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In cryptography, we use different methods to hide information and make sure it's safe 

when shared. This keeps hackers from getting at it. The RSA cryptosystem is a way to 

protect messages that uses two different keys. In this paper, a new method is suggested. 

It includes changing messages into hexadecimal values and then turning them into 

decimals. Public and private keys are generated based on the input of message's length, 

adding an increase of complexity to enhance the security of the cryptosystem. The 

proposed algorithm uses two different keys to encrypt and decrypt each character, this 

makes the cryptosystem increasing the difficultly for attackers trying to hack it. A 

comparison is made between the proposed algorithm and the original RSA, using NIST 

tests and measuring the running time of key generation, encoding, and decoding 

operations. The results show that the new algorithm provides a secure transmitting of 

data. The proposed algorithm enhances security over the standard RSA algorithm by 

using hexadecimal conversion, multiple keys, dual key encryption per one-character, 

increased randomness, and a more advanced cryptography method, offering improved 

resistance against attacks and protecting data. 
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1. INTRODUCTION

The continuous progress in telecommunication and 

networking technologies has sparked a rising trend in the 

utilization of message exchange, involving the storage and 

transfer of diverse content and its accompanying information 

[1]. This growing reliance on message exchange underscores 

the critical significance of data security in today. For instance, 

in e-commerce, secure message exchange plays a vital role in 

protecting personal and financial details during online 

transactions. Similarly, in healthcare, it ensures the 

confidentiality of patient medical records, safeguarding 

sensitive data. In the financial sector, secure message 

exchange is essential for protecting sensitive financial 

information during electronic transactions. Moreover, secure 

message exchange is crucial in remote work and virtual 

collaboration, safeguarding intellectual property and 

proprietary business information. These are just a few 

examples of the numerous applications that highlight the 

importance of secure message exchange and data security. 

Overall, robust data security measures are essential to maintain 

integrity, privacy, and trust in message exchange. 

Cryptography is used to protect data and communications 

from hackers by transforming information into formats that are 

unreadable unless the user has a particular key or method of 

decrypting it. Cryptography has grown over time to become a 

crucial component of modern communication safety, with 

applications ranging from banking services to secure texting 

to securing sensitive data and others. 

Numerous encryption techniques are widely available and 

employed to protect information. Encryption involves the use 

of a key to transform data into an unreadable format, rendering 

it incomprehensible to unauthorized parties. To revert the data 

to its original form, decryption using the appropriate key is 

necessary. Key generators create new keys for encryption 

systems. There are different sorts of keys in these algorithms 

[2]. 

Symmetric cryptography, also referred to as secret-key or 

traditional cryptography, utilizes a single key for both 

encoding and decoding information. In simpler terms, both the 

sender and the recipient use the same key to encrypt and 

decrypt messages. This type of cryptography is relatively 

simple and efficient, but it requires that both parties share the 

key, which can be difficult to do securely. 

Another type of cryptography is referred to as "asymmetric 

cryptography" or "public-key cryptography," which is a more 

advanced form of encryption. This method uses a pair of keys 

used for encryption, referred to as the public and private keys, 

to ensure the security of information. The public key is 

available to everyone who wants to send a message, while the 

private key is securely held by the owner of the public key. 

This allows for secure communication between two parties, as 

the sender can encrypt a message with the recipient's public 

key and only the recipient can decrypt it with their private key. 

The major applications of public key cryptography are 

authentication, non-repudiation, and key exchange [3, 4]. The 

widely adopted public-key cryptography algorithm in use 

today is the RSA (Rivest-Shamir-Adleman) algorithm, which 

is recognized as the most well-known and extensively used 

public-key cryptography system. The acronym RSA 
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represents the surnames of its creators: Ronald Rivest, Adi 

Shamir, and Leonard Adleman [5].  

At a high level, the RSA algorithm works as follows: a user 

generates a pair of keys - a public key and a private key. The 

public key is distributed to anyone who wants to send a 

message, while the private key is kept secure by the owner of 

the public key. When someone wants to send an encrypted 

message to the owner of the public key, they use the recipient's 

public key to encrypt the message. The encrypted message can 

only be decrypted using the corresponding private key held by 

the recipient. This ensures that only the intended recipient can 

access the original content of the message [5]. The RSA 

algorithm is considered a safe method of encryption because it 

relies on the complexity of factorizing primes of large numbers, 

which is a widely recognized mathematical problem that 

currently has no efficient algorithm to solve [6, 7]. Therefore, 

it is widely preferred over other cryptography algorithms, such 

as Advanced Encryption Standard (AES), a symmetric key 

algorithm [8], and the Goldwasser-Micali (GM) algorithm, an 

asymmetric key algorithm [3]. The current RSA 

implementations are more efficient owing to their flexible key 

size range, which spans from 2 to 2048 bits. The algorithm's 

security is contingent on the key size selected by the user or 

programmer. Larger key sizes are generally considered more 

secure because they increase the computational effort required 

to break the encryption. The security of RSA is based on the 

difficulty of factoring large composite numbers into their 

prime factors. As the key size increases, the number of 

possible factorizations grows exponentially, making it 

increasingly challenging to find the prime factors and decrypt 

the message without the corresponding private key. On the 

other hand, the mention of a 512-bit key size in various 

applications is concerning. A 512-bit key size is now 

considered insecure due to advancements in computing power 

and factoring algorithms. The computational resources 

required for factoring 512-bit keys have become increasingly 

accessible, rendering them inadequate for ensuring secure 

communication or data protection. Furthermore, in addition to 

this method, a 1024-bit key length is employed. As a result, 

the 512-bit key size is still prevalent in various applications [9, 

10]. The RSA cryptosystem has been the target of various 

attacks over the years, and it is essential to secure it against 

these attacks. A common attack method is known as a brute 

force attack, in which all possible combinations of keys are 

tested until the correct one is identified. An attack on the RSA 

algorithm is an attempt to decrypt encrypted data without 

knowing the private key. The RSA algorithm is secure because 

it is very difficult to factor large numbers. However, if an 

attacker has enough time and resources, they can try all 

possible keys until they find the correct one. This is known as 

a brute force attack [11]. The proposed method addresses this 

issue by generating multiple keys based on the length of inputs. 

This makes it much more difficult for an attacker to try all 

possible keys. The aim of this paper is to propose a novel 

technique for enhancing the security of the RSA cryptosystem 

against brute force attacks. The proposed technique generates 

multiple keys based on the length of the input message. This 

makes it much more difficult for an attacker to try all possible 

keys, i.e., ensuring that the encryption scheme remains secure 

even if one key is compromised. 
 

 

2. RSA CRYPTOSYSTEM 
 

The RSA Cryptosystem is a commonly utilized public key 

encryption method that was initially introduced by Rivest et al. 

in 1978 [5], as previously noted. This cryptographic technique 

is founded on the challenge of factoring large numbers and has 

emerged as a favored approach for ensuring secure network 

communication. The difficulty of factoring large numbers is 

the basis of RSA security. It is believed to be computationally 

infeasible to factor a large number that is the product of two 

large prime numbers. This is because the number of possible 

factors of a large number grows exponentially with the size of 

the number. In this section, we will provide a detailed 

examination of the RSA public key cryptosystem algorithm, 

drawing from the studies conducted in references [12, 13]. 
 

RSA Key Generation Steps 

 

1-Randomly take two large prime numbers (p and q) of 

equal length. 

2-Calculate the product of p and q to obtain n, which is the 

public modulus. 

3-Compute the totient function of Euler: 

 

𝜑(𝑛) = (𝑝 − 1) (𝑞 − 1) 

 

where, the totient function of Euler, 𝜑(𝑛), is the number of 

positive integers less than or equal to n that are relatively prime 

to 𝑛 . In other words, 𝜑(𝑛)  is the number of integers that 

cannot be divided by any of the prime factors of n. 

 

4-Select a public key e, such that e is an integer and 

𝑔𝑐𝑑(𝑒, 𝜑(𝑛)) = 1. 

5-Calculate the private decryption exponent d using the 

extended Euclidean algorithm: 𝑑 = 𝑒−1𝑚𝑜𝑑 𝜑(𝑛). 

 

RSA Encryption Steps 

 

1-Select a plaintext message 𝑀 such that 𝑀 is less than 𝑛. 

2-Compute the ciphertext 𝐶 by raising 𝑀 to the power of 

the public encryption exponent 𝑒 and taking the result modulo 

𝑛: 𝐶 = 𝑀𝑒  𝑚𝑜𝑑 𝑛. 
 

RSA Decryption Steps 
 

1-Compute the plaintext 𝑀  by raising the ciphertext 𝐶  to 

the power of the private decryption exponent 𝑑 and taking the 

result modulo 𝑛: 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛. 

2-Retrieve the message 𝑀. 
 

There are a number of known attacks against RSA, but they 

all require the attacker to know the public modulus n. The most 

common attack is the brute-force attack, which simply tries all 

possible values of d until it finds one that decrypts the 

ciphertext correctly. This attack is impractical for large values 

of n, but it is possible for small values of n. 

The modification proposed for RSA, which is explaining it 

in the next section, is considered the solution for enhancing the 

security of the cryptosystem because, as mentioned in the 

earlier section, it makes it much more difficult for an attacker 

to try all possible keys, including that the encryption scheme 

remains secure even if one key is compromised. 
 

 

3. MODIFICATION PROPOSED FOR THE RSA 

CRYPTOSYSTEM  

 

In this section, we explain the proposed solution, which will 
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add security and complexity to the RSA cryptosystem, which 

depends on generating keys and input lengths and the way to 

encode and decrypt messages by using the generated keys. 

The modification proposed focuses on increasing the 

complexity of procedures for creating keys with the encryption 

and decryption processes of the RSA cryptosystem. The main 

difficulty in many situations is that it is readily broken since 

keys depending on 𝑛 are simply computed. 

Since 𝑛 in RSA is the product of two large prime numbers, 

its value can be easily verified. However, if an attacker 

manages to discover the value of 𝑛, they may be able to find 

the keys and compromise the security of the cryptosystem. 

To improve the complexity and security of the RSA 

cryptosystem, several significant modifications have been 

proposed and explained in this section, as follows: 

In this modification, we encrypt a message after converting 

each character into a hexadecimal ASCII value of two digits 

𝑀𝑗 = (𝑚𝑖  𝑚𝑖+1)16, where 𝑗 = 1, 2, 3, . .. and 𝑖 = 2𝑗 − 1. Then, 

separate them into two values 𝑀𝑗 = (𝑚𝑖 , 𝑚𝑖+1)16, and convert 

each value of 𝑚𝑖  and 𝑚𝑖+1  to decimal values 𝑀𝑗 =

(𝑚𝑖, 𝑚𝑖+1)10 [14] as follow: 

The message 𝑀𝑗 =  𝑀1 𝑀2 𝑀3 . . . 𝑀𝑗 . The Converting as 

below: 

𝑀1 = (𝑚1 𝑚2)16 = (𝑚1, 𝑚2)16 = (𝑚1, 𝑚2)10 for 𝑗 = 1. 

𝑀2 = (𝑚3 𝑚4)16 = (𝑚3, 𝑚4)16 = (𝑚3, 𝑚4)10 for 𝑗 = 2. 

𝑀3 = (𝑚5 𝑚6)16 = (𝑚5, 𝑚6)16 = (𝑚5, 𝑚6)10 for 𝑗 = 3. 

… 

𝑀𝑗 = (𝑚𝑖  𝑚𝑖+1)16 = (𝑚𝑖 , 𝑚𝑖+1)16 = (𝑚𝑖, 𝑚𝑖+1)10 , where 

𝑗 represents the length of message. 

In this research paper, we have made modifications to the 

RSA cryptosystem algorithm by adding public and private 

keys that depend on the length of the message to be encrypted. 

Like the conventional RSA algorithm, the computation of the 

public modulus n in our proposed algorithm involves utilizing 

two large prime numbers 𝑝  and q, which are multiplied to 

compute 𝑛 , i.e., 𝑛 = 𝑝 ∗  𝑞 . Then compute 𝜑(𝑛) = (𝑝 −
1)(𝑞 − 1) . In adding new public keys 𝑒𝑖 , where 𝑖 =
1,2,3, . . . , 𝑗 and 𝑗= length of message] are selected as follows: 

1 < 𝑒𝑖 < 𝜑(𝑛)  such that 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1 . After that, 

calculate the private keys 𝑑𝑖  by using: 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛), 

𝑖 = 1,2,3, … , 𝑗. 

For encryption procedures, this proposed modification uses 

these exponents to encrypt messages using public keys 𝑒𝑖 as 

follows: 

 

𝐶𝑗 = (𝑐𝑖 , 𝑐𝑖+1) = (𝑚𝑖
𝑒𝑖 , 𝑚𝑖+1

𝑒𝑖+1)𝑚𝑜𝑑 𝑛 

= (𝑚𝑖
𝑒𝑖+1 , 𝑚𝑖+1

𝑒𝑖+2)𝑚𝑜𝑑 𝑛 

⁝ 

= (𝑚𝑖
𝑒𝑖+𝑗 , 𝑚𝑖+1

𝑒𝑖)𝑚𝑜𝑑 𝑛 

 

where, 𝐶𝑗  is the ciphertext. 

Similarly, for decryption procedures, use exponents private 

keys 𝑑𝑖  to decrypt and find the message 𝑀𝑗 as follows: 

 

𝑀𝑗 = (𝑚𝑖, 𝑚𝑖+1) = (𝑐𝑖
𝑑𝑖 , 𝑐𝑖+1

𝑑𝑖+1)𝑚𝑜𝑑 𝑛 

= (𝑐𝑖
𝑑𝑖+1 , 𝑐𝑖+1

𝑑𝑖+2)𝑚𝑜𝑑 𝑛 

⁝ 

= (𝑐𝑖
𝑑𝑖+𝑗 , 𝑐𝑖+1

𝑑𝑖)𝑚𝑜𝑑 𝑛 

 

In the case of brute force attack against RSA, the process of 

obtaining the private key (d) through a brute force attack 

involves systematically testing all possible values until the 

correct one is found. In this scenario, the attacker iterates 

through a range of numbers, starting from 1, in order to 

identify a value (d) that satisfies the equation: 𝐶𝑑 𝑚𝑜𝑑 𝑛 = 𝑀, 

where M represents the original message. 

Regarding the proposed modification, the private keys are 

represented by the exponents ( 𝑑𝑖 , 𝑑𝑖+1 , 𝑑𝑖+2 , ...). This 

modification renders the brute force attack computationally 

infeasible. Even if the attacker manages to discover one of the 

private key exponents, such as 𝑑1 , the message remains 

unreadable or unknown unless they also find 𝑑2 . This is 

because the proposed modification employs two keys for 

encrypting and decrypting each character of the message. 

Consequently, the attacker would need to search through an 

exponentially large number of potential combinations, making 

the task exceedingly complex and impractical to break the 

cryptosystem within a reasonable timeframe. 
 

3.1 Proposed algorithm 

 

The message 𝑀𝑗 =…. 

 

Keys Creation 

 

1. Randomly take two large prime numbers, 𝑝 and 𝑞. 

2. Calculate 𝑛 = (𝑝)(𝑞). 

3. Compute 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). 

4. Randomly generate public keys 𝑒𝑖  such that 1 <
𝑒𝑖 < 𝜑(𝑛) and 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1. 

5. Calculate 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛) , 𝑖 = 1, 2, 3, … , 𝑗.  

 

Encryption 

 

1. Given the message 𝑀𝑗 , where 𝑀𝑗 =

𝑀1  𝑀2  𝑀3 . . . 𝑀𝑗 and 𝑗 = length of message 𝑀𝑗. 

2. Convert 𝑀𝑗  into a hexadecimal ASCII value 

(𝑚𝑖 𝑚𝑖+1)16. 

3. Rewrite 𝑀𝑗  as (𝑚𝑖 , 𝑚𝑖+1)16  and then convert into 

decimal values (𝑚𝑖 , 𝑚𝑖+1)10.  

4. Compute 𝐶𝑗 by:  

𝐶1 = (𝑚𝑖
𝑒𝑖 , 𝑚𝑖+1

𝑒𝑖+1)10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1 ) 

𝐶2 = (𝑚𝑖
𝑒𝑖+1 , 𝑚𝑖+1

𝑒𝑖+2  ) 10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1 ) 

⁝ 

𝐶𝑗 = (𝑚𝑖
𝑒𝑖+𝑗 , 𝑚𝑖+1

𝑒𝑖)10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1) 

5. Send the ciphertext 𝐶𝑗 to the other side. 

 

Decryption 

 

1. Received the ciphertext 𝐶𝑗. 

2. Compute 𝑀𝑗: 

𝑀1 = (𝑐𝑖
𝑑𝑖 , 𝑐𝑖+1

𝑑𝑖+1) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1 )10 

𝑀2 = (𝑐𝑖
𝑑𝑖+1 , 𝑚𝑖+1

𝑑𝑖+2) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1 )10 

⁝ 

𝑀𝑗 = (𝑐𝑖
𝑑𝑖+𝑗 , 𝑐𝑖+1

𝑑𝑖) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1)10 

3. Convert (𝑚𝑖 , 𝑚𝑖+1)10  to hexadecimal ASCII value 

(𝑚𝑖, 𝑚𝑖+1)16. 

4. Rewrite (𝑚𝑖 , 𝑚𝑖+1)16 as (𝑚𝑖   𝑚𝑖+1)16. 

5. Recovered the original message 𝑀𝑗. 

 

3.2 Implementation 

 
The following example shows the implementation of the 

proposed algorithm above. 
 

Message = ‘Hello’ 
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Keys Creation 

 
1. Take two prime numbers, 𝑝 = 5 and 𝑞 = 17. 

2. Compute 𝑛 = 5 ∗ 17 = 85. 

3. Compute 𝜑(𝑛) = (5 − 1)(17 − 1) = 64. 

4. Generate random public keys ei such that 

       1 < 𝑒𝑖 < 𝜑(𝑛) and 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1, 𝑖 = 1,2,3,4,5.  

       We choose 𝑒1 = 3, 𝑒2 = 5, 𝑒3 = 7, 𝑒4 = 9, 𝑒5 = 11. 

5. Compute 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛): we get 𝑑1 = 43, 𝑑2 =

13, 𝑑3 = 55, 𝑑4 = 57 and 𝑑5 = 35. 

 
Encryption 

 
1. Convert ‘Hello’ into a hexadecimal ASCII value: H: 

(48)16 , e: (65)16 , l: (6𝐶)16, l:(6𝐶)16, o: (6𝐹)16 

2. Rewrite and convert to decimal as: (4, 8)16 =
(4, 8)10 , (6,5)16 = (6,5)10 , (6, 𝐶)16 = (6,12)10 , 

(6, 𝐶)16 = (6,12)10, (6, 𝐹)16 = (6,15)10. 

3. Compute 𝐶𝑗, 𝑗 = 1,2,3,4,5: 

𝐶1 = (4𝑒1 , 8𝑒2)𝑚𝑜𝑑 85 

                              = (43𝑚𝑜𝑑 85, 85 𝑚𝑜𝑑 85) 

                              = (64,43). 

                                    𝐶2 = (6𝑒2 , 5𝑒3)𝑚𝑜𝑑 85 

                           = (65𝑚𝑜𝑑 85, 57 𝑚𝑜𝑑 85) 

                           = (41,10). 

⁝ 
𝐶5 = (6𝑒5 , 15𝑒1)𝑚𝑜𝑑 85 

                           = (611𝑚𝑜𝑑 85, 153 𝑚𝑜𝑑 85) 

                           = (56, 60). 

4. Send the ciphertext 𝐶1, 𝐶2, ..., 𝐶5 to the other side 

 
Decryption 

 
1. Received the ciphertext 𝐶1, 𝐶2, ..., 𝐶5. 

2. Compute 𝑀𝑗, 𝑗 = 1,2,3,4,5: 

𝑀1 = (64𝑑1 , 43𝑑2)𝑚𝑜𝑑 85 

                            = (6443 𝑚𝑜𝑑 85, 4313 𝑚𝑜𝑑 85) 

                            = (4, 8). 

                                 𝑀2 = (41𝑑2 , 10𝑑3)𝑚𝑜𝑑 85 

                            = (4113 𝑚𝑜𝑑 85, 1055 𝑚𝑜𝑑 85) 

                            = (6, 5). 

⁝ 

𝑀5 = (56𝑑5 , 60𝑑1)𝑚𝑜𝑑 85 

                            = (5635 𝑚𝑜𝑑 85, 6043 𝑚𝑜𝑑 85) 

                            = (6, 15). 

3. Convert (4,8)10 , (6,5)10 , ..., (6,15)10  into 

hexadecimal (4,8)16, (6,5)16, ..., (6, 𝐹)16. 

4. Rewrite (48)16, (65)16, …, (6𝐹)16. 

5. Find the character that corresponds to (48)16 = H, 

(65)16= e, …, and (6𝐹)16= o. 

6. Recovered the original message ‘Hello’. 

 

 
4. RESULTS AND DISCUSSION  

 
The proposed algorithm has been implemented in the 

MATLAB R2018b (9.5.0.944444) 64-bit software on Core i3 

computer with CPU 2.00GHz and RAM 4GB. As we know, 

when an attacker wants to break a cryptosystem, they attack 

the private key. The security of the RSA is predicated on the 

complexity of factoring large numbers and the potency of the 

private key, thereby affirming its resilience. The proposed 

algorithm uses characters with their hexadecimal values and 

converts them into pairs of values (𝑚𝑖 , 𝑚𝑖+1)  [14]. This 

provides a higher level of security for exchanges between two 

parties. To encrypt and decrypt messages, the proposed 

algorithm utilizes randomly generated public and private keys 

(𝑒𝑖  and 𝑑𝑖) that match the message length. 

Our proposed algorithm makes the cryptosystem more 

sophisticated and secure by generating multiple public and 

private keys and a method of embedding messages using 

hexadecimal ASCII values, in addition to encryption and 

decryption procedures. where each character of the message is 

encrypted with two keys; on the other hand, it is decrypted 

with two private keys, as shown in steps 4 and 2 of the 

proposed algorithms of RSA in the stages of encryption and 

decryption. The use of multiple keys ensures that even if one 

key is compromised, the entire system remains secure, while 

embedding messages using hexadecimal ASCII values adds an 

extra layer of protection against attacks. 

The Figures 1 and 2 and Tables 1 and 2 presented display 

the duration of generating public and private keys (𝑒𝑖, 𝑑𝑖, 𝑒, 

and 𝑑 ), as well as the encryption and decryption times in 

seconds of 1000-character messages, utilizing distinct prime 

numbers for both the proposed algorithm and the original RSA 

algorithm. 

 

 
 

Figure 1. The running time of generating keys (𝑒𝑖, 𝑑𝑖, 𝑒 and 𝑑) for 1000-characters 

 

220



 

 
 

Figure 2. The running time encryption and decryption of messages (1000-characters) 

 

Table 1. The running times of the proposed algorithm in seconds 

 
𝒑 𝒒 𝒆𝒊 𝒅𝒊 Encryption Decryption 

58363 53269 0.362074 0.165056 5.021223 7.178098 

130253 130241 0.323466 0.168802 6.843971 8.034885 

2305337 2303669 0.314585 0.178270 6.931602 11.050265 

23569129 23568971 0.653467 0.195785 8.654589 13.656344 

 

Table 2. The running times of the original RSA algorithm in seconds 

 
𝒑 𝒒 𝒆 𝒅 Encryption Decryption 

58363 53269 0.004274 0.001500 4.640346 6.170683 

130253 130241 0.003816 0.001065 5.876735 6.466873 

2305337 2303669 0.001881 0.001352 6.017149 8.931112 

23569129 23568971 0.003457 0.001136 7.028774 10.839939 

 

The results indicate that the proposed algorithm takes longer 

to generate keys than the original RSA technique. Due to the 

running time for generating 𝑒𝑖 (public keys) being longer than 

𝑑𝑖  (private keys) due to several factors such as random 

generation, the proposed algorithm specifies that 𝑒𝑖  is 

randomly generated within the range of 1 to 𝜑(𝑛). Generating 

a random number based on the input length and due 𝑔𝑐𝑑 

computation steps to verify this condition may require 

additional time. In the case of the calculation of 𝑑𝑖, it involves 

computing the modular inverse of 𝑒𝑖  modulo 𝜑(𝑛) . 

Depending on the specific implementation and the algorithm 

used for modular inversion, this operation will be 

computationally faster than the random generation and 𝑔𝑐𝑑 

computation steps involved in generating 𝑒𝑖. 

Nevertheless, this elongated key generation process can be 

regarded as a benefit as it bolsters the system's security by 

generating numerous keys based on the input length, thereby 

adding an extra layer of complexity. Furthermore, the 

encryption and decryption processes of the proposed RSA 

algorithm require more time compared to those of the original 

RSA algorithm, as they necessitate using two keys for each 

character. Despite these downsides, the proposed RSA 

algorithm enhances security through its key generation, 

encryption, and decryption methods. 

To evaluate the proposed algorithm's performance in terms 

of randomness, we subjected it to the NIST tests [15], using 12 

tests chosen based on the length of the message encrypted 

(10000 bits). As known from the NIST tests, a p-value greater 

than or equal to 0.01 indicates randomness (otherwise, it 

failed). The results of the NIST tests showed that the proposed 

algorithm generated more randomness than the original RSA 

algorithm. Specifically, the output of the proposed algorithm 

passed all the NIST randomness tests, indicating that it 

generated a highly random sequence of numbers. In contrast, 

the output of the original RSA algorithm failed some of the 

tests, as shown in Table 3 and Figure 3.  

 

Table 3. The NIST tests of the proposed algorithm and the original RSA for 10000 bits 
 

Test P-Value (RSA) P-Value (Proposed Algorithm) 

Frequency test 0.0601080779223996 0.703945415151674 

Block frequency 0.999999667966886 0.862371323589811 

Runs 0.0016 0.022520239477322 

Longest run of ones in block 4.0334e-45 0.944987682549921 

Binary matrix rank 0.374305808177149 0.441305948144981 

Discrete fourier transform 7.2189e-07 0.270811569981268 

Overlapping template matching 0.0313561580237405 0.681484410476162 

Universal 0 0.90839709352016 

Linear complexity 0.1865343653042280 0.359316182992329 

Serial 0 0.233767801899238 

Approximate entropy 4.40301060682201e-152 0.637758780173094 

Cumulative sums 0.0999915723875517 0.953761550531937 
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(a) The NIST tests of RSA 

 
(b) The NIST tests of the proposed algorithm 

 

Figure 3. The NIST tests each method 
 

 

5. CONCLUSIONS 

 

The proposed RSA algorithm in this research utilizes 

hexadecimal values and multiple keys to enhance security for 

exchanging messages between two parties. Based on the 

length of the message, the algorithm generates several pairs of 

public and private keys and encrypts each character using two 

keys, ensuring that the encryption scheme remains secure even 

if one key is compromised. The NIST tests showed that the 

proposed algorithm generated more randomness than the 

original RSA algorithm. Although the key generation, 

encryption, and decryption processes take longer than those of 

the original RSA, the added complexity provides improved 

security against attacks. Overall, the proposed RSA algorithm 

offers a more sophisticated and secure method of encryption 

for exchanging sensitive information. It leverages 

hexadecimal values and multiple keys, enhancing security 

while introducing a slight increase in computational 

complexity. The significance of this work lies in providing a 

robust and secure method for exchanging sensitive 

information. By enhancing the encryption process, the 

proposed RSA algorithm offers a viable solution for secure 

communication, contributing to the field of encryption 

methods by introducing a novel approach that fortifies data 

protection. 
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