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The introduction of dynamic constraints to multi - criteria scheduling problems with 

regular objective function makes release dates a variable. Therefore, normalization 

equations for linear composite objective function are influenced by the release date. 

This work established the equations using the linear min-max method. Normalization 

equations for twelve (12) different objective functions, with both the cost and benefit 

orientation equations are established. The need for normalization was also established 

and the basis for deriving normalization equation for any multicriteria scheduling 

problems from the single criteria objective was established. The normalization 

equations for some multicriteria scheduling problems found in the literature were also 

established. This work will encourage researcher to explored composite objective 

functions for quantitative analysis of multicriteria problems. 
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1. INTRODUCTION

In a multi-criteria scheduling problem, two or more 

performance measures may be aggregated to form a composite 

function (simultaneous optimization) or a complex problem is 

divided into simpler sub-problems, and each level is optimized 

independently according to their importance [1]. This is called 

hierarchical optimization. A dominated and a non-dominated 

solution can also be obtained for a multi-criteria scheduling 

problem using a continuously updated algorithm. This is called 

pareto optimization. 

In simultaneous optimization, each objective function is 

expressed as a component of a composite function [2]. Three 

different types of composite functions; linear, quadratic and an 

arbitrary composite function are extensively discussed by 

Józefowska [3]. For each of the classes, the objective function 

is expressed mathematically. The general expression for the 

three classes is given in the Eqs. (1)-(3) using a bicriteria 

problem with objective function, A and B. 

Linear Composite Function 

∑ (𝛼𝑖𝐴𝑖 +  𝛽𝑖𝐵𝑖)
𝑛
𝑖=1 (1) 

Quadratic Composite Function 

∑ (𝛼𝑖𝐴𝑖
2 + 𝛽𝑖𝐵𝑖

2)𝑛
𝑖=1 (2) 

Arbitrary Composite Objective Function (ACOF) 

∑ 𝑓𝑖
𝐴(𝐴𝑖) + 𝑓𝑖

𝐵(𝐵𝑖)𝑛
𝑖=1 (3) 

The solution approach of interest in this work is 

simultaneous approach using the linear composite objective 

function (LCOF). The challenges of skewness when the value 

of a performance measure dominates over other as well as 

dimensional imbalance for heterogeneous input data has been 

reported for simultaneous optimization [4]. Normalization of 

the input data before aggregation to form composite function 

is the proffered solution [5]. 

Five different normalization techniques; three of which are 

linear methods (sum, max, and max-min) and two non –linear 

(enhanced accuracy and vector method) was reported by 

Aytekin [6]. According to the study made by Vafaei et al. [7], 

linear max-min is the best techniques for a simple addition 

weighting system like linear composite function. The linear 

max–min method involves the determination of the maximum 

and minimum values of the criterion to be optimized. These 

parameters are called the extreme values. The normalization 

expression changes with the different objective functions as 

well as the job environments. In dynamic job environment, 

release dates is the parameter, and thus it influences the 

normalization equation. The objective of this work is to derive 

normalization equations for regular scheduling criteria under 

non-zero release date constraints using the linear min-max 

method. 

Dynamic environment with distinct release dates is 

considered. In this regard, this work established the linear 

max-min normalization equations for regular performance 

measures with distinct release dates jobs.  

The remainder of this paper is organized as follows. 

Relevant literature on the application of different 

normalization techniques in multi criteria decision making are 

discussed in section 2. Section 3 defines the problem using 

some examples found in the literature as a case study. Section 

4 discusses in details the use of linear; min-max techniques to 

determines the normalization equations for Fourteen (14) 

different regular scheduling criteria with imposed dynamic 

constraint on job availability. The derived equations were also 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 1, January, 2024, pp. 98-106 

Journal homepage: http://iieta.org/journals/mmep 

98

https://orcid.org/0000-0002-4091-7302
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110110&domain=pdf


 

implemented for some existing problems found in the 

literature. Conclusion and further research were discussed in 

section 5. 

 

 

2. LITERATURE SURVEY 

 

Normalization is a pre-processing stage for multi-criteria 

optimization problems used in several fields ranging from 

computing, material selection, medical and biological 

application, financing, industrial and project management 

among others [8]. Numerous researchers in various fields have 

explored the process within different context. For an instance, 

in the field of synthetic biology, Degasperi et al. [9] compared 

objective functions that use data-driven normalisation of the 

simulations with those that use scaling factors. According to 

Ersoy [10], normalization for multicriteria optimization 

problems can be classified into various ways; the need for 

normalization of objective functions, selection of suitable 

normalization techniques, studying the effects of different 

normalization techniques among others. Jain et al. [11] 

proposed a method for dynamic selection (DS) of optimal 

normalization technique using data complexity measures. The 

work evaluates 14 popular learning algorithms for designing 

dynamic selection model for the selection of optimal 

normalization technique. In order to design this dynamic 

selection model, 12 different data complexity measures are 

extracted for 48 different benchmark datasets. Akande [12] 

studied the need for normalization techniques in multicriteria 

scheduling problems. The studies of suitable normalization 

techniques for simple weighting method of solving 

multicriteria problem as well as hierarchy solution method was 

explored by Vafaei et al. [7, 13] respectively. The comparative 

analysis of linear and vector normalization methods in 

decision making for learning quota assistance was studied by 

Budiman and Hairah [14]. Ranking of solution based on 

normalization techniques was also discussed by Lakshmi and 

Venkatesan [15]. 

According to Vafaei et al. [7], it was stated that the linear 

min max method is the suitable normalization techniques for 

simple weighting method of solving multicriteria problem. 

The method is a subset of orientation dependent normalization 

techniques which is either benefit orientation or cost 

orientation. For this class, the normalization equation changes 

for different criteria as well as the imposed constraints. There 

are numerous multicriteria scheduling problems with release 

dates found in the literature that requires normalization in 

order to explore simultaneous optimization by computing the 

LCOF. These include Generating bicriteria schedules for 

correlated parallel machines involving tardy jobs and weighted 

completion time by Lin and Yin [16], Bi-criteria scheduling 

problems: Number of tardy jobs and maximum weighted 

tardiness by Huo et al. [17], minimization of total tardiness and 

total flowtime on single machine with non-zero release dates 

[4]. 

However, there are literature that established normalization 

equations for different objective function with the imposed 

constraints. Establishing the normalization equations for 

different regular criteria with unavailability constraints (non 

zero release date) is the purpose of this work. Though, 

Oyetunji and Oluleye [18] established the equations for the 

extreme parameters for completion time using only the benefit 

orientation. The corresponding equations for other regular 

performance measures are missing.  

3. PROBLEM DEFINITION 

 

Consider a bi-criteria scheduling problem with flexible 

maintenance and job release dates with the objective of 

minimizing the makespan and total tardiness simultaneously. 

The problem was solved by Chen et al. [19]. The LCOF of the 

problem is defined as: 

 

F (𝐶𝑚𝑎𝑥, 𝑇𝑡𝑜𝑡) = 𝛼 𝐶𝑚𝑎𝑥  +  𝛽𝑇𝑡𝑜𝑡  (4) 

 

where: 

𝐶𝑚𝑎𝑥 is the makespan. 

𝑇𝑡𝑜𝑡 is the total tardiness. 

α and β are the attached weight of the two criteria. 

Assuming α=β=0.5. 

The two performance measures are defined as follows: 

The makespan is the completion time of the last scheduled 

job. It is the highest or maximum completion time. 

 

𝐶𝑚𝑎𝑥= max (𝐶1 , 𝐶2 , 𝐶3…, 𝐶𝑛) (5) 

 

The tardiness of job i is defined as: 

 

𝑇𝑖  = max {0 ,(𝐶𝑖 − 𝑑𝑖)} (6) 

 

The total tardiness is the sum of tardiness of all the jobs. 

 

𝑇𝑡𝑜𝑡: ∑ 𝑇𝑖
𝑛
𝑖=1  = ∑ max {0 ,(𝐶𝑖 − 𝑑𝑖)

𝑛
𝑖=1 } (7) 

 

The two performance measures have the same unit and the 

challenge of dimensional imbalance does not exist. However, 

the domination of makespan value over the total tardiness is 

inevitable for small job sizes while the total tardiness values 

will also dominate over the makespan for large job sizes. 

Therefore, multicriteria decision for application of scheduling 

methodology by direct application of LCOF values without 

normalization will results in skewed decision towards certain 

criteria. This is not effective given that the two criteria are of 

equal importance.  

Furthermore, Lin and Lin [20] considered the problem of 

generating bicriteria schedules for correlated parallel 

machines with the objective of minimizing the number of tardy 

jobs and weighted completion time simultaneously. The 

LCOF of the problem is defined as: 

 

F (𝐶𝑡𝑜𝑡, 𝑁𝑡) = 𝛼 𝐶𝑡𝑜𝑡  +  𝛽𝑁𝑡 (8) 

 

where: 

𝐶𝑡𝑜𝑡 is total completion time. 

𝑁𝑡 is the number of tardy jobs. 

α and β are the attached weight of the two criteria. 

Assuming α=β=0.5. 

The unit of total completion time is the time unit and that of 

total number of tardy jobs is job unit. Therefore, direct 

combination to obtain LCOF is impossible because the two 

inputs are heterogeneous data. Furthermore, the completion 

time values will likely dominate over the total number of tardy 

jobs. To solve these challenges, input data will be pre-

processed to becomes a dimensionless data and to eliminate 

the dominating of one data over the other before computing 

LCOF. This pre-processing is called normalization. This work 

presents the normalization equations for regular performance 
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measures with jobs release date constraint. 

 
 
4. LINEAR MIN-MAX NORMALIZATION 

TECHNIQUES 

 

This normalization technique performs a linear 

transformation of the objective function value obtained by a 

given solution method to a dimensionless and scaled data (0, 

1). Two different orientations of linear min-max techniques 

are usually employed; the benefit and the cost orientation. 

 

4.1 Benefit and cost orientation 

 

The benefit optimization orientation implies that the 

increase in the performance values of the alternatives 

evaluated in criterion j is preferred to the decrease while the 

cost optimization orientation implies that the reduction in the 

performance values of the alternatives in criterion j is preferred 

to the increase [8]. The general equations for the two 

orientations are given in Eqs. (9) and (10). 

 

𝑌𝐵= 
𝑌𝑆𝑀−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
 (9) 

 

𝑌𝑐= 
𝑌𝑚𝑎𝑥−𝑌𝑆𝑀

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
 (10) 

 

where: 

𝑌𝑏  is the benefit orientation normalized value of the 

objective function, X. 

𝑌𝑐 is the cost orientation normalized value of the objective 

function, X. 

𝑌𝑆𝑀 is the objective function value obtained from a given 

solution method. 

𝑌𝑚𝑖𝑛 is the minimum value of the objective function. 

𝑌𝑚𝑎𝑥 is the maximum value of the objective function. 

The 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥 are called the extreme parameters. The 

equations for these parameters are functions of objective 

function of interest as well as the imposed constraints. 

Determination of extreme values  

Regular performance measures are functions of completion 

time. Therefore, the equation for the extreme parameters for 

completion time will be determine and use for other 

performance measures. 

Given a set of N jobs to be scheduled on a single machine 

with distinct release dates, randomly generated from 𝑅𝑚𝑖𝑛 to 

𝑅𝑚𝑎𝑥. 

The minimum values (best case scenario) occur when  

i. The first schedule job (i=1) is schedule at minimum 

𝑅𝑚𝑖𝑛 

ii. the waiting time, (𝑊𝑖) of all the jobs is zero. This is 

possible if 𝑅𝑖+1 = 𝐶𝑖 

The Gantt chart under this condition is represented in Figure 

1. 
 

 
 

Figure 1. The Gantt chart for the best case scenario 

 

𝐶𝑡𝑜𝑡 = ∑ 𝐶𝑡
𝑛
𝑖  = 𝐶1  +  𝐶2  +  𝐶3  +  … +  𝐶𝑛 

𝐶1 =  𝑃1 + 𝑅𝑚𝑖𝑛  =  ∑ 𝑃𝑖
1
𝑖=1 + 𝑅𝑚𝑖𝑛  

𝐶2 =  𝐶1 + 𝑃2 = ∑ 𝑃𝑖
2
𝑖=1 +  𝑅𝑚𝑖𝑛  

𝐶3 =  𝐶2 + 𝑃3 = ∑ 𝑃𝑖
3
𝑖 + 𝑅𝑚𝑖𝑛  

… 

𝐶𝑛 =  𝐶𝑛−1 + 𝑃𝑛 = ∑ 𝑃𝑖
𝑛
𝑖 +  𝑅𝑚𝑖𝑛  

𝐶𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑃𝑖

1
𝑖=1 +  𝑅𝑚𝑖𝑛  +  ∑ 𝑃𝑖

2
𝑖=1 +  𝑅𝑚𝑖𝑛  +

 ∑ 𝑃𝑖
3
𝑖 +  𝑅𝑚𝑖𝑛 +  … + ∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛  

𝐶𝑡𝑜𝑡
𝑚𝑖𝑛=∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  + 

𝑛𝑅𝑚𝑖𝑛  

(11) 

 

The maximum values (worst case scenario) occurs when the 

waiting time, (𝑤𝑖) of the first schedule job is maximum. The 

Gantt chart under this condition is represented in Figure 2. 

 

 
 

Figure 2. The Gantt chart for the worst case scenario 

 

Therefore, 

 

𝐶𝑡𝑜𝑡 = ∑ 𝐶𝑡
𝑛
𝑖  = 𝐶1  +  𝐶2  +  𝐶3  +  … +  𝐶𝑛 

𝐶1 =  𝑃1 + 𝑅𝑚𝑎𝑥 =  ∑ 𝑃𝑖
1
𝑖 + 𝑅𝑚𝑎𝑥  

𝐶2 =  𝐶1 + 𝑃2 = 𝑃1 + 𝑅𝑚𝑎𝑥 + 𝑃2  =  ∑ 𝑃𝑖
2
𝑖 +

 𝑅𝑚𝑎𝑥  

𝐶3 =  𝐶2 + 𝑃3 =  ∑ 𝑃𝑖
2
𝑖 +  𝑅𝑚𝑎𝑥 +  𝑃3 =  ∑ 𝑃𝑖

3
𝑖 +

 𝑅𝑚𝑎𝑥  

… 

𝐶𝑛 =  𝐶𝑛−1 + 𝑃𝑛 =  ∑ 𝑃𝑖
𝑛−1
𝑖 + 𝑅𝑚𝑎𝑥 + 𝑃𝑛 =

 ∑ 𝑃𝑖
𝑛
𝑖 +  𝑚𝑅𝑚𝑎𝑥  

𝐶𝑡𝑜𝑡
𝑚𝑎𝑥 = ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +  ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  + 

𝑛𝑅𝑚𝑎𝑥 

(12) 

 

The benefit and cost orientation equations can be 

determined from the extreme values. 

Benefit orientation 

 

𝐶𝑁= 
𝐶𝑆𝑀−𝐶𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 = ( 𝑛𝑅𝑚𝑎𝑥 + 𝑃1 +   ∑ 𝑃𝑖
2
𝑖 +    

∑ 𝑃𝑖
3
𝑖 +. . . + ∑ 𝑃𝑖

𝑛
𝑖 ) – (𝑃1  +  ∑ 𝑃𝑖

2
𝑖  +  ∑ 𝑃𝑖

3
𝑖  +  … +

 ∑ 𝑃𝑖
𝑛
𝑖 +  𝑛𝑅𝑚𝑖𝑛) = 𝑛𝑅𝑚𝑎𝑥 − 𝑛𝑅𝑚𝑖𝑛 

𝐶𝑁= 
𝐶𝑆𝑀 −  (𝑃1 +  ∑ 𝑃𝑖

2
𝑖  + ∑ 𝑃𝑖

3
𝑖   + … +  ∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛 )

𝑛𝑅𝑚𝑎𝑥
 

𝐶𝑁= 
𝐶𝑆𝑀 −  (𝑃1 +  ∑ 𝑃𝑖

2
𝑖  + ∑ 𝑃𝑖

3
𝑖   + … +  ∑ 𝑃𝑖

𝑛
𝑖 + 𝑛𝑅𝑚𝑖𝑛 )

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
 

(13) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  

𝐶𝑁=
∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
 

(14) 

 

Makespan (maximum completion time) 

The maximum completion time, called the makespan is the 

completion time of the last job in a system. 
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𝐶𝑚𝑎𝑥 = max (𝐶1 , 𝐶2 , …, 𝐶3) (15) 

 

The minimum values of 𝐶𝑚𝑎𝑥 is possible when all the jobs 

has zero waiting time and the first scheduled job has the 

minimum possible value of release date. 

The Gantt chart under this condition is represented in Figure 

3. 

 
 

Figure 3. The Gantt chart for computing minimum 𝐶𝑚𝑎𝑥 

 

Thus, the completion time of the last job is the summation 

of all the completion time. 

 

𝐶𝑚𝑎𝑥
𝑚𝑖𝑛  = 𝑚𝑎𝑥(𝑃1, ∑ 𝑃𝑖

2
𝑖  , ∑ 𝑃𝑖

3
𝑖 , … , ∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛) 

𝐶𝑚𝑎𝑥
𝑚𝑖𝑛  = ∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛 

(16) 

 

The maximum values (worst case scenario) occurs when the 

waiting time, (𝑊𝑖) of the first schedule job is maximum. The 

Gantt chart is represented in Figure 4. 

 

 
 

Figure 4. The Gantt chart for computing maximum 𝐶𝑚𝑎𝑥 

 

Therefore, 

 

𝐶𝑚𝑎𝑥
𝑚𝑎𝑥 =  max (P1 +  𝑅𝑚𝑎𝑥 , ∑ 𝑃𝑖

2
𝑖 +  𝑅𝑚𝑎𝑥 , ∑ Pi

3
i + 𝑅𝑚𝑎𝑥, 

+ ...∑ 𝑃𝑖
𝑛
𝑖 +  𝑅𝑚𝑎𝑥)  

 

𝐶𝑚𝑎𝑥
𝑚𝑎𝑥 = ∑ 𝑃𝑖

𝑛
𝑖 + 𝑅𝑚𝑎𝑥  

 

Benefit orientation 

 

𝐶𝑁= 
𝐶𝑆𝑀−𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥−𝐶𝑋𝑚𝑖𝑛
 

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛 = ( 𝑅𝑚𝑎𝑥+  ∑ 𝑃𝑖
𝑛
𝑖 ) – (∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛) = 

𝐶𝑁= 
𝐶𝑆𝑀 −  (∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛)

𝑅max − 𝑅𝑚𝑖𝑛

 

(17) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝐶𝑁=  
∑ 𝑃𝑖

𝑛
𝑖 +  𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
 

(18) 

 

Total flow time 

The flow time is the time a job spent in the shop after its 

availability. It is computed as the differences between the 

completions time of job i and its release date.  

 

𝐹𝑖 =  𝐶𝑖 −  𝑟𝑖 (19) 

 

 

It is also the sum of job processing time and the waiting time. 

 

𝐹𝑖 = 𝑃𝑖 +  𝑊𝑖 (20) 

 

𝐹𝑡𝑜𝑡 = ∑ 𝐹𝑡𝑜𝑡
𝑛
𝑖  = 𝐹1  +  𝐹2  +  𝐹3  +  … +  𝐹𝑛 (21) 

 

Just like the completion time, the extreme values for 

flowtime are also computed from the waiting time. The 

waiting time is computed as: 

 

𝑊𝑖+1 =  𝐶𝑖 −  𝑟𝑖+1 (22) 

 

When 𝐶𝑖+1 > 𝑟𝑖 , 

𝑊𝑖 is called the waiting time of job i. 

When 𝐶𝑖+1 < 𝑟𝑖 , 

𝑊𝑖 is the machine or processor waiting time, called the idle 

time. 

When 𝐶𝑖 = 𝑟𝑖+1, 

𝑊𝑖+1 = 0, then 𝐹𝑖+1 is minimum, thus 𝐹𝑖+1 = 𝑃𝑖+1. 

Given a set of N jobs to be scheduled on a single machine 

with distinct release dates, randomly generated from 𝑅𝑚𝑖𝑛 −
𝑅𝑚𝑎𝑥. 

The minimum values (best case scenario) occurs when the 

waiting time, (wi) of all the jobs is zero. The Gantt chart is 

represented in Figure 5. 

 

 
 

Figure 5. The Gantt chart for computing minimum 𝐹𝑡𝑜𝑡 

 

𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝐹𝑖

𝑚𝑖𝑛𝑛
𝑖  = 𝐹1

𝑚𝑖𝑛  +  𝐹2
𝑚𝑖𝑛  +  𝐹3

𝑚𝑖𝑛  +

 …  𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 

𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝐹𝑖

𝑚𝑖𝑛𝑛
𝑖  = 𝑃1  +  𝑃2  +  𝑃3  +  … + 𝑃𝑛 

𝐹𝑡𝑜𝑡
𝑚𝑖𝑛 = ∑ 𝑃𝑖

𝑛
𝑖  

(23) 

 

The flow time is maximum, when 

i. 𝑊𝑖 is maximum. 

ii. 𝐶𝑖  (or 𝐶𝑖+1) is maximum and 𝑟𝑖 is minimum. 

 

𝐹𝑖 =  𝐶𝑖 −  𝑟𝑖 

𝐹𝑖 = 𝑃𝑖 +  𝑊𝑖 

𝐹𝑡𝑜𝑡
𝑚𝑎𝑥  = ∑ 𝐹𝑡𝑜𝑡

𝑚𝑎𝑥𝑛
𝑖  = (𝐶1 − 𝑟1  +  𝐶2 −  𝑟2  +  𝐶3 −

 𝑟3  +  … +  𝐶𝑛 −  𝑟𝑛) 

𝐹𝑡𝑜𝑡
𝑚𝑎𝑥  = ∑ 𝐹𝑡𝑜𝑡

𝑚𝑎𝑥𝑛
𝑖  = ∑  ( 𝐶𝑡𝑜𝑡

𝑚𝑎𝑥𝑛
𝑖 −   𝑅𝑖

𝑚𝑖𝑛 ) 

𝐹𝑡𝑜𝑡
𝑚𝑎𝑥  = 𝑛𝑅𝑚𝑎𝑥 + 𝑃1 + ∑ 𝑃𝑖

2
𝑖 + ∑ 𝑃𝑖

3
𝑖 +... ∑ 𝑃𝑖

𝑛
𝑖  - 

𝑛𝑅𝑚𝑖𝑛 

(24) 

 

Benefit orientation 

 

𝐹𝑁= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 =  (𝑛𝑅𝑚𝑎𝑥 + 𝑃1 +   ∑ 𝑃𝑖
2
𝑖 + ∑ 𝑃𝑖

3
𝑖 +

⋯ ∑ 𝑃𝑖
𝑛
𝑖   - 𝑛𝑅𝑚𝑖𝑛 ) − ∑ 𝑃𝑖

𝑛
𝑖  

(𝑛𝑅𝑚𝑎𝑥 + 𝑃1 +    ∑ 𝑃𝑖
2
𝑖 +  ∑ 𝑃𝑖

3
𝑖 + ⋯ ∑ 𝑃𝑖

𝑛−1
𝑖   - 

𝑛𝑅𝑚𝑖𝑛 ) 

𝐹𝑁= 
𝐹𝑆𝑀−∑ 𝑃𝑖

𝑛
𝑖

𝑃1+   ∑ 𝑃𝑖
2
𝑖 + ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛

 

(25) 
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𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁= 
𝑛𝑅𝑚𝑎𝑥+𝑃1+   ∑ 𝑃𝑖

2
𝑖 +    ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛
𝑖   − 𝑛𝑅𝑚𝑖𝑛 −𝑋

𝑃1+   ∑ 𝑃𝑖
2
𝑖 +   +  ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛

 
(26) 

 

Maximum flow time 

The maximum flow time is defined as: 

 

𝐹𝑚𝑎𝑥 =  𝑚𝑎𝑥 (𝐹1, 𝐹2, 𝐹3 , … , 𝐹𝑛) (27) 

 

From Eq. (23), 𝐹𝑖 = 𝑃𝑖 , 

 

𝐹𝑚𝑎𝑥
𝑚𝑖𝑛 = 𝑚𝑎𝑥 (𝑃1,   𝑃2, 𝑃3 , … , 𝑃𝑛) 

𝐹𝑚𝑎𝑥
𝑚𝑖𝑛 = max (𝑃𝑖) 

(28) 

 

The flow time is maximum when, 

i. 𝑊𝑖 is maximum. 

ii. 𝐶𝑖  (𝑜𝑟 𝐶𝑖+1) is maximum and 𝑟𝑖 is minimum. 

 

𝐹𝑖 =  𝐶𝑖 −  𝑟𝑖 

 

𝐹𝑖 =  𝑃𝑖 +  𝑊𝑖 

 

𝐹𝑚𝑎𝑥
𝑚𝑎𝑥  = 𝑚𝑎𝑥(𝐶1 − 𝑟1, 𝐶2 −  𝑟2, 𝐶3 −  𝑟3 , … 𝐶𝑛 − 𝑟𝑛 ) 

 

The maximum value of 𝐹𝑚𝑎𝑥  is achieve when the 

completion time is maximum (makespan) and the release date 

is minimum. 

 

𝐹𝑚𝑎𝑥
𝑚𝑎𝑥   = 𝐶𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 (29) 

 

Benefit orientation 

 

𝑁𝐹𝑚𝑎𝑥= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑁𝐹𝑚𝑎𝑥= 
𝐹𝑆𝑀−max (𝑃𝑖)

(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)− max (𝑃𝑖)
 

(30) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁= 
(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)  −𝑋

(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)− max (𝑃𝑖)
 

(31) 

 

The total tardiness 

This is the sum of tardiness of all the jobs. The tardiness of 

job i is defined as: 

 

𝑇𝑖  =max {0, (𝐶𝑖 − 𝑑𝑖)} 

(𝑇𝑡𝑜𝑡): ∑ 𝑇𝑖
𝑛
𝑖=1  =∑ max {0 ,(𝐶𝑖 − 𝑑𝑖)

𝑛
𝑖=1 } 

 

The minimum value of total tardiness s zero,  

 

𝑇𝑡𝑜𝑡
𝑚𝑖𝑛 = 0 (32) 

 

The due date of job i, can never be 0 or negative, it implies 

that the total tardiness is maximum when the completion time 

is maximum. 

The maximum value of total tardiness is given by:  
 

𝑇𝑡𝑜𝑡
𝑚𝑎𝑥 =  (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥 − ∑ 𝑑𝑛
𝑖=1 𝑖

)  

𝑇𝑡𝑜𝑡
𝑚𝑎𝑥 =  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +  ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   

𝑛𝑅𝑚𝑎𝑥 − ∑ 𝑑𝑛
𝑖=1  

(33) 

 

Benefit orientation 

𝑇𝑁= 
𝑇𝑆𝑀−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
 = 

𝑇𝑆𝑀

𝑇𝑚𝑎𝑥
  

𝑇𝑁= 
𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

 
(34) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁= 
∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1 −𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

 
(35) 

 

The maximum tardiness 

Maximum tardiness (𝑇𝑚𝑎𝑥) is given by: 

 

𝑇𝑚𝑎𝑥  = max (max {0, (𝐶𝑖 − 𝑑𝑖)} 

 

The minimum possible value of maximum tardiness is zero 

 

𝑇𝑚𝑥𝑛
𝑚𝑖𝑥= 0 (36) 

 

The maximum value of maximum total tardiness  

 

𝑇𝑡𝑜𝑡
𝑚𝑎𝑥 =  (𝐶𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) 

 

Benefit orientation 

 

𝑁𝑇𝑚𝑎𝑥= 
𝑇𝑆𝑀−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
 = 

𝑇𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
 

𝑁𝑇𝑚𝑎𝑥= 
𝑇𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
 

(37) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
, 𝑋𝑁= 

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛−𝑋𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
 (38) 

 

The total lateness 

Lateness is measure as the difference between the 

completion time and the due date. 

The lateness is given by: 

 

Li = (Ci−di) 

𝐿𝑡𝑜𝑡 =∑ 𝐿𝑖
𝑛
𝑖=1  =∑ (Ci−di)

𝑛
𝑖=1  

 

Minimum total lateness 

 

(𝐿𝑡𝑜𝑡
𝑚𝑖𝑛) = ∑ Li

𝑛
𝑖=1  = (𝐶𝑡𝑜𝑡

𝑚𝑖𝑛 −  ∑ d𝑛
𝑖=1 i

) 

𝐿𝑡𝑜𝑡
𝑚𝑖𝑛 =  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +  ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   

𝑛𝑅𝑚𝑖𝑛 −  ∑ d𝑛
𝑖=1 i

 

(39) 

 

Maximum total lateness 

 

(𝐿𝑡𝑜𝑡
𝑚𝑎𝑥) = ∑ Li

𝑛
𝑖=1  = (𝐶𝑡𝑜𝑡

𝑚𝑎𝑥−∑ di
𝑛
𝑖=1 ) 

𝐿𝑡𝑜𝑡
𝑚𝑎𝑥 =  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +  ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  + 

𝑛𝑅𝑚𝑎𝑥 −  ∑ d𝑛
𝑖=1 i

 
(40) 

 

Benefit orientation 

 

𝐿𝑁= 
𝐿𝑆𝑀−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
, 𝐿𝑁= 

𝐿𝑆𝑀−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
  

𝐿𝑁= 
𝐿𝑆𝑀− ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛− ∑ d𝑛

𝑖=1 i

(𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛) 
 

(41) 
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𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋𝑆𝑀

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁= 
∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛− ∑ d𝑛

𝑖=1 i
−𝑋𝑆𝑀

(𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛) 
  

(42) 

 

The maximum lateness 

The maximum lateness is given by, 

 

Lmax = 𝑚𝑎𝑥(Ci−di) 

 

The 𝐿𝑚𝑎𝑥
𝑚𝑖𝑛 = 0 (43) 

 

This occurs when 𝑑𝑖  ≥  𝐶𝑖 for all i. 

The 𝐿𝑚𝑎𝑥
𝑚𝑎𝑥  occurs when the completion time is maximum 

and the due date is minimum. 

 

𝐿𝑚𝑎𝑥
𝑚𝑎𝑥 = (𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛) (44) 

 

Benefit orientation 

 

𝑁𝐿𝑚𝑎𝑥= 
𝐿𝑆𝑀−𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥−𝐿𝑚𝑖𝑛
 = 

𝐿𝑚𝑎𝑥

Cmax−dmin
 (45) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋𝑆𝑀

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁= 
𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛−𝑋𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
 

(46) 

 

The total earliness 

The job earliness has been expressed in two different ways 

in the literature; the classical definition and the opposite of 

lateness definition. 

Earliness, defined as the opposite of lateness is express as 

𝐸𝑖 = (𝑑𝑖−𝐶𝑖). 

Total earliness (𝐸𝑡𝑜𝑡) = ∑ 𝐸𝑖
𝑛
𝑖=1  = ∑ (𝑑𝑖− 𝐶𝑖)

𝑛

𝑖=1
 = (− 𝐿𝑖) 

With this definition, the earliness based performance 

measure is a maximization problem. 

The extreme values 

The 𝐸𝑡𝑜𝑡  is minimum when the completion time is 

maximum. 

Minimum total earliness 

 

(𝐸𝑡𝑜𝑡
𝑚𝑖𝑛) = ∑ 𝐸𝑖

𝑛
𝑖=1  = (∑ 𝑑𝑖

𝑛
𝑖=1 − 𝐶𝑡𝑜𝑡

𝑚𝑎𝑥) 

𝐸𝑡𝑜𝑡
𝑚𝑖𝑛 =  ∑ 𝑑𝑛

𝑖=1 𝑖
−  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +

∑ 𝑃𝑖
3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑎𝑥 

(47) 

 

Maximum total earliness 

 

(𝐸𝑡𝑜𝑡
𝑚𝑎𝑥) = ∑ 𝐸𝑖

𝑛
𝑖=1  = (∑ 𝑑𝑛

𝑖=1 𝑖
− 𝐶𝑡𝑜𝑡

𝑚𝑖𝑛) 

𝐸𝑡𝑜𝑡
𝑚𝑎𝑥 =  ∑ 𝑑𝑛

𝑖=1 𝑖
− ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 +

 ∑ 𝑃𝑖
3
𝑖=1 … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛 

(48) 

 

Benefit orientation 

 

𝑁𝐸𝑡𝑜𝑡= 
𝐸𝑆𝑀−𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛
 

𝑁𝐸𝑡𝑜𝑡= 
𝐸𝑆𝑀−∑ d𝑛

𝑖=1 i
−  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑎𝑥

𝑛𝑅𝑚𝑎𝑥−𝑛𝑅𝑚𝑖𝑛
 

(49) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋𝑆𝑀

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  

𝑁𝐸𝑚𝑎𝑥= 
∑ d𝑛

𝑖=1 i
−  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  + 𝑛𝑅𝑚𝑖𝑛− 𝐸𝑆𝑀

𝑛𝑅𝑚𝑎𝑥−𝑛𝑅𝑚𝑖𝑛
 

(50) 

 

Maximum earliness 

 

(Emax)= 𝑚𝑎𝑥(di− Ci) =𝑚𝑎𝑥(− Li), 𝐸𝑚𝑎𝑥
𝑚𝑖𝑛  = 0 (51) 

 

This occurs when 𝑑𝑖  ≤  𝐶𝑖. 

The 𝐸𝑚𝑎𝑥
𝑚𝑎𝑥 is when the completion time is minimum and the 

due date is maximum. 

 

𝐸𝑚𝑎𝑥
𝑚𝑎𝑥= (𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛) (52) 

 

Benefit orientation 

 

𝑋𝑁= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 , 

 𝑋𝑁= 
𝑋

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
  

(53) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
=

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛−𝑋

(𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛)
 (54) 

 

Classical definition of earliness 

The earliness, 𝐸𝑖 of job I is defined as: 

 

Ei= 𝑚𝑎𝑥{− 𝐿𝑖, 0}. 
 

Total earliness (Etot) = ∑ Ei
𝑛
𝑖=1  =∑ max (

𝑛

𝑖=1
di− Ci, 0 ) =

 ∑ 𝑚𝑎𝑥{− 𝐿𝑖, 0}.
𝑛

𝑖=1
 

Minimum total earliness 

 

(𝐸𝑡𝑜𝑡
𝑚𝑖𝑛) = 0 (55) 

 

Maximum total earliness 

 

(𝐸𝑡𝑜𝑡
𝑚𝑎𝑥) = ∑ Ei

𝑛
𝑖=1  = (∑ d𝑛

𝑖=1 i
− 𝐶𝑡𝑜𝑡

𝑚𝑖𝑛)  

𝐸𝑡𝑜𝑡
𝑚𝑎𝑥= ∑ d𝑛

𝑖=1 i
−  ∑ 𝑃𝑖

1
𝑖=1  + ∑ Pi

2
i=1 +

∑ 𝑃𝑖
3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  + 𝑛𝑅𝑚𝑖𝑛  

(56) 

 

Benefit orientation 

 

𝑋𝑁= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (57) 

 

𝑋𝑁= 
𝑋

∑ d𝑛
𝑖=1 i

−  ∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛

 (58) 

 

Cost orientation 
 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

𝑋𝑁 =  
∑ d𝑛

𝑖=1 i
−  ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛− 𝑋

∑ d𝑛
𝑖=1 i

−  ∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛

   
(59) 

 

Maximum earliness 
 

Ei = 𝑚𝑎𝑥{− 𝐿𝑖, 0} 
 

For i =1: n 
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𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐸𝐼 , 𝐸2, 𝐸3, . . , 𝐸𝑛} 

𝐸𝑚𝑎𝑥 
𝑚𝑖𝑛  = 0 

(60) 

 

This occurs when 𝑑𝑖  ≤  𝐶𝑖  for all i. 

 

𝐸𝑚𝑎𝑥
𝑚𝑖𝑛  = 0, 𝐸𝑚𝑎𝑥

𝑚𝑎𝑥= (dmax− Cmin) (61) 

 

Benefit orientation 

 

𝑋𝑁= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 = 

𝑋𝑆𝑀

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
 (62) 

 

Cost orientation  

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥− 𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 = 

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛 − 𝑋𝑆𝑀

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
 (63) 

 

Baker and Trietsch [21] and Akande and Ajisegiri [22] 

explored the classical definition of earliness. 

The Total Number of Tardy/Late Jobs 

The minimum number of tardy/late job is zero while the 

maximum number is the total number of jobs. 

Benefit orientation 

 

𝑋𝑁= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 = 

𝑋

𝑋𝑚𝑎𝑥
  

𝑇𝑁= 
𝑁𝑡𝑆𝑀

𝑁
 

(64) 

 

Cost orientation 

 

𝑋𝑁= 
𝑋𝑚𝑎𝑥−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 = 

𝑋

𝑁
 (65) 

 

Table 1 shows the summary of the extreme values equations 

for the considered performance measures. 

 

 

Table 1. The extreme values of some performance objectives 

 
Criteria Benefit Orientation  Cost Orientation  

𝐶𝑡𝑜𝑡 
CSM− (P1 + ∑ Pi

2
i  + ∑ Pi

3
i  + … +∑ Pi

n
i + nRmin )

nRmax− nRmin
  

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
  

𝐶𝑚𝑎𝑥 
𝐶𝑆𝑀 −  (∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛)

𝑅max − 𝑅𝑚𝑖𝑛

  
∑ 𝑃𝑖

𝑛
𝑖 +  𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
  

𝐹𝑡𝑜𝑡 
𝐹𝑆𝑀−∑ 𝑃𝑖

𝑛
𝑖

𝑃1+∑ 𝑃𝑖
2
𝑖 + ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛

  
𝑛𝑅𝑚𝑎𝑥+𝑃1+   ∑ 𝑃𝑖

2
𝑖 +   +  ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛
𝑖   − 𝑛𝑅𝑚𝑖𝑛 −𝑋

𝑃1+   ∑ 𝑃𝑖
2
𝑖 +   +  ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛

  

𝐹𝑚𝑎𝑥 
𝐹𝑆𝑀−max (𝑃𝑖)

(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)− max (𝑃𝑖)
  

(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)  −𝑋

(𝐶𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛)− max (𝑃𝑖)
  

𝑇𝑡𝑜𝑡 
𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1 + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  + 𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

  
∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1 −𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

  

𝑇𝑚𝑎𝑥 
𝑇𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
  

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛−𝑋𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
  

𝐿𝑡𝑜𝑡 
𝐿𝑆𝑀− ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  + 𝑛𝑅𝑚𝑖𝑛− ∑ d𝑛

𝑖=1 i

(𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛) 
  

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1 +𝑛𝑅𝑚𝑖𝑛− ∑ d𝑛

𝑖=1 i
−𝐿𝑆𝑀

(𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛) 
  

𝐿𝑚𝑎𝑥 
𝑋

dmax− Cmin
  

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛−𝑋

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
  

𝐸𝑡𝑜𝑡 
𝐸𝑆𝑀−∑ d𝑛

𝑖=1 i
− ∑ 𝑃𝑖

1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  +𝑛𝑅𝑚𝑎𝑥

𝑛𝑅𝑚𝑎𝑥−𝑛𝑅𝑚𝑖𝑛
  

∑ d𝑛
𝑖=1 i

− ∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛− 𝑋

∑ d𝑛
𝑖=1 i

−  ∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛

  

𝐸𝑚𝑎𝑥 
𝑋

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
  

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛−𝑋

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛)
  

𝐸𝑡𝑜𝑡 
(CD) 

𝑋

∑ d𝑛
𝑖=1 i

−  ∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1   … ∑ 𝑃𝑖

𝑛
𝑖=1  +   𝑛𝑅𝑚𝑖𝑛

  
∑ 𝑑𝑛

𝑖=1 𝑖
−  ∑ 𝑃𝑖

1
𝑖=1  +  ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  +  𝑛𝑅𝑚𝑖𝑛 −  𝑋

∑ 𝑑𝑛
𝑖=1 𝑖

−  ∑ 𝑃𝑖
1
𝑖=1  +  ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖=1  … ∑ 𝑃𝑖

𝑛
𝑖=1  +  𝑛𝑅𝑚𝑖𝑛

 

𝐸𝑚𝑎𝑥  
𝑋𝑆𝑀

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
  

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛 − 𝑋𝑆𝑀

𝑑𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
  

𝑁𝑡/𝑁𝐿 
𝑁𝑡𝑆𝑀

𝑁
  

𝑋

𝑁
  

 

Table 2. Normalization expression for some multicriteria problems 

 
Multicriteria Problem Benefit Cost 

Bi-objective optimization of 

identical parallel machine 

scheduling with flexible 

maintenance and job release times 

[19]  

 
𝐶𝑆𝑀 −  (∑ 𝑃𝑖

𝑛
𝑖  + 𝑅𝑚𝑖𝑛)

𝑅𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛
+ 

𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1 + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  + 𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

  

∑ 𝑃𝑖
𝑛
𝑖 + 𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
+ 

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1 −𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

  

A new heuristic for m-machine 

flowshop scheduling problem 

with bicriteria of makespan and 

maximum tardiness [23] 

𝐶𝑆𝑀 − (∑ 𝑃𝑖
𝑛
𝑖  + 𝑅𝑚𝑖𝑛)

𝑅𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛
+

𝑇𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
  

∑ 𝑃𝑖
𝑛
𝑖 +  𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
+

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛−𝑋𝑆𝑀

𝐶𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
  

Generating bicriteria schedules 

for correlated parallel machines 

involving tardy jobs and weighted 

completion time [16] 

𝑁𝑡𝑆𝑀

𝑁
 +

𝐶𝑆𝑀− (𝑃1 + ∑ 𝑃𝑖
2
𝑖  + ∑ 𝑃𝑖

3
𝑖  + … +∑ 𝑃𝑖

𝑛
𝑖 + 𝑛𝑅𝑚𝑖𝑛)

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
  

X

N
 +

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥− 𝐶𝑆𝑀

𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
  

Minimization of total tardiness 

and total flowtime on single 

machine with non-zero release 

dates [4] 

𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1 + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  + 𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

 

+
𝐹𝑆𝑀−∑ 𝑃𝑖

𝑛
𝑖

𝑃1+∑ 𝑃𝑖
2
𝑖 + ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛

  

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1 −𝑇𝑆𝑀

∑ 𝑃𝑖
1
𝑖=1  + ∑ 𝑃𝑖

2
𝑖=1 + ∑ 𝑃𝑖

3
𝑖   … ∑ 𝑃𝑖

𝑛
𝑖  +   𝑛𝑅𝑚𝑎𝑥−∑ 𝑑𝑛

𝑖=1

  

+
𝑛𝑅𝑚𝑎𝑥+𝑃1+   ∑ 𝑃𝑖

2
𝑖 +   +  ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛
𝑖   − 𝑛𝑅𝑚𝑖𝑛 −𝑋

𝑃1+   ∑ 𝑃𝑖
2
𝑖 +   +  ∑ 𝑃𝑖

3
𝑖 +...+  ∑ 𝑃𝑖

𝑛−1
𝑖 + 𝑛𝑅𝑚𝑎𝑥− 𝑛𝑅𝑚𝑖𝑛
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4.2 Normalized LCOF 

 

The extreme values and the 𝑋𝑆𝑀 for each of the criteria in a 

multicriteria problem will be substituted into the LCOF Eq. (3). 

The normalized LCOF can be used for effective comparison 

of different solution. 

 

𝑁𝐿𝐶𝑂𝐹  =  𝛼 𝑁𝑋  +  𝛽 𝑁𝑌 + 𝛾𝑁𝑧 (66) 

 

where: 

𝑁𝐿𝐶𝑂𝐹  is the normalized total composite function. 

𝑁𝑋 is the normalized value of criterion X. 

𝑁𝑦 is the normalized value of criterion Y. 

𝑁𝑧 is the normalized value of criterion Z. 

Table 2 shows the 𝑁𝐿𝐶𝑂𝐹  equations for some multicriteria 

scheduling problems found in the literature. 

 

 

5. CONCLUSION 

 

The complexity of multicriteria scheduling problems 

increased with dynamic constraint imposition. The use of 

LCOF as well as the need for normalization though established 

in the literature but the appropriate normalization equation for 

different criteria is a missing link. This work closed the gap by 

establishing the normalization equation for numerous 

scheduling performance measures. Some existing multi-

criteria problems found in the literature was also explored. The 

work will open further research for exploring LCOF for Multi 

Criteria Decision Making (MCDM) with dynamic constraint. 
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