
Improving the Robustness of RSA Encryption Through Input-Based Key Generation

Dua M. Ghadi

Wasit Education Directorate, Ministry of Education, Baghdad 10011, Iraq

Corresponding Author Email: mdua1093@gmail.com

Copyright: ©2024 The author. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.110124 ABSTRACT

Received: 19 May 2023

Revised: 25 July 2023

Accepted: 11 August 2023

Available online: 30 January 2024

In cryptography, we use different methods to hide information and make sure it's safe

when shared. This keeps hackers from getting at it. The RSA cryptosystem is a way to

protect messages that uses two different keys. In this paper, a new method is suggested.

It includes changing messages into hexadecimal values and then turning them into

decimals. Public and private keys are generated based on the input of message's length,

adding an increase of complexity to enhance the security of the cryptosystem. The

proposed algorithm uses two different keys to encrypt and decrypt each character, this

makes the cryptosystem increasing the difficultly for attackers trying to hack it. A

comparison is made between the proposed algorithm and the original RSA, using NIST

tests and measuring the running time of key generation, encoding, and decoding

operations. The results show that the new algorithm provides a secure transmitting of

data. The proposed algorithm enhances security over the standard RSA algorithm by

using hexadecimal conversion, multiple keys, dual key encryption per one-character,

increased randomness, and a more advanced cryptography method, offering improved

resistance against attacks and protecting data.

Keywords:

decryption, encryption, hexadecimal values,

input-based cryptography, variable-length input,

key generation method, NIST randomness tests,

Rivest-Shamir-Adleman (RSA)

1. INTRODUCTION

The continuous progress in telecommunication and

networking technologies has sparked a rising trend in the

utilization of message exchange, involving the storage and

transfer of diverse content and its accompanying information

[1]. This growing reliance on message exchange underscores

the critical significance of data security in today. For instance,

in e-commerce, secure message exchange plays a vital role in

protecting personal and financial details during online

transactions. Similarly, in healthcare, it ensures the

confidentiality of patient medical records, safeguarding

sensitive data. In the financial sector, secure message

exchange is essential for protecting sensitive financial

information during electronic transactions. Moreover, secure

message exchange is crucial in remote work and virtual

collaboration, safeguarding intellectual property and

proprietary business information. These are just a few

examples of the numerous applications that highlight the

importance of secure message exchange and data security.

Overall, robust data security measures are essential to maintain

integrity, privacy, and trust in message exchange.

Cryptography is used to protect data and communications

from hackers by transforming information into formats that are

unreadable unless the user has a particular key or method of

decrypting it. Cryptography has grown over time to become a

crucial component of modern communication safety, with

applications ranging from banking services to secure texting

to securing sensitive data and others.

Numerous encryption techniques are widely available and

employed to protect information. Encryption involves the use

of a key to transform data into an unreadable format, rendering

it incomprehensible to unauthorized parties. To revert the data

to its original form, decryption using the appropriate key is

necessary. Key generators create new keys for encryption

systems. There are different sorts of keys in these algorithms

[2].

Symmetric cryptography, also referred to as secret-key or

traditional cryptography, utilizes a single key for both

encoding and decoding information. In simpler terms, both the

sender and the recipient use the same key to encrypt and

decrypt messages. This type of cryptography is relatively

simple and efficient, but it requires that both parties share the

key, which can be difficult to do securely.

Another type of cryptography is referred to as "asymmetric

cryptography" or "public-key cryptography," which is a more

advanced form of encryption. This method uses a pair of keys

used for encryption, referred to as the public and private keys,

to ensure the security of information. The public key is

available to everyone who wants to send a message, while the

private key is securely held by the owner of the public key.

This allows for secure communication between two parties, as

the sender can encrypt a message with the recipient's public

key and only the recipient can decrypt it with their private key.

The major applications of public key cryptography are

authentication, non-repudiation, and key exchange [3, 4]. The

widely adopted public-key cryptography algorithm in use

today is the RSA (Rivest-Shamir-Adleman) algorithm, which

is recognized as the most well-known and extensively used

public-key cryptography system. The acronym RSA

Mathematical Modelling of Engineering Problems
Vol. 11, No. 1, January, 2024, pp. 217-223

Journal homepage: http://iieta.org/journals/mmep

217

https://orcid.org/0000-0003-2836-9662
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110124&domain=pdf

represents the surnames of its creators: Ronald Rivest, Adi

Shamir, and Leonard Adleman [5].

At a high level, the RSA algorithm works as follows: a user

generates a pair of keys - a public key and a private key. The

public key is distributed to anyone who wants to send a

message, while the private key is kept secure by the owner of

the public key. When someone wants to send an encrypted

message to the owner of the public key, they use the recipient's

public key to encrypt the message. The encrypted message can

only be decrypted using the corresponding private key held by

the recipient. This ensures that only the intended recipient can

access the original content of the message [5]. The RSA

algorithm is considered a safe method of encryption because it

relies on the complexity of factorizing primes of large numbers,

which is a widely recognized mathematical problem that

currently has no efficient algorithm to solve [6, 7]. Therefore,

it is widely preferred over other cryptography algorithms, such

as Advanced Encryption Standard (AES), a symmetric key

algorithm [8], and the Goldwasser-Micali (GM) algorithm, an

asymmetric key algorithm [3]. The current RSA

implementations are more efficient owing to their flexible key

size range, which spans from 2 to 2048 bits. The algorithm's

security is contingent on the key size selected by the user or

programmer. Larger key sizes are generally considered more

secure because they increase the computational effort required

to break the encryption. The security of RSA is based on the

difficulty of factoring large composite numbers into their

prime factors. As the key size increases, the number of

possible factorizations grows exponentially, making it

increasingly challenging to find the prime factors and decrypt

the message without the corresponding private key. On the

other hand, the mention of a 512-bit key size in various

applications is concerning. A 512-bit key size is now

considered insecure due to advancements in computing power

and factoring algorithms. The computational resources

required for factoring 512-bit keys have become increasingly

accessible, rendering them inadequate for ensuring secure

communication or data protection. Furthermore, in addition to

this method, a 1024-bit key length is employed. As a result,

the 512-bit key size is still prevalent in various applications [9,

10]. The RSA cryptosystem has been the target of various

attacks over the years, and it is essential to secure it against

these attacks. A common attack method is known as a brute

force attack, in which all possible combinations of keys are

tested until the correct one is identified. An attack on the RSA

algorithm is an attempt to decrypt encrypted data without

knowing the private key. The RSA algorithm is secure because

it is very difficult to factor large numbers. However, if an

attacker has enough time and resources, they can try all

possible keys until they find the correct one. This is known as

a brute force attack [11]. The proposed method addresses this

issue by generating multiple keys based on the length of inputs.

This makes it much more difficult for an attacker to try all

possible keys. The aim of this paper is to propose a novel

technique for enhancing the security of the RSA cryptosystem

against brute force attacks. The proposed technique generates

multiple keys based on the length of the input message. This

makes it much more difficult for an attacker to try all possible

keys, i.e., ensuring that the encryption scheme remains secure

even if one key is compromised.

2. RSA CRYPTOSYSTEM

The RSA Cryptosystem is a commonly utilized public key

encryption method that was initially introduced by Rivest et al.

in 1978 [5], as previously noted. This cryptographic technique

is founded on the challenge of factoring large numbers and has

emerged as a favored approach for ensuring secure network

communication. The difficulty of factoring large numbers is

the basis of RSA security. It is believed to be computationally

infeasible to factor a large number that is the product of two

large prime numbers. This is because the number of possible

factors of a large number grows exponentially with the size of

the number. In this section, we will provide a detailed

examination of the RSA public key cryptosystem algorithm,

drawing from the studies conducted in references [12, 13].

RSA Key Generation Steps

1-Randomly take two large prime numbers (p and q) of

equal length.

2-Calculate the product of p and q to obtain n, which is the

public modulus.

3-Compute the totient function of Euler:

𝜑(𝑛) = (𝑝 − 1) (𝑞 − 1)

where, the totient function of Euler, 𝜑(𝑛), is the number of

positive integers less than or equal to n that are relatively prime

to 𝑛 . In other words, 𝜑(𝑛) is the number of integers that

cannot be divided by any of the prime factors of n.

4-Select a public key e, such that e is an integer and

𝑔𝑐𝑑(𝑒, 𝜑(𝑛)) = 1.

5-Calculate the private decryption exponent d using the

extended Euclidean algorithm: 𝑑 = 𝑒−1𝑚𝑜𝑑 𝜑(𝑛).

RSA Encryption Steps

1-Select a plaintext message 𝑀 such that 𝑀 is less than 𝑛.

2-Compute the ciphertext 𝐶 by raising 𝑀 to the power of

the public encryption exponent 𝑒 and taking the result modulo

𝑛: 𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛.

RSA Decryption Steps

1-Compute the plaintext 𝑀 by raising the ciphertext 𝐶 to

the power of the private decryption exponent 𝑑 and taking the

result modulo 𝑛: 𝑀 = 𝐶𝑑 𝑚𝑜𝑑 𝑛.

2-Retrieve the message 𝑀.

There are a number of known attacks against RSA, but they

all require the attacker to know the public modulus n. The most

common attack is the brute-force attack, which simply tries all

possible values of d until it finds one that decrypts the

ciphertext correctly. This attack is impractical for large values

of n, but it is possible for small values of n.

The modification proposed for RSA, which is explaining it

in the next section, is considered the solution for enhancing the

security of the cryptosystem because, as mentioned in the

earlier section, it makes it much more difficult for an attacker

to try all possible keys, including that the encryption scheme

remains secure even if one key is compromised.

3. MODIFICATION PROPOSED FOR THE RSA

CRYPTOSYSTEM

In this section, we explain the proposed solution, which will

218

add security and complexity to the RSA cryptosystem, which

depends on generating keys and input lengths and the way to

encode and decrypt messages by using the generated keys.

The modification proposed focuses on increasing the

complexity of procedures for creating keys with the encryption

and decryption processes of the RSA cryptosystem. The main

difficulty in many situations is that it is readily broken since

keys depending on 𝑛 are simply computed.

Since 𝑛 in RSA is the product of two large prime numbers,

its value can be easily verified. However, if an attacker

manages to discover the value of 𝑛, they may be able to find

the keys and compromise the security of the cryptosystem.

To improve the complexity and security of the RSA

cryptosystem, several significant modifications have been

proposed and explained in this section, as follows:

In this modification, we encrypt a message after converting

each character into a hexadecimal ASCII value of two digits

𝑀𝑗 = (𝑚𝑖 𝑚𝑖+1)16, where 𝑗 = 1, 2, 3, . .. and 𝑖 = 2𝑗 − 1. Then,

separate them into two values 𝑀𝑗 = (𝑚𝑖 , 𝑚𝑖+1)16, and convert

each value of 𝑚𝑖 and 𝑚𝑖+1 to decimal values 𝑀𝑗 =

(𝑚𝑖, 𝑚𝑖+1)10 [14] as follow:

The message 𝑀𝑗 = 𝑀1 𝑀2 𝑀3 . . . 𝑀𝑗 . The Converting as

below:

𝑀1 = (𝑚1 𝑚2)16 = (𝑚1, 𝑚2)16 = (𝑚1, 𝑚2)10 for 𝑗 = 1.

𝑀2 = (𝑚3 𝑚4)16 = (𝑚3, 𝑚4)16 = (𝑚3, 𝑚4)10 for 𝑗 = 2.

𝑀3 = (𝑚5 𝑚6)16 = (𝑚5, 𝑚6)16 = (𝑚5, 𝑚6)10 for 𝑗 = 3.

…

𝑀𝑗 = (𝑚𝑖 𝑚𝑖+1)16 = (𝑚𝑖 , 𝑚𝑖+1)16 = (𝑚𝑖, 𝑚𝑖+1)10 , where

𝑗 represents the length of message.

In this research paper, we have made modifications to the

RSA cryptosystem algorithm by adding public and private

keys that depend on the length of the message to be encrypted.

Like the conventional RSA algorithm, the computation of the

public modulus n in our proposed algorithm involves utilizing

two large prime numbers 𝑝 and q, which are multiplied to

compute 𝑛 , i.e., 𝑛 = 𝑝 ∗ 𝑞 . Then compute 𝜑(𝑛) = (𝑝 −
1)(𝑞 − 1) . In adding new public keys 𝑒𝑖 , where 𝑖 =
1,2,3, . . . , 𝑗 and 𝑗= length of message] are selected as follows:

1 < 𝑒𝑖 < 𝜑(𝑛) such that 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1 . After that,

calculate the private keys 𝑑𝑖 by using: 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛),

𝑖 = 1,2,3, … , 𝑗.

For encryption procedures, this proposed modification uses

these exponents to encrypt messages using public keys 𝑒𝑖 as

follows:

𝐶𝑗 = (𝑐𝑖 , 𝑐𝑖+1) = (𝑚𝑖
𝑒𝑖 , 𝑚𝑖+1

𝑒𝑖+1)𝑚𝑜𝑑 𝑛

= (𝑚𝑖
𝑒𝑖+1 , 𝑚𝑖+1

𝑒𝑖+2)𝑚𝑜𝑑 𝑛

⁝

= (𝑚𝑖
𝑒𝑖+𝑗 , 𝑚𝑖+1

𝑒𝑖)𝑚𝑜𝑑 𝑛

where, 𝐶𝑗 is the ciphertext.

Similarly, for decryption procedures, use exponents private

keys 𝑑𝑖 to decrypt and find the message 𝑀𝑗 as follows:

𝑀𝑗 = (𝑚𝑖, 𝑚𝑖+1) = (𝑐𝑖
𝑑𝑖 , 𝑐𝑖+1

𝑑𝑖+1)𝑚𝑜𝑑 𝑛

= (𝑐𝑖
𝑑𝑖+1 , 𝑐𝑖+1

𝑑𝑖+2)𝑚𝑜𝑑 𝑛

⁝

= (𝑐𝑖
𝑑𝑖+𝑗 , 𝑐𝑖+1

𝑑𝑖)𝑚𝑜𝑑 𝑛

In the case of brute force attack against RSA, the process of

obtaining the private key (d) through a brute force attack

involves systematically testing all possible values until the

correct one is found. In this scenario, the attacker iterates

through a range of numbers, starting from 1, in order to

identify a value (d) that satisfies the equation: 𝐶𝑑 𝑚𝑜𝑑 𝑛 = 𝑀,

where M represents the original message.

Regarding the proposed modification, the private keys are

represented by the exponents (𝑑𝑖 , 𝑑𝑖+1 , 𝑑𝑖+2 , ...). This

modification renders the brute force attack computationally

infeasible. Even if the attacker manages to discover one of the

private key exponents, such as 𝑑1 , the message remains

unreadable or unknown unless they also find 𝑑2 . This is

because the proposed modification employs two keys for

encrypting and decrypting each character of the message.

Consequently, the attacker would need to search through an

exponentially large number of potential combinations, making

the task exceedingly complex and impractical to break the

cryptosystem within a reasonable timeframe.

3.1 Proposed algorithm

The message 𝑀𝑗 =….

Keys Creation

1. Randomly take two large prime numbers, 𝑝 and 𝑞.

2. Calculate 𝑛 = (𝑝)(𝑞).

3. Compute 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).

4. Randomly generate public keys 𝑒𝑖 such that 1 <
𝑒𝑖 < 𝜑(𝑛) and 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1.

5. Calculate 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛) , 𝑖 = 1, 2, 3, … , 𝑗.

Encryption

1. Given the message 𝑀𝑗 , where 𝑀𝑗 =

𝑀1 𝑀2 𝑀3 . . . 𝑀𝑗 and 𝑗 = length of message 𝑀𝑗.

2. Convert 𝑀𝑗 into a hexadecimal ASCII value

(𝑚𝑖 𝑚𝑖+1)16.

3. Rewrite 𝑀𝑗 as (𝑚𝑖 , 𝑚𝑖+1)16 and then convert into

decimal values (𝑚𝑖 , 𝑚𝑖+1)10.

4. Compute 𝐶𝑗 by:

𝐶1 = (𝑚𝑖
𝑒𝑖 , 𝑚𝑖+1

𝑒𝑖+1)10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1)

𝐶2 = (𝑚𝑖
𝑒𝑖+1 , 𝑚𝑖+1

𝑒𝑖+2) 10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1)

⁝

𝐶𝑗 = (𝑚𝑖
𝑒𝑖+𝑗 , 𝑚𝑖+1

𝑒𝑖)10 𝑚𝑜𝑑 𝑛 = (𝑐𝑖 , 𝑐𝑖+1)

5. Send the ciphertext 𝐶𝑗 to the other side.

Decryption

1. Received the ciphertext 𝐶𝑗.

2. Compute 𝑀𝑗:

𝑀1 = (𝑐𝑖
𝑑𝑖 , 𝑐𝑖+1

𝑑𝑖+1) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1)10

𝑀2 = (𝑐𝑖
𝑑𝑖+1 , 𝑚𝑖+1

𝑑𝑖+2) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1)10

⁝

𝑀𝑗 = (𝑐𝑖
𝑑𝑖+𝑗 , 𝑐𝑖+1

𝑑𝑖) 𝑚𝑜𝑑 𝑛 = (𝑚𝑖 , 𝑚𝑖+1)10

3. Convert (𝑚𝑖 , 𝑚𝑖+1)10 to hexadecimal ASCII value

(𝑚𝑖, 𝑚𝑖+1)16.

4. Rewrite (𝑚𝑖 , 𝑚𝑖+1)16 as (𝑚𝑖 𝑚𝑖+1)16.

5. Recovered the original message 𝑀𝑗.

3.2 Implementation

The following example shows the implementation of the

proposed algorithm above.

Message = ‘Hello’

219

Keys Creation

1. Take two prime numbers, 𝑝 = 5 and 𝑞 = 17.

2. Compute 𝑛 = 5 ∗ 17 = 85.

3. Compute 𝜑(𝑛) = (5 − 1)(17 − 1) = 64.

4. Generate random public keys ei such that

 1 < 𝑒𝑖 < 𝜑(𝑛) and 𝑔𝑐𝑑(𝑒𝑖 , 𝜑(𝑛)) = 1, 𝑖 = 1,2,3,4,5.

 We choose 𝑒1 = 3, 𝑒2 = 5, 𝑒3 = 7, 𝑒4 = 9, 𝑒5 = 11.

5. Compute 𝑑𝑖 = 𝑒𝑖
−1 𝑚𝑜𝑑 𝜑(𝑛): we get 𝑑1 = 43, 𝑑2 =

13, 𝑑3 = 55, 𝑑4 = 57 and 𝑑5 = 35.

Encryption

1. Convert ‘Hello’ into a hexadecimal ASCII value: H:

(48)16 , e: (65)16 , l: (6𝐶)16, l:(6𝐶)16, o: (6𝐹)16

2. Rewrite and convert to decimal as: (4, 8)16 =
(4, 8)10 , (6,5)16 = (6,5)10 , (6, 𝐶)16 = (6,12)10 ,

(6, 𝐶)16 = (6,12)10, (6, 𝐹)16 = (6,15)10.

3. Compute 𝐶𝑗, 𝑗 = 1,2,3,4,5:

𝐶1 = (4𝑒1 , 8𝑒2)𝑚𝑜𝑑 85

 = (43𝑚𝑜𝑑 85, 85 𝑚𝑜𝑑 85)

 = (64,43).

 𝐶2 = (6𝑒2 , 5𝑒3)𝑚𝑜𝑑 85

 = (65𝑚𝑜𝑑 85, 57 𝑚𝑜𝑑 85)

 = (41,10).

⁝
𝐶5 = (6𝑒5 , 15𝑒1)𝑚𝑜𝑑 85

 = (611𝑚𝑜𝑑 85, 153 𝑚𝑜𝑑 85)

 = (56, 60).

4. Send the ciphertext 𝐶1, 𝐶2, ..., 𝐶5 to the other side

Decryption

1. Received the ciphertext 𝐶1, 𝐶2, ..., 𝐶5.

2. Compute 𝑀𝑗, 𝑗 = 1,2,3,4,5:

𝑀1 = (64𝑑1 , 43𝑑2)𝑚𝑜𝑑 85

 = (6443 𝑚𝑜𝑑 85, 4313 𝑚𝑜𝑑 85)

 = (4, 8).

 𝑀2 = (41𝑑2 , 10𝑑3)𝑚𝑜𝑑 85

 = (4113 𝑚𝑜𝑑 85, 1055 𝑚𝑜𝑑 85)

 = (6, 5).

⁝

𝑀5 = (56𝑑5 , 60𝑑1)𝑚𝑜𝑑 85

 = (5635 𝑚𝑜𝑑 85, 6043 𝑚𝑜𝑑 85)

 = (6, 15).

3. Convert (4,8)10 , (6,5)10 , ..., (6,15)10 into

hexadecimal (4,8)16, (6,5)16, ..., (6, 𝐹)16.

4. Rewrite (48)16, (65)16, …, (6𝐹)16.

5. Find the character that corresponds to (48)16 = H,

(65)16= e, …, and (6𝐹)16= o.

6. Recovered the original message ‘Hello’.

4. RESULTS AND DISCUSSION

The proposed algorithm has been implemented in the

MATLAB R2018b (9.5.0.944444) 64-bit software on Core i3

computer with CPU 2.00GHz and RAM 4GB. As we know,

when an attacker wants to break a cryptosystem, they attack

the private key. The security of the RSA is predicated on the

complexity of factoring large numbers and the potency of the

private key, thereby affirming its resilience. The proposed

algorithm uses characters with their hexadecimal values and

converts them into pairs of values (𝑚𝑖 , 𝑚𝑖+1) [14]. This

provides a higher level of security for exchanges between two

parties. To encrypt and decrypt messages, the proposed

algorithm utilizes randomly generated public and private keys

(𝑒𝑖 and 𝑑𝑖) that match the message length.

Our proposed algorithm makes the cryptosystem more

sophisticated and secure by generating multiple public and

private keys and a method of embedding messages using

hexadecimal ASCII values, in addition to encryption and

decryption procedures. where each character of the message is

encrypted with two keys; on the other hand, it is decrypted

with two private keys, as shown in steps 4 and 2 of the

proposed algorithms of RSA in the stages of encryption and

decryption. The use of multiple keys ensures that even if one

key is compromised, the entire system remains secure, while

embedding messages using hexadecimal ASCII values adds an

extra layer of protection against attacks.

The Figures 1 and 2 and Tables 1 and 2 presented display

the duration of generating public and private keys (𝑒𝑖, 𝑑𝑖, 𝑒,

and 𝑑), as well as the encryption and decryption times in

seconds of 1000-character messages, utilizing distinct prime

numbers for both the proposed algorithm and the original RSA

algorithm.

Figure 1. The running time of generating keys (𝑒𝑖, 𝑑𝑖, 𝑒 and 𝑑) for 1000-characters

220

Figure 2. The running time encryption and decryption of messages (1000-characters)

Table 1. The running times of the proposed algorithm in seconds

𝒑 𝒒 𝒆𝒊 𝒅𝒊 Encryption Decryption

58363 53269 0.362074 0.165056 5.021223 7.178098

130253 130241 0.323466 0.168802 6.843971 8.034885

2305337 2303669 0.314585 0.178270 6.931602 11.050265

23569129 23568971 0.653467 0.195785 8.654589 13.656344

Table 2. The running times of the original RSA algorithm in seconds

𝒑 𝒒 𝒆 𝒅 Encryption Decryption

58363 53269 0.004274 0.001500 4.640346 6.170683

130253 130241 0.003816 0.001065 5.876735 6.466873

2305337 2303669 0.001881 0.001352 6.017149 8.931112

23569129 23568971 0.003457 0.001136 7.028774 10.839939

The results indicate that the proposed algorithm takes longer

to generate keys than the original RSA technique. Due to the

running time for generating 𝑒𝑖 (public keys) being longer than

𝑑𝑖 (private keys) due to several factors such as random

generation, the proposed algorithm specifies that 𝑒𝑖 is

randomly generated within the range of 1 to 𝜑(𝑛). Generating

a random number based on the input length and due 𝑔𝑐𝑑

computation steps to verify this condition may require

additional time. In the case of the calculation of 𝑑𝑖, it involves

computing the modular inverse of 𝑒𝑖 modulo 𝜑(𝑛) .

Depending on the specific implementation and the algorithm

used for modular inversion, this operation will be

computationally faster than the random generation and 𝑔𝑐𝑑

computation steps involved in generating 𝑒𝑖.

Nevertheless, this elongated key generation process can be

regarded as a benefit as it bolsters the system's security by

generating numerous keys based on the input length, thereby

adding an extra layer of complexity. Furthermore, the

encryption and decryption processes of the proposed RSA

algorithm require more time compared to those of the original

RSA algorithm, as they necessitate using two keys for each

character. Despite these downsides, the proposed RSA

algorithm enhances security through its key generation,

encryption, and decryption methods.

To evaluate the proposed algorithm's performance in terms

of randomness, we subjected it to the NIST tests [15], using 12

tests chosen based on the length of the message encrypted

(10000 bits). As known from the NIST tests, a p-value greater

than or equal to 0.01 indicates randomness (otherwise, it

failed). The results of the NIST tests showed that the proposed

algorithm generated more randomness than the original RSA

algorithm. Specifically, the output of the proposed algorithm

passed all the NIST randomness tests, indicating that it

generated a highly random sequence of numbers. In contrast,

the output of the original RSA algorithm failed some of the

tests, as shown in Table 3 and Figure 3.

Table 3. The NIST tests of the proposed algorithm and the original RSA for 10000 bits

Test P-Value (RSA) P-Value (Proposed Algorithm)

Frequency test 0.0601080779223996 0.703945415151674

Block frequency 0.999999667966886 0.862371323589811

Runs 0.0016 0.022520239477322

Longest run of ones in block 4.0334e-45 0.944987682549921

Binary matrix rank 0.374305808177149 0.441305948144981

Discrete fourier transform 7.2189e-07 0.270811569981268

Overlapping template matching 0.0313561580237405 0.681484410476162

Universal 0 0.90839709352016

Linear complexity 0.1865343653042280 0.359316182992329

Serial 0 0.233767801899238

Approximate entropy 4.40301060682201e-152 0.637758780173094

Cumulative sums 0.0999915723875517 0.953761550531937

221

(a) The NIST tests of RSA

(b) The NIST tests of the proposed algorithm

Figure 3. The NIST tests each method

5. CONCLUSIONS

The proposed RSA algorithm in this research utilizes

hexadecimal values and multiple keys to enhance security for

exchanging messages between two parties. Based on the

length of the message, the algorithm generates several pairs of

public and private keys and encrypts each character using two

keys, ensuring that the encryption scheme remains secure even

if one key is compromised. The NIST tests showed that the

proposed algorithm generated more randomness than the

original RSA algorithm. Although the key generation,

encryption, and decryption processes take longer than those of

the original RSA, the added complexity provides improved

security against attacks. Overall, the proposed RSA algorithm

offers a more sophisticated and secure method of encryption

for exchanging sensitive information. It leverages

hexadecimal values and multiple keys, enhancing security

while introducing a slight increase in computational

complexity. The significance of this work lies in providing a

robust and secure method for exchanging sensitive

information. By enhancing the encryption process, the

proposed RSA algorithm offers a viable solution for secure

communication, contributing to the field of encryption

methods by introducing a novel approach that fortifies data

protection.

REFERENCES

[1] Salman, L.A., Hashim, A.T., Hasan, A.M. (2022).

Selective medical image encryption using polynomial-

based secret image sharing and chaotic map.

International Journal of Safety and Security Engineering,

12(3): 357-369. http://doi.org/10.18280/ijsse.120310

[2] Khan, Z. (2016). Efficient design and implementation of

elliptic curve cryptography on FPGA. Doctoral

dissertation, University of Sheffield.

[3] Priya, N., Kannan, M. (2017). Comparative study of RSA

and probabilistic encryption. International Journal of

Engineering and Computer Science, 6(1): 19867-19871.

http://doi.org/10.18535/ijecs/v6i1.04

[4] Nisha, S., Farik, M. (2017). RSA public key

cryptography algorithm - A review. International Journal

of Scientific and Technological Research, 6(7): 187-191.

[5] Rivest, R.L., Shamir, A., Adleman, L. (1978). A method

for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2):

120-126. http://doi.org/10.1145/359340.359342

[6] Singamaneni K.K., Naidu P.S., Kumar P.V.S. (2018).

Efficient quantum cryptography technique for key

distribution. Journal Européen des Systèmes

Automatisés, 51(4-6): 283-293.

http://doi.org/10.3166/jesa.51.283-293

222

[7] Huang, X., Wijesekera S., Sharma D. (2009). Quantum

cryptography for wireless network communications. In

2009 4th International Symposium on Wireless

Pervasive Computing, Melbourne, VIC, Australia, pp. 1-

5. http://doi.org/10.1109/ISWPC.2009.4800604

[8] Pethe, H.B., Pande, S.R. (2017). Comparative study and

analysis of cryptographic algorithms AES and RSA.

International Journal of Advance Research in Computer

Science and Management Studies, 3(1): 48-56.

[9] Yu, Y., Xue, L., Au, M.H., et al. (2016). Cloud data

integrity checking with an identity-based auditing

mechanism from RSA. Future Generation Computer

Systems, 62: 85-91.

https://doi.org/10.1016/j.future.2016.02.003

[10] Al-Barazanchi, I., Shawkat, S.A., Hameed, M.H., Al-

Badri, K.S.L. (2019). Modified RSA-based algorithm: A

double secure approach. TELKOMNIKA

(Telecommunication Computing Electronics and

Control), 17(6): 2818-2825.

http://doi.org/10.12928/telkomnika.v17i6.13201

[11] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.

(1997). Handbook of Applied Cryptography. CRC Press.

http://doi.org/10.1201/9780429466335

[12] Bruce, S. (1996). Applied Cryptography: Protocols,

Algorithms, and Source Code in C.-2nd.

[13] Nivetha, A., Preethy Mary, S., Santosh Kumar, J. (2015).

Modified RSA encryption algorithm using four keys.

International Journal of Engineering Research &

Technology (IJERT), 3(7): 1-5.

[14] Kurt, M., Yerli̇kaya, T. (2013). A new modified

cryptosystem based on Menezes Vanstone elliptic curve

cryptography algorithm that uses characters'

hexadecimal values. In 2013 The International

Conference on Technological Advances in Electrical,

Electronics and Computer Engineering (TAEECE),

Konya, Turkey, pp. 449-453.

http://doi.org/10.1109/TAEECE.2013.6557316

[15] Rukhin, A.L., Soto, J., Nechvatal, J.R., et al. (2010). Sp

800-22 rev. 1a. a statistical test suite for random and

pseudorandom number generators for cryptographic

applications. National Institute of Standards &

Technology.

223

