequence-aligned RNNs or 
convolution. The architecture involves stacked intra-attention 
and fully connected layers at individual data points for both 
the encoder and decoder, illustrated in the left and right 
sections of Figure 3, respectively [18]. 

In this process, the encoder receives an input sequence of 
symbol representations (x1, ..., xn) and converts it into a 
sequence of continuous representations (z1, ..., zn). 

Once we have these continuous representations, the decoder 
proceeds to produce an output sequence (y1, ..., ym) of 
symbols individually. The model functions in an auto-
regressive fashion. Tugrul et al. [17] uses the symbols 
generated earlier as extra input at each step when generating 
the next symbol. 

 

 
 

Figure 3. Visual induced transformer architecture 
 
3.2.3 Attention mechanism 

The Transformer architecture is centred around the attention 
mechanism, which comprises three key attention modules: 
self-attention, masked attention, and cross-sequence attention 
[19]. 

Self-attention is a versatile mechanism widely applied in the 
field of visual learning and comprehension. Its primary goal is 
to capture the inherent relationships within data or features, 
thereby diminishing the reliance on external information. This 
mechanism effectively tackles the issue of handling long-
range dependencies by computing the mutual influence 
between various image patches. 

When applied to an image X, the self-attention mechanism 
can be described as follows. The queries (Q), keys (K), and 
values (V) are generated through transformations of the input. 
A commonly used formulation for Q, K, and V is denoted by 
Eq. (1) [20]. 

 
K Q VK W X,Q W X,V W X= = =  (1) 

 
The Eq. (2) gives the scaled dot-product attention as 
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( )T

k

(Q, K,V) softmax V
d

QK
Attention =  (2) 

 
Instead of relying on a single attention function solely for 

queries, multi-head attention (MHA) improves the scaled dot-
product attention model. It introduces the concept of 
employing multiple attention functions concurrently to capture 
diverse information from distinct representation subspaces. In 
multi-head attention, there are 'h' parallel 'heads,' each 
representing an independent scaled dot-product attention 
function. The combined attended features, denoted as F in the 
multi-head attention functions, can be expressed as  

 
OF MHA(Q,K,V) Concat(h1, , hh)W= = …  (3) 

 
( )Q K V

i i i ih A QW ,KW ,VW=  (4) 
 

where, QWi
Q, KWi

K ,VWi
V ∈ Rdxdh are the projection matrices 

of the ith head. WO ∈ Rh*dhxd is the output projection matrix that 
aggregates the information from different heads [21]. 

To preserve positional information, Position embeddings 
are incorporated into the patch embeddings. These position 
embeddings are typically standard, learnable 1D position 
embeddings, as there hasn't been a significant improvement in 
performance observed by employing more sophisticated 2D-
aware position embeddings. The resultant sequence of 
embedded vectors is then used as input for the encoder [22]. 
 
 
4. PROPOSED METHOD 
 
4.1 Hybrid ViT-CNN architecture for image classification 

 
4.1.1 Enhancing vision transformers with CNN blocks: 
significance and benefits 

The proposed approach employs a novel hybrid architecture 
for image classification, combining the strengths of both ViT 
and CNNs. What sets this method apart is its incorporation of 
a CNN block within the transformer layers, a departure from 
the conventional ViT architecture. This design involves 
dividing the image into patches, leveraging Transformer 
blocks to capture inter-patch relationships, and ultimately 
making accurate image classifications among different 
categories. The effectiveness of this model is contingent on the 
seamless integration of ViT and CNN components, tailored to 
the characteristics of the dataset and the specific classification 
task at hand. 

By integrating CNNs with ViTs within a hybrid architecture, 
the combined model harnesses the complementary attributes 
of each, yielding a host of advantages: 

 
i) Streamlined Handling of Local and Global Features: 
CNNs excel in extracting localized, hierarchical features 

through their convolutional structure. Their proficiency lies in 
grasping spatial hierarchies within images, where higher 
layers build upon details from lower layers. 

ViTs, in contrast, demonstrate proficiency in capturing 
global dependencies and contextual information across the 
entirety of an image, facilitated by their self-attention 
mechanisms. 

Integrating both CNNs and ViTs in a hybrid model 
harnesses the advantages of each, facilitating the efficient 

processing of both local and global features present in an 
image. 

ii) Enhanced Generalization: 
Vision Transformers (ViTs) typically demand substantial 

training data for effective learning, owing to their fully-
connected design and absence of inherent biases, a 
characteristic inherent in CNNs. 

Introducing CNN layers can enhance the model's ability to 
generalize, particularly with smaller datasets, by introducing 
these advantageous biases. 

iii) Decreased Computational Complexity: 
Vision Transformers (ViTs) often incur a greater 

computational burden, notably with larger images, as they 
process images as sequences of patches and compute global 
self-attention across all patches. 

CNNs can alleviate this burden by condensing the image 
into a collection of higher-level features before feeding them 
into the Transformer layers. 

This compression of sequence length can mitigate 
computational demands and memory requirements, thereby 
enhancing the model's efficiency. 

iv) Improved Early-Stage Feature Extraction: 
CNNs excel in swiftly processing raw pixels to identify 

fundamental features such as edges and textures, a task that 
may be more time-consuming for a Transformer to master 
independently. 

Leveraging these pre-processed features can furnish the 
Transformer layers with a more informative foundation, 
potentially resulting in more intricate and nuanced feature 
representations 

v) Versatility and Adjustability 
Hybrid models exhibit greater adaptability across diverse 

image data and tasks. For example, in domains where local 
features hold greater significance, such as medical imaging or 
fine-grained classification, the CNN's impact can be 
emphasized. 

Conversely, in contexts requiring comprehension of broader 
contexts or larger scenes, such as image captioning or scene 
understanding, the Transformer's contribution becomes more 
prominent. 

vi) Resilience to Variances 
Transformers, when used alone, may occasionally prioritize 

global dependencies excessively, potentially overlooking local 
intricacies. CNNs serve to address this by ensuring effective 
capture of local patterns as well. 

This fusion enhances the model's resilience to input data 
variations, such as alterations in scale, viewpoint, or context 

 
4.1.2 Hybrid ViT-CNN architecture: image classification 
methodology 

In the experimental setup the proposed model used a dataset 
of around 8000 images, which were pre-processed by resizing 
to 224x224 pixels. The experiment was conducted using 
TensorFlow library functions and Keras on Google Collab. 
The model underwent training for 50 epochs, employing the 
Adam optimizer with a learning rate set at 0.001 and a batch 
size of 32. The dataset contained 6 classes, including 5 rice 
diseases (Blast, Brown spot, Bacterial Sheath Blight, Falsemut, 
Tungro) and a sixth class for identifying healthy rice leaves. 

Image normalization was applied to the input images to 
mitigate gradient propagation concerns. A variety of image 
processing techniques, including Erosion, Dilation, Opening, 
and Closing, were utilized to enhance regions with varying 
brightness levels. Positional Data Augmentation techniques 
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such as random crop, center crop, Random Vertical Flip, 
Random Rotation, Resize, and Random Affine were then 
executed. Following this, color Augmentation techniques such 
as Brightness, Contrast, and Saturation adjustment were 
applied. Lastly, the augmented images were divided into 
patches. 

The Vision Transformer (ViT) model processes input 
images of rice leaf diseases by first dividing them into patches 
that are fixed in size and non-overlapping. These patches are 
then transformed into lower-dimensional vectors using learned 
linear projections, effectively turning them into input tokens 
for the subsequent Transformer model. To account for the 
spatial layout of the patches within the image, positional 
information is incorporated into the embeddings. 

The patch embeddings, combined with positional encodings, 
are passed through a multi-layer Transformer architecture. The 
self-attention mechanism within the Transformer enables the 
model to capture long-range dependencies between patches 
and learn the spatial relationships within the image. 

After the ViT layer, a CNN layer is applied to the output 
tensor. This CNN layer is configured with specific parameters, 
including the number of filters, a 3×3 kernel size, a stride of 1 
for the convolution operation, and a dropout rate of 0.1. The 
dropout rate indicates that during training, 10% of the output 
neurons will be randomly set to zero as a regularization 
technique. 

The output from the CNN layer will have a shape that 
depends on the input image and the convolution parameters. 
To produce the final predictions, a Multi-layer Perceptron 
(MLP) classification head is added at the end of the model. 
This classification head takes the output from the preceding 
layers and generates the predictions for the rice leaf disease 
classification task. The overall flow of the model is depicted 
in Figure 4. 

CNNs are adept at extracting local hierarchical features by 
virtue of their convolutional nature. They specialize in 
comprehending spatial hierarchies within images, where finer 
details in upper layers rely on information from lower layers. 
In contrast, ViTs shine in capturing global dependencies and 
contextual information across the entirety of an image, 
facilitated by their self-attention mechanisms. A hybrid model 
seamlessly merges these strengths, enabling the efficient 
processing of both local and global image features. 

 

 
 

Figure 4. Dataflow of the hybrid ViT-CNN model 
 
Vision Transformers (ViTs) typically demand a substantial 

volume of data for effective training, primarily because of 
their fully-connected architecture and absence of inherent 

inductive biases, which are naturally present in CNNs. The 
inclusion of CNN layers can enhance the model's ability to 
generalize, particularly when working with smaller datasets, 
as these layers introduce these advantageous biases. 

Transformers operating in isolation may sometimes overly 
emphasize global dependencies, potentially overlooking local 
intricacies. The incorporation of CNNs serves to 
counterbalance this by ensuring the effective capture of local 
patterns. This synergy can bolster the model's resilience to 
variations in input data, including shifts in scale, perspective, 
or context. 
 
4.2 Empirical results 

 
The results of this research are estimated by Evaluation 

metrics like Accuracy, Top-5 accuracy and precision. Where 
Accuracy evaluates the classifier's ability to correctly classify 
the entire dataset, taking into account both positive and 
negative cases. In contrast, precision specifically assesses the 
amount of properly recognized positive samples amid all 
instances classified as positive by the classifier. It's a metric 
that provides insights into the classifier's accuracy in 
identifying positive cases [23]. Top-5 accuracy is a widely 
employed performance metric in multi-class classification, 
notably in domains like image recognition and natural 
language processing. It assesses the classifier's prediction 
accuracy by determining whether the correct class falls within 
the top 5 predicted classes for a given sample. This metric 
proves valuable when assessing models for tasks involving 
class uncertainty or when numerous correct answers are 
possible. 

 
TN TPAccuracy

TN FN TP FP
+

=
+ + +

 (5) 

 
TPPrecision

TP FP
=

+
 (6) 

 
𝑇𝑇𝑇𝑇𝑇𝑇 − 5 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

=
(The count of correct predictions within the top 5)

Total Number of Samples   (7) 

 
(1). True Positive (TP): The instances that the classifier 

correctly identified as positive. 
(2). True Negative (TN): The instances that the classifier 

correctly identified as negative. 
(3). False Negative (FN): The instances that are actually 

positive but were incorrectly classified as negative by the 
classifier. 

(4). False Positive (FP): The instances that are actually 
negative but were incorrectly classified as positive by the 
classifier. 

Utilizing the proposed hybrid ViT-CNN model architecture, 
the model attains 100 percent accuracy and top-5 accuracy, 
along with a precision of 93.84 percent. Through this hybrid 
model, we have achieved satisfactory results, surpassing the 
performance of the latest transformer models in the 
identification of rice leaf diseases. This serves as proof that the 
synthetically extracted features exhibit stronger feature 
representation capabilities. The accuracy for the hybrid ViT-
CNN model is presented in Figure 5 and Figure 6 gives a 
comparative chart of Accuracy, Precision and Top-5 accuracy 
of ViT-CNN Model. 
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Figure 5. The accuracy for the hybrid ViT-CNN model 
 

 
 

Figure 6. Comparative chart on evaluation metrics for hybrid 
ViT-CNN model 

 
Table 2. Comparative results of Hybrid ViT-CNN Model 

with various base models 
 

Models Accuracy Top-5 
Accuracy Precision 

DenseNet121 94.19 98 93.75 
ResNet50 72 98.1 82 

InceptionV3 77 91.2 83.2 
ViT 95.41 97 86.33 

ViT_CNN Model 100 100 93.84 
 
The proposed approach is pitted against conventional neural 

network models, including DenseNet121, ResNet50, 
InceptionV3 and ViT alone. The outcomes are presented in 
Table 2, revealing the favourable performance of the proposed 
method. 

The hybrid approach (Vit-CNN) strives to merge the 
intricate, local feature recognition capabilities of CNNs with 
the holistic, contextual understanding provided by ViTs. This 
fusion aims to harmonize the inductive biases and efficiency 
inherent in CNNs with the expressive power and scalability of 
ViTs. The ultimate goal is to create models, similar to 
DenseNet121, ResNet50, InceptionV3, and EfcientNet, that 
strike a balance between potency and practicality, exhibiting 
effectiveness across a diverse array of vision-related tasks. 

The Vit-CNN hybrid approach seeks to integrate the 
nuanced, local feature recognition strengths found in CNNs 

with the comprehensive, contextual comprehension offered by 
Vision Transformers (ViTs), achieving a remarkable 100 
percent accuracy. This synthesis aims to bring together the 
inherent inductive biases and efficiency of CNNs with the 
expressive capabilities and scalability of ViTs. Figure 7 gives 
a comparative chart on results for Hybrid ViT-CNN Model 
with various base models. 

 

 
 

Figure 7. Evaluation metrics for hybrid ViT-CNN model 
verses various deep learning models 

 
The dataset used for training the Hybrid ViT-CNN model 

consisted of images obtained from diverse sources, including 
various repositories and real-world data. These images, 
captured in JPG format, presented a wide range of 
backgrounds, including other plant leaves, field grass, and 
varying soil colours. Environmental noises and distortions 
were inevitable due to the open-field captures, and occasional 
inclusions such as photographers' fingers were observed. 
Furthermore, inconsistent lighting caused by fluctuating 
weather conditions added complexity to the dataset. 

Despite these challenges, the Hybrid ViT-CNN model, 
trained on images with diverse lighting conditions and 
backgrounds, demonstrated efficiency in accurately 
identifying real-world images, showcasing its potential for 
generalizability across different environmental settings. 
 
4.3 Enhancing agricultural decision support with ViT-
CNN model: Real world applications 
 

i) Pre-symptomatic Disease Identification: 
ViT-CNN effectively recognizes prevalent rice leaf diseases 

in images taken with smartphones or drones. This timely 
identification empowers farmers to promptly implement 
necessary measures. 

ii) Pathological Evaluation: 
ViT-CNN assists farmers in prioritizing management 

strategies and efficiently allocating resources by concentrating 
interventions on regions experiencing the greatest disease 
pressure. 

iii) Precision Treatment Application: 
When integrated with precision spraying systems, ViT-

CNN directs the precise application of fungicides or biological 
control agents solely to the regions affected by diseases. 

iv) Pathogen Surveillance and Oversight: 
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ViT-CNN provides continuous monitoring of rice fields for 
indications of disease progression, delivering instant updates 
to farmers via mobile applications or web-based platforms. 
 
 
5. CONCLUSION AND FUTURE WORK 

 
The early identification of rice leaf diseases is crucial for 

mitigating widespread outbreaks and substantial economic 
losses. This study explores five primary ailments affecting rice 
crops: Blast, Brown Spot, Tungro, Falsemut, and Bacterial 
Sheath Blight. The images utilized in this research maintain 
consistent backgrounds and lighting conditions, contributing 
to high predictive accuracy. However, this uniformity may not 
fully capture the complexities present in real farming 
environments, where diverse backgrounds and interference are 
common. Therefore, focusing on data from authentic farming 
settings can significantly enhance the model's robustness. By 
integrating Convolutional Neural Networks (CNNs) and 
Vision Transformers (ViTs) within a hybrid architecture, this 
unified model capitalizes on the complementary strengths of 
both, offering various advantages. This synergistic 
combination improves the model's resilience to variations in 
input data, such as changes in scale, perspective, or context. 
Through the adoption of the proposed hybrid ViT-CNN model 
architecture, the model achieves exceptional results, boasting 
100 percent accuracy and top-5 accuracy, alongside a 
precision rate of 93.84 percent. Through the utilization of this 
hybrid model, we have obtained satisfactory results that 
outperform the performance of the latest transformer models 
in the identification of rice leaf diseases. In the future, ViT-
CNN could be expanded to accurately recognize and 
categorize a multitude of crop diseases. Through integration 
with drone-based monitoring systems, farmers could gain 
access to real-time insights, empowering them to make well-
informed decisions. 
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