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In the realm of energy conservation, managing power consumption within buildings 

emerges as a pivotal challenge. This study introduces sophisticated models that 

optimize energy usage by intelligently managing power distribution in various zones of 

a building. To achieve this, four machine learning classifiers, Random Forest (RF), 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN) algorithm, and Naive 

Bayes (NB), were employed. These classifiers were integrated with feature reduction 

techniques, namely Boruta and Principal Component Analysis (PCA), to diminish 

model complexity. The study delineates three distinct power management strategies: 

Full, Selected, and Shutdown. The effectiveness of these models was evaluated using a 

dataset obtained from a building's energy consumption measurements. A comparative 

analysis revealed that the integration of the RF classifier with the Boruta feature 

reduction method significantly excelled, achieving a classification accuracy of 98%. 

Additionally, this combination demonstrated an execution time of merely 0.4549 

seconds. The findings of this research not only underscore the efficacy of combining 

specific machine learning classifiers with feature reduction techniques but also 

highlight the potential of such integrations in optimizing energy consumption in 

building environments. This approach paves the way for more energy-efficient and 

sustainable building management practices. 
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1. INTRODUCTION

The pursuit of energy efficiency stands paramount in the 

quest for environmental sustainability in contemporary society. 

Emphasizing the imperative of energy-efficient infrastructure, 

this focus becomes increasingly crucial within the urban fabric 

of smart cities. Buildings, constituting a substantial portion of 

urban landscapes, are identified as primary contributors to 

global carbon dioxide emissions and energy consumption, 

accounting for over two-thirds of the total [1]. In this light, the 

global inclination towards a low-carbon energy transition has 

intensified, evidenced by the augmented installation of 

renewable energy capacities by service providers. This 

transition necessitates the distribution of storage solutions and 

the establishment of intricate networked systems to facilitate 

renewable energy integration. 

In parallel, the energy sector's embracement of digital 

strategies becomes evident through the synergy of energy 

management and artificial intelligence (AI), unleashing a 

plethora of opportunities to enhance energy systems. AI-

powered solutions for smart consumption are revolutionizing 

energy consumption and conservation patterns among 

consumers. The development of decentralized electric grids, 

utilizing previously collected data [2], enables balanced 

energy distribution. The burgeoning field of data science, 

along with associated technologies, presents an unprecedented 

opportunity to augment energy efficiency across the 

construction industry’s lifecycle and to manage energy at the 

building level effectively. 

The advent of advanced Information and Communication 

Technologies (ICTs) such as the Internet of Things (IoT), 

Distributed Ledger Technology (DLT), and blockchain [3], 

has catalyzed the emergence of novel services and applications 

aimed at efficient energy management in buildings. An array 

of sophisticated machine learning algorithms, supported by 

diverse data sources, facilitates intricate decision-making 

processes for managing energy-efficient services. These 

services aim to enhance the reliability and dependability of 

energy systems, optimize the operational profitability of 

power generation components, enable proactive analytics for 

monitoring building performance, and facilitate data sharing 

among various power generation units to provide intelligent 

energy solutions and precise power and cabling information 

[4]. It is posited that a real-time energy management system is 

essential to address the deficit in energy consumption and to 

bolster energy efficiency. This objective is attainable through 

the integration of machine learning algorithms, which are 

instrumental in adapting contemporary design and identifying 

key components for optimizing energy consumption in 

buildings. 
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In this investigation, machine learning techniques are 

utilized within a system designed to enhance energy utilization 

in buildings. A dataset, comprising open workspace areas 

within a university building, serves as the foundation for this 

study. The system encompasses three operational modes for 

energy management, namely: shutdown, selected, and full. 

These modes are intrinsically linked to the occupancy status 

within the building, which constitutes the primary feature for 

selection. The shutdown mode is activated in the absence of 

occupancy, contrasting with the full mode, which is 

implemented during peak occupancy periods. The selected 

mode is operational during times of partial occupancy. The 

system under study employs two distinct feature reduction 

methods: Boruta and PCA, each applied in conjunction with 

four machine learning-based techniques, namely RF, SVM, 

KNN), and NB. These algorithms are critically evaluated with 

respect to accuracy and execution time, facilitating the 

selection of the most optimal technique that aligns with the 

requirements of the proposed model. 

The primary aim of this study is to optimize energy 

consumption in buildings through the application of machine 

learning techniques and occupancy status. This approach 

ensures that both energy consumption and equipment 

operation are contingent upon the presence of individuals 

within the building, whether it be empty, fully occupied, or 

partially occupied. The subsequent sections of this study are 

organized as follows: Section 2 presents a review of machine 

learning-based energy optimization systems explored in the 

existing literature. Section 3 delineates the proposed 

methodology for the system. Section 4 discusses the results 

obtained from the implementation of this methodology. 

Finally, Section 5 concludes the findings and outlines potential 

avenues for future research. 

 

 

2. RELATED WORK 
 

An extensive review of literature in the domain of energy 

management underscores the profound impact of machine 

learning techniques, particularly in recent advancements. The 

application of machine learning in Building Energy 

Management (BEM) emerges as a pivotal area for optimizing 

energy consumption in buildings. Challenges such as control, 

planning, and scheduling in power systems can be effectively 

addressed using these strategies [5]. These approaches are 

particularly beneficial in modern large-scale power system 

applications, which frequently encounter complexities due to 

increased interconnections and rising load demands. 

The effectiveness of various machine learning classifiers in 

enhancing building energy efficiency has been extensively 

analyzed. A critical aspect is the necessity of a comprehensive 

problem definition, coupled with a thorough analysis of 

datasets used for both training and testing, to achieve 

improved results [6]. A machine learning model was applied 

to calculate unmeasured variables derived from a sensor 

network. Data spanning six months from a Japanese smart 

building were utilized, demonstrating that interior 

measurements crucial for optimal regulation of air 

conditioning and heating systems could be precisely estimated 

using this model [7]. Furthermore, a study employing the 

Gradient Boosting Machine (GBM) algorithm developed a 

model to predict energy usage of a unit as a baseline [8]. The 

offline analysis of this model yielded a significant finding: the 

potential to reduce energy usage by 10.31%, equivalent to a 

reduction of 63,119 metric tons in steam usage annually. 

In a notable advancement, a hybrid machine learning 

strategy was developed for forecasting heat usage in buildings 

[9]. This model integrates Empirical Mode Decomposition 

(EMD), SVM, and Imperialistic Competitive Algorithm (ICA), 

demonstrating a novel approach in the field. Similarly, the 

application of a gradient-boosting machine learning algorithm 

for temperature prediction was explored. This study reported 

that the model consistently predicts temperature with a mean 

Root Mean Square Error (RMSE) of 0.05 and an estimated 

value deviation of 2.38℃, significantly outperforming a 

theoretical model by a margin of 6℃ [10]. 

Further, Bot et al. [11] conducted a comprehensive 

examination of a workplace and living lab building, 

demonstrating the application of BEM through machine 

learning, conditional modeling, and linear regression. This 

study emphasized the assessment of energy savings, providing 

valuable insights into BEM strategies. Additionally, ensemble 

methodologies were identified as particularly effective for 

power forecasting in residential homes. The analysis of a 

Home Energy Management System (HEMS) revealed that 

ensemble forecasting results surpassed those of individual 

models, indicating a strong preference for these methodologies 

in residential energy management. Ganesh et al. [12] 

introduced an innovative energy optimal management system, 

combining moving horizon estimation (MHE) with model 

predictive control (MPC). This approach particularly focused 

on optimizing indoor air quality, further expanding the scope 

of energy management strategies. 

With the proliferation of IoT, the integration of smart 

devices in residential buildings has escalated, necessitating 

advanced energy management systems. A hybrid Gradient 

Boosting Decision Tree-Artificial Transgender Longicorn 

Algorithm (GBDT-ALTA) was proposed, enhancing energy 

efficiency through strategic use of waiting period thresholds, 

effectively reducing electricity bills [13]. In a related context, 

the implementation of an IoT system for managing heating, 

ventilation and air conditioning (HVAC) systems while 

monitoring environmental, electrical, and comfort factors in 

real-world settings was investigated. This IoT approach 

demonstrated versatility in data interchange, deployment, and 

debugging time, particularly in small and medium-sized 

buildings [14]. The intersection of IoT and AI techniques for 

improving energy efficiency in buildings, especially in 

controlling HVAC systems, has been extensively explored 

[15-19]. These studies collectively underscore the 

transformative impact of integrating IoT and AI in energy 

management, offering a comprehensive view of current 

innovations and potential future directions in the field. 

 

 

3. PROPOSED METHODOLOGY 

 

The methodology of the system under study is illustrated in 

Figure 1. This system was developed through a sequence of 

methodical steps. Initially, a dataset suitable for the research 

objective was selected. Subsequent steps included 

preprocessing methods encompassing data labeling and 

feature scaling. Data splitting was then conducted, followed 

by the application of two independent feature reduction 

methods, Boruta and PCA. Each method was utilized in 

conjunction with four distinct machine learning classifiers: RF, 

SVM, KNN, and NB, to yield classification results. The 

evaluation criteria, focusing on accuracy and execution time, 
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were calculated. A comprehensive comparison of the methods 

was performed to facilitate the final evaluation of the proposed 

system. 

 

 
 

Figure 1. Flowchart for the proposed system 

 

3.1 Dataset selection 

 

The dataset utilized in this research was sourced from a 

study focusing on an open plan space and a locked workspace 

within a college building, covering a floor area of 

approximately 200m2 [20]. Spanning the duration of one year, 

from 1 January 2013 to 31 December 2013, this dataset 

comprised 35,040 records. The data encompassed various 

parameters, including indoor ambient conditions (temperature, 

humidity), plug loads, and external elements (temperature, 

relative humidity, wind speed, and global irradiance). 

Additionally, it provided insights into the presence of 

occupants, along with the operation of windows and lights. 

This comprehensive dataset supported a range of applications, 

particularly in developing and validating occupancy-related 

models. The categories of the measured data were delineated 

as follows: 

⚫ Inhabitation: encompassing the presence at workstations 

and the status of lights/windows. 

⚫ Indoor conditions: pertaining to indoor temperature and 

humidity. 

⚫ Outdoor conditions: involving external temperature, 

humidity, wind speed, and direction. 

⚫ On/off lighting. 

⚫ Equipment power: primarily dealing with plug load. 

Figure 2 illustrates the floor plan of the office space. The 

office is demarcated into various areas, including a kitchen 

(KI), four offices (O1 to O4), and a meeting room (MR). Area 

O1 is further subdivided into five distinct areas, with 

occupancy status and plug load measurements conducted for 

these sub-areas as well as other rooms within the office space. 

 

 
 

Figure 2. Floor plan of the office space [20] 

 

The proposed system aims to enhance energy management 

within the building by implementing three operational modes 

based on occupancy status: shutdown, full, and selected. An 

additional feature termed “mode” was incorporated into the 

dataset to categorize the data according to these three modes. 

 

3.2 Data preprocessing  

 

The subsequent phase in the development of the 

classification model entails data preprocessing. Typically, raw 

data from real-world sources is unstructured, prone to human 

errors, and occasionally incomplete. To rectify these 

imperfections, data preprocessing is employed, enhancing the 

completeness and suitability of datasets for analysis, thereby 

yielding more accurate results. This process involves 

transforming raw data into a format that is interpretable and 

usable for the end-users. The specific preprocessing steps 

undertaken in this study are detailed below. 

 

3.2.1 Data labeling 

Data labeling encompasses the process of identifying or 

categorizing raw data. These labels serve as indicators of the 

data's class association, facilitating the machine learning 

model's ability to recognize and classify similar data in 

unlabeled datasets. Labeled data is essential for supervised 

learning, wherein an algorithm is trained on input data paired 

with output labels to discern patterns and formulate 

predictions or classifications. In this study, the labels are 

crucial for classification into three categories: “full”, 

“selected”, and “shutdown”, which are encoded as “0”, “1”, 

and “2” respectively. Figure 3 illustrates the distribution of the 

dataset into these three classes, revealing 20,678 records for 

“shutdown”, 12,074 for “selected”, and 2,288 for “full”. 

 

 
 

Figure 3. Labeled data 
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3.2.2 Feature scaling 

Feature scaling, also known as Z-score normalization, is a 

critical step for many machine learning algorithms. When 

these algorithms compute distances between data points, 

discrepancies in the scale of features can disproportionately 

influence their values. To address this issue, feature scaling is 

performed to normalize features within a specified range [21]. 

This standardization ensures that all features contribute 

equally to the outcome of the machine learning algorithms, 

thereby improving the accuracy and efficiency of the model. 

3.3 Data splitting 

Data splitting, a standard practice in machine learning, 

involves dividing the dataset into training and testing sets. This 

technique is instrumental in determining the model's 

hyperparameters and evaluating its performance. In this study, 

the dataset was partitioned into 80% for training and 20% for 

testing. This ratio was selected due to the relatively limited 

number of records, necessitating a larger training set to 

enhance model accuracy. Consequently, the dataset comprised 

28,033 records for training and 7,008 for testing, as depicted 

in Figure 4. 

Figure 4. Training and testing records 

3.4 Feature reduction 

Feature reduction, a pivotal technique in machine learning, 

is employed to enhance model accuracy by focusing on 

essential variables and eliminating redundant ones. This 

approach also aids in improving the algorithms' predictive 

capabilities. Two feature reduction methods were utilized in 

this research: Boruta and PCA. Each method was applied 

independently to the four machine learning classifiers to 

evaluate the results in terms of accuracy and execution time. 

3.4.1 Boruta feature selection 

Boruta, a feature selection wrapper based on the RF 

classifier algorithm, was implemented in this study. This 

method involves creating a duplicate of the original dataset, 

wherein each column's values are shuffled randomly to 

produce shadow features. After training the RF classifier, the 

mean decrease in accuracy is calculated. Features with a 

higher mean are deemed more significant [22]. Through this 

process, the number of features was reduced from 37 to 33. 

3.4.2 PCA 

PCA is widely recognized as an unsupervised machine 

learning technique utilized for various purposes, including 

data de-noising, compression, dimensionality reduction, and 

exploratory data analysis [23]. In this research, PCA was 

employed as a feature reduction method, resulting in 25 

principal components. 

3.5 Machine learning algorithms 

For the evaluation of the proposed system's performance, 

four machine learning methods were employed: RF, SVM, 

KNN, and naïve Bayes. Each method is succinctly elucidated 

below. 

3.5.1 RF 

RF is an ensemble learning method that aggregates multiple 

decision trees to enhance prediction accuracy. This technique 

boosts randomness in the model by searching for the best 

features among a randomly selected subset, resulting in a 

balance of low bias and variance. The final prediction is 

determined through averaging, as depicted in Eq. (1) [24]: 

∗X*=π(Ο(c))|β=1/k∑k
k=1 xlk(fᵒ0(c)), k∗ (1) 

where, X* represents the optimal points, 0(c) the observation, 

β the learning rate variable, K the number of decision trees, f 

the feature transform, and lk a leaf node of the decision tree. 

3.5.2 SVM 

SVM, a supervised machine learning algorithm, creates 

input-output mapping functions from labeled training data. 

Rooted in statistical learning, SVMs are widely applied in 

diverse real-world scenarios. Its formulation is represented in 

Eq. (2) [25]: 

𝑦(𝑥) = sin ∑ 𝛼𝑘  𝑦𝑘

𝑁

𝑘=1

 𝜓(𝑥, 𝑥𝑘) + 𝑏 (2) 

where, X and Y denote distances between respective points x 

and y; αk the positive real constants; T, b and K are constants. 

The kernel function ψ (·,·) often takes the form of ψ(x, xk)=𝑥𝑘
𝑇x

for a linear SVM, or ψ(x, xk)=(𝑥𝑘
𝑇 + 1)2  for a polynomial

SVM of degree d. 

3.5.3 KNN 

KNN maintains all training data for classification. It selects 

representative samples from the training set for categorization 

purposes. The inductive learning approach developed from the 

training dataset is then utilized for classification, as illustrated 

in the KNN equation [26]: 

( )
2

1

( )
k

i i

i

y x x y
=

= − (3) 

where, X and Y signify distances between respective data 

points x1, x2, …. xn and y1, y2, …... yn. 

3.5.4 NB 

NB, based on Bayes' rule, assumes conditional 

independence of features given a class. It calculates the 

probability P(y|x) for all classes y given an item x using sample 

data, as shown in Eq. (4) [27]: 

P(𝐶𝑘\𝑥) = 
𝑝(𝐶𝑘) 𝑝(𝑥\𝐶𝑘)

𝑝(𝑥)
(4) 

7008

28033

0

5000

10000

15000

20000

25000

30000

768



where, X is a vector of n features 𝑥 = (𝑥1, … , 𝑥𝑛) , and K

represents potential outcomes or classes 𝐶𝑘.

3.6 Criteria measurements 

In evaluating the effectiveness of machine-learning models, 

a range of measures is essential [28]. A confusion matrix 

categorizes predictions based on their correlation with actual 

data values. Correct classifications occur when predicted 

values match observed ones. From the confusion matrix, 

metrics such as accuracy, precision, recall, and F1-score are 

computed. In addition to these criteria, execution time is also 

considered, assessing the time each machine learning method 

takes when applied with each feature reduction method 

individually. 

4. RESULTS

Table 1. Accuracy performance comparison of Boruta 

application 

RF Classier SVM KNN NB 

98.7 95.8 93.9 93.6 

The selection of the most suitable machine learning model 

for this research was based on two critical parameters: 

accuracy and execution time. Boruta and PCA were the feature 

reduction methods employed, each applied independently to 

the four machine learning models. The paramount goal was to 

attain the highest accuracy with the least execution time. The 

results obtained are presented in various case studies as 

follows. 

4.1 Case study 1 

Table 1 presents a comparative analysis of the performance 

in terms of accuracy when Boruta feature selection was 

utilized with the four machine learning models. It was 

observed that the RF classifier achieved the highest accuracy 

at 98.7%. 

Table 2 illustrates the confusion matrix for the proposed 

model. Insights into the classification accuracy were gleaned 

from this matrix, wherein the diagonal readings for each 

classifier represent the true positive values. The RF classifier 

displayed superior performance, as exemplified in the "full" 

class with 436 instances correctly predicted and only 39 

misclassified as "selected". This contrasts with the SVM 

classifier, where 338 instances were correctly predicted and 

137 misclassified for the same class. The KNN and NB 

classifiers displayed similar trends. Table 3 provides a detailed 

classification analysis of the proposed model. The recall, 

precision, and F1-score for each class were calculated based 

on the classification metrics from the testing dataset. The RF 

classifier demonstrated positive precision, recall, and F1-score 

values across all classes. Regarding the execution time, as 

indicated in Table 4, the Naïve Bayes classifier recorded the 

lowest execution time at 0.0067 seconds, outperforming the 

other classifiers in this aspect. 

Table 2. Confusion matrix comparative analysis (Boruta with machine learning classifiers) 

Classifier RF SVM 

State Type Full Selected Shutdown Full Selected Shutdown 

Full 436 39 0 338 137 0 

Selected 0 2376 52 52 2285 91 

Shutdown 0 0 4105 0 4 4101 

Classifier KNN NB 

State Type Full Selected Shutdown Full Selected Shutdown 

Full 333 138 4 383 92 0 

Selected 116 2169 143 345 2083 0 

Shutdown 0 12 4093 0 6 4099 

Table 3. Classification performance analysis for Case study 1 

RF Classifier SVM Classifier 

Class Precision Recall F1-Score Precision Recall F1-Score Rows 

Full 100% 92% 96% 87% 71% 78% 475 

Selected 98% 98% 98% 94% 94% 94% 2428 

Shutdown 99% 100% 99% 98% 100% 99% 4105 

KNN Classifier NB Classifier 

Class Precision Recall F1-Score Precision Recall F1-Score Rows 

Full 74% 70% 72% 53% 81% 64% 475 

Selected 94% 89% 91% 96% 86% 90% 2428 

Shutdown 97% 100% 98% 100% 100% 100% 4105 

4.2 Case study 2 

In this case study, a comparative analysis was conducted 

using the PCA feature selection method with the four machine 

learning classifiers, focusing on accuracy. Table 5 reveals that 

the SVM classifier achieved the highest accuracy at 95.1%. 

Table 6 presents the confusion matrix results for the 

application of PCA with the four classifiers. The diagonal 

entries for each classifier correspond to the true positive values, 

indicating the instances where predictions were accurately 

aligned with the actual class. 

Table 4. Execution time analysis in seconds 

Feature Selection 

Method 

RF 

Classier 
SVM KNN NB 

Boruta 0.4549 
2.806

0 
3.4520 0.0067 
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Table 5. Accuracy performance comparison of PCA 

application 

RF Classier SVM KNN NB 

91.7 95.1 93.5 86.6 

The classification performance is detailed in Table 7. 

Notably, for the "full" class, the RF classifier exhibited a 

precision of 98%, yet the recall was only 13%. This indicates 

a high proportion of relevant instances among the retrieved 

results, contrasted with a low percentage of correctly 

categorized positive instances. Table 8 highlights the 

execution time for each classifier. The NB classifier recorded 

the shortest execution time at 0.0055 seconds, underscoring its 

efficiency compared to the other classifiers. 

Table 6. Confusion matrix comparative analysis (PCA with machine learning classifiers) 

Classifier RF SVM 

State Type Full Selected Shutdown Full Selected Shutdown 

Full 61 410 4 304 171 0 

Selected 1 2276 151 61 2272 95 

Shutdown 0 15 4090 0 13 4092 

Classifier KNN NB 

State Type Full Selected Shutdown Full Selected Shutdown 

Full 310 161 4 164 306 5 

Selected 133 2149 146 167 2070 141 

Shutdown 0 10 4095 1 269 3835 

Table 7. Classification performance analysis for Case study 2 

RF Classifier SVM Classifier 

Class Precision Recall F1-Score Precision Recall F1-Score Rows 

Full 98% 13% 23% 83% 64% 72% 475 

Selected 84% 94% 89% 93% 94% 93% 2428 

Shutdown 96% 100% 98% 98% 100% 99% 4105 

KNN Classifier NB Classifier 

Class Precision Recall F1-Score Precision Recall F1-Score Rows 

Full 70% 65% 68% 99% 35% 41% 475 

Selected 93% 89% 91% 78% 85% 82% 2428 

Shutdown 96% 100% 98% 95% 93% 94% 4105 

Table 8. Execution time analysis in seconds 

Feature 

Selection 

Method 

RF SVM KNN NB 

PCA 0.4850 3.2508 3.5801 0.0055 

Table 9. Accuracy comparison between PCA and Boruta 

Feature Selection Method RF SVM K-NN NB 

Boruta 98.7 95.9 94.1 93.6 

PCA 91.7 95.1 93.5 86.6 

4.3 Comparison analysis between case studies 1 and 2 

The analysis of accuracy ratings for the four algorithms 

using two distinct feature selection methods, as presented in 

Table 9, reveals a significant observation. With the application 

of the Boruta feature selection method, the RF classifier 

achieved the highest accuracy, marked at 98.7%. This finding 

underscores the RF classifier's efficacy when combined with 

the Boruta method. Figure 5 provides a graphical 

representation, comparing the accuracies of the four machine 

learning models employing both Boruta and PCA feature 

selection methods. This comparison, illustrated with variances 

on the y-axis and the models on the x-axis, highlights the 

superior accuracy rate of 98.7% consistently achieved by the 

RF classifier with Boruta across various scenarios. 

Furthermore, the execution time analysis, as depicted in Table 

10, indicates that the NB classifiers recorded the shortest 

execution time when both PCA and Boruta were applied, with 

0.0067 seconds and 0.0055 seconds, respectively. This finding 

is visually represented in Figure 6, which compares the 

execution times of all four machine learning models when 

employing Boruta and PCA feature selection methods. The 

graph, with time in seconds on the y-axis and models on the x-

axis, succinctly illustrates the efficiency of the NB classifiers 

in terms of execution time. 

Figure 5. Chart for accuracies of the four classifiers using 

two feature selection methods 

The comparative analysis between the two case studies, 

focusing on accuracy, reveals a notable outcome. When the 

Boruta feature selection method was applied with the RF 

classifier, an accuracy of 98% was achieved, representing the 
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highest percentage among the evaluated methods. Conversely, 

in terms of execution time, the NB classifiers demonstrated the 

shortest duration, recording times of 0.0067 seconds and 

0.0055 seconds with Boruta and PCA, respectively. The RF 

classifier, while not the fastest, was competitive, registering 

execution times of 0.4549 seconds with Boruta and 0.4850 

seconds with PCA. This assessment indicates that the RF 

classifier, coupled with the Boruta feature selection method, is 

a viable choice for achieving the highest accuracy rate. 

Moreover, the implementation time for this combination is 

considerably efficient, closely rivaling that of the NB 

classifiers. Therefore, it is deduced that the objective of this 

research, which is to attain high accuracy while maintaining 

low execution time, has been successfully realized. 

 

Table 10. Execution time comparison between PCA and 

Boruta 

 
Feature Selection 

Method 

RF 

Classier 
SVM KNN NB 

Boruta 0.4549 2.8060 3.4520 0.0067 

PCA 0.4850 3.2508 3.5801 0.0055 

 

 
 

Figure 6. Time consumed by the four classifiers with two 

feature selection methods 

 

 
5. CONCLUSION 

 

The challenge of energy management, particularly in the 

context of building power consumption, is a critical concern. 

This research endeavored to address this challenge by 

applying machine learning techniques. Four machine learning 

classifiers, namely, RF, SVM, KNN), and NB, were employed, 

each combined with PCA and Boruta feature reduction 

methods. The objective was to reduce the number of features 

while maintaining high accuracy in the models' performance. 

This reduction in features directly impacted the execution time 

required for the models. Three operational modes, namely, full, 

selected, and shutdown, were incorporated into the models, 

providing a framework for efficient power management in 

buildings. The models underwent training and testing using a 

dataset recorded over a year from a specific building. The 

findings demonstrated that the RF classifier, in conjunction 

with the Boruta feature reduction method, outperformed the 

other models in terms of classification accuracy (98.7%) and 

execution time (0.4549 seconds). 

Looking towards future endeavors, the incorporation of 

additional variables, such as temperature and humidity, 

alongside occupancy status, is proposed. This integration aims 

to refine the predictive accuracy and reduce the execution time 

of the models further, thereby optimizing energy consumption 

in buildings more effectively. 
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