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In the realm of digital image security, the multiple-image encryption (MIE) has garnered 

increasing attention due to the prevalent dissemination of digital imagery. Responding to 

this trend, an innovative encryption method has been developed, capable of securing an 

arbitrary number of images efficiently. This method is underpinned by the newly devised 

sine quadratic polynomial map (SQPM) and an original space-filling curve technique, 

termed U-shaped scanning. Extensive analysis, including 2D and 3D phase diagrams, 

Lyapunov exponents, bifurcation diagrams, and approximate entropy calculations, confirms 

the SQPM's chaotic properties over a broad spectrum of control parameters. The U-shaped 

scanning method, novel in its application, facilitates the traversal of every element in a 2D 

array, irrespective of its dimensions. This method is integral to the permutation phase of the 

encryption process, where it pre-scrambles input images, and it plays a pivotal role in the 

diffusion phase through the introduction of U-shaped diffusion. Comprehensive security 

assessments have been conducted, encompassing secret key analysis, histogram evaluation, 

correlation assessments, differential analysis, and information entropy measurements. 

Further scrutiny involves known-plaintext and chosen-plaintext attack resilience, along with 

visualizations of data loss and noise attack impacts, and execution time analysis across three 

sets of four images. The results of these security analyses affirm the efficacy of the proposed 

technique in encrypting multiple images, be they colored or grayscale. This work not only 

advances the field of image encryption but also introduces novel methodologies with broad 

applicability in digital image security. 

Keywords: 

chaotic map, image encryption, multiple-

image encryption (MIE), sine quadratic 

polynomial map (SQPM), U-shaped 

scanning 

1. INTRODUCTION

With the advancements in digital media technology, a 

significant surge in image sharing has been observed. Ensuring 

the security of these shared images is paramount. Image 

encryption stands out as a highly effective and popular method 

for providing the required protection [1]. Concurrently, the 

popularity of MIE algorithms is on the rise, attributed to the 

extensive sharing of multiple digital images [2]. The primary 

objective of MIE algorithms is to obscure multiple color or 

grayscale images from unauthorized access. 

The majority of image encryption methodologies 

documented in the literature focus on securing single color or 

grayscale images [3]. However, the growing demand for MIE 

schemes has led to a notable increase in related publications 

[3-32]. MIE methods are categorized into those encrypting 

only grayscale images and those capable of encrypting both 

grayscale and color images. Zarebnia et al. [27] proposed a 

grayscale MIE algorithm, wherein multiple grayscale images 

of identical sizes are encrypted by subdividing each input 

image into subblocks, followed by scrambling and diffusing 

these subblocks using chaotic values generated by 2D 

Arnold’s cat map and a combined chaotic system. Another 

approach for encrypting multiple grayscale images is outlined 

in the study [23], where the scrambling and diffusion stages 

utilize two cross-coupled piece-wise linear chaotic maps. A 

method employing the Henon map to generate chaotic 

parameters for three-dimensional bit scrambling with 

diffusion operation on input images is discussed in the study 

[4]. This technique is applicable for encrypting any desired 

number of grayscale images of the same size. The methods 

proposed in the studies [2, 3, 13, 17, 25, 26] are also limited to 

encrypting grayscale images of identical sizes. Similarly, the 

MIE algorithm presented in the study [24] is capable of 

encrypting multiple grayscale images of arbitrary sizes. A 

fundamental limitation in these studies is their applicability 

solely to grayscale input images. While the extension to color 

images is feasible by separately encrypting the R, G, and B 

channels, this approach significantly increases encryption time 

and computational complexity. Therefore, it is essential that 

the original method be designed to accommodate encryption 

of both grayscale and color images without additional 

complexity. 

An additional issue noted in the literature concerning MIE 

algorithms pertains to the limitation in the number of images 

they can encrypt. Existing in the literature are double and triple 

image encryption methods, which fall under the category of 

MIE algorithms [28, 33-37]. However, these methods are 

restricted to encrypting only two or three images concurrently. 

Similarly, certain algorithms are constrained to encrypting a 
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fixed number of images. For example, the MIE algorithm 

presented in the study [18] employs a cascade modulation 

chaotic system but is limited to encrypting only three grayscale 

images simultaneously. This limitation poses a problem in 

scenarios where a different number of images, such as five, 

need encryption, rendering the method inapplicable. Another 

study with a limitation on the number of images that can be 

encrypted is found in the study [5], where the method requires 

exactly twelve grayscale images to form three planes, each 

consisting of four grayscale images. Some MIE schemes 

amalgamate input images into a 3D cube structure for 

encryption [10, 21], which inherently limits the flexibility in 

the number of input images; for instance, creating a cube of 

size 256×256×256 requires exactly 64 input images of size 

512×512. A truly versatile and useful MIE algorithm should 

possess the capability to encrypt any number of input images 

concurrently. 

Evaluating the effectiveness and security of an MIE 

algorithm involves simulating specific evaluation metrics [38, 

39]. A robust MIE scheme must exhibit resilience against 

various cryptanalytic attacks, including exhaustive search, 

statistical attacks, chosen/known-plaintext attacks, entropy 

attacks, histogram attacks, data-loss attacks, noise attacks, and 

more. A noticeable gap in the literature is the absence of 

comprehensive security analyses. For instance, in the studies 

[2, 17, 19, 20, 24, 30], neither data-loss nor noise analysis is 

conducted. Similarly, noise attacks are not considered in the 

studies [5, 23], and data-loss attacks are overlooked in [14]. 

The omission of both chosen-plaintext and known-plaintext 

attack analyses is evident in some MIE schemes [2, 11, 16, 17, 

29]. Furthermore, the efficiency of hardware implementation, 

inferred from the total encryption/decryption time, is an 

essential metric. The execution time of the proposed method 

is notably absent in the studies [11, 14, 22]. To verify the 

quality and reliability of an MIE algorithm, all necessary 

evaluation measures must be thoroughly simulated and 

documented. 

This study introduces significant advancements addressing 

the previously identified limitations in MIE algorithms. Firstly, 

an innovative MIE algorithm is proposed, capable of 

encrypting both color and grayscale images with the flexibility 

to select an arbitrary number of input images. The efficacy of 

this algorithm is validated through comprehensive simulation 

results for diverse image groups, demonstrating its robustness 

and efficiency. Secondly, this work introduces a novel 1D 

chaotic map, termed the SQPM. Despite its simplicity, SQPM 

effectively overcomes the challenges of discontinuity and 

limited chaotic intervals inherent in classical chaotic maps. It 

refines the existing sine map by generating continuous chaotic 

values for a variety of control parameters, thereby enhancing 

the security of cryptosystems. The control parameters and 

initial value of SQPM are intricately linked to the external 

keys, resulting in an expanded keyspace for the proposed MIE 

algorithm, which contributes significantly to the encryption 

process's security and robustness. To fortify against potential 

chosen and known-plaintext attacks, the secure hash algorithm 

is utilized for calculating SQPM's necessary parameters. 

Furthermore, the proposed MIE scheme encrypts different 

grayscale images or various channels of color images 

simultaneously, ensuring that the pixel values of each image 

influence the pixel values of all other images, effectively 

diminishing pixel correlation. An additional innovative aspect 

of this algorithm is the introduction of U-shaped scanning. 

This method enables the scanning of all elements in a 2D 

image of any size, initially applied in the scrambling of input 

images and subsequently in the diffusion phase. Lastly, the 

security of the proposed MIE algorithm is rigorously evaluated 

using essential measures. The experimental results affirm that 

the proposed MIE scheme is both effective and secure, capable 

of withstanding various cryptanalytic attacks. 

The structure of this paper is as follows: Section 2 

introduces SQPM. The SQPM-based MIE algorithm is 

detailed in Section 3. Section 4 presents the simulation results 

for the security analyses of the proposed MIE algorithm. The 

paper is concluded in Section 5. 

 

 

2. THE PROPOSED CHAOTIC MAP  

 

SQPM represents an innovative one-dimensional chaotic 

map, ingeniously amalgamating the traditional sine map with 

a quadratic polynomial. The mathematical representation of 

SQPM is given in Eq. (1): 

 

𝑥𝑛+1 = sin(𝜋(𝑒𝑎+10 + 𝑏)(𝑥𝑛
2 + 𝑥𝑛 + 𝑐))  (1) 

 

where, 𝑥𝑛 ∈ (−1,1) denotes the initial value, 𝑎, 𝑏, 𝑐 ∈ [0, ∞) 

signify the control parameters, and e is Euler’s number. As a 

classical member of the 1D chaotic maps family, the sine map 

is known for its ability to generate chaotic sequences 

efficiently, albeit with a low computational cost. However, its 

major limitation lies in having a single control parameter with 

an exceedingly narrow chaotic range. The introduction of 

SQPM marks a significant advancement by expanding the 

number of control parameters available for image encryption 

algorithms to three. This enhancement allows SQPM to 

produce chaotic sequences of substantial complexity while 

maintaining minimal computational power ∀ 𝑎, 𝑏, 𝑐 ∈ [0, ∞). 

 

2.1 2D and 3D phase diagrams 

 

The 2D and 3D phase diagrams for the sine map and SQPM 

are depicted in Figure 1. Figures 1a) and 1d) clearly show that 

the sine map exhibits a parabolic trajectory, occupying only a 

limited region of the 2D plane and 3D space. In contrast, 

SQPM does not adhere to a specific trajectory. Instead, it 

extensively covers a significant portion of both the 2D plane 

and 3D space when iterated with varying control parameters, 

such as 𝑎 = 𝑏 = 𝑐 = 0  or 𝑎 = 5 , 𝑏 = 3 , 𝑐 = 15 . This 

expansive coverage by SQPM illustrates its superior capability 

in generating random sequences with greater randomness 

compared to the sine map. 

 

2.2 Bifurcation diagrams 
 

A bifurcation diagram is a powerful tool for visualizing the 

evolution of a chaotic map's dynamic behavior as its control 

parameters change. Figure 2 showcases the bifurcation 

diagrams of both the sine map and SQPM. The sine map 

transitions into a chaotic regime when its control parameter 

lies within the range of [0.87, 1]. Notably, even within this 

chaotic regime, periodic windows are evident, as demonstrated 

in Figure 2a). The sine map only generates chaotic values 

across the range of (0,1) when its control parameter equals one. 

In stark contrast, SQPM exhibits a broader range of dynamic 

behaviors. As seen in Figures 2b), 2c), and 2d), SQPM 

consistently maps its input within the range of [-1,1] across all 

its control parameter values. Unlike the sine map, which is 
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confined to a limited range of control parameters for chaotic 

behavior, SQPM demonstrates chaotic dynamics ∀ 𝑎, 𝑏, 𝑐 ∈
[0, ∞) over an expanded parameter range. In essence, the 

inherent chaotic behavior of the sine map is substantially 

enhanced through the implementation of SQPM. 

 

 
 

Figure 1. Phase diagrams: a), d) sine map (control parameter is 1); b), e) SQPM (a=b=c=0); c), f) SQPM (a=5, b=3, c=15) 

 

 
 

Figure 2. Bifurcation diagrams: a) sine map, b) SQPM (𝑎 ∈
[0,100], 𝑏 = 𝑐 = 0), c) SQPM (𝑏 ∈ [0,100], 𝑎 = 𝑐 = 0), d) 

SQPM (𝑐 ∈ [0,100], 𝑎 = 𝑏 = 0) 

 

2.3 Lyapunov exponent 

 

The Lyapunov exponent (LE) serves as a crucial measure 

for quantifying the rate at which two neighboring trajectories, 

originating from extremely close initial conditions, diverge. A 

positive LE value signifies chaotic behavior and a high 

sensitivity to initial conditions. Figure 3a) illustrates the LE 

values of SQPM in comparison with other chaotic maps such 

as the logistic map, the sine map, the one-dimensional cosine 

polynomial map (1-DCP) [40], and the one-dimensional sine-

powered chaotic map (1-DSP) [41], plotted against a control 

parameter. Given that a higher LE value is indicative of 

superior chaotic performance [42], the LE calculations of 

SQPM clearly demonstrate its exceptional performance over 

traditional and other recently developed chaotic maps. 

Distinctively, SQPM consistently exhibits positive LE values, 

indicating an absence of non-chaotic behavior. This 

characteristic is maintained across the board, even with a fixed 

control parameter a; the LE values of SQPM remain invariably 

positive for control parameters b and c, as depicted in Figures 

3b) and 3c). 

 

 
 

Figure 3. LE values: a) SQPM (𝑏 = 𝑐 = 0), 1-DCP, 1DSP 

(𝛽 = 0.3306) b) SQPM (𝑎 = 5, 𝑐 = 0), c) SQPM (𝑎 =
5, 𝑏 = 0) 
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Figure 4. ApEn values: SQPM (𝑏 = 𝑐 = 0), 1-DCP, 1DSP (𝛽 = 0.3306) 

 

2.4 Approximate entropy 

 

Approximate Entropy (ApEn) is a statistical method utilized 

for quantifying the irregularity and complexity of time-series 

data [43]. While a positive ApEn value does not invariably 

signify chaos [44], a larger ApEn indicates reduced 

predictability. Given that ApEn’s calculation is contingent 

upon the data size [45], the chaotic maps under comparison are 

iterated to produce a sequence of 2000 real numbers each. The 

resulting ApEn values are graphically represented in Figure 4. 

The data reveals that SQPM generates sequences with higher 

levels of unpredictability and complexity, as evidenced by its 

ApEn values, compared to other maps. 

The performance analysis and comparative evaluation with 

other 1D maps underscore SQPM's superior chaotic 

performance. The incorporation of three control parameters in 

SQPM enhances the keyspace for the associated MIE 

algorithm, thereby bolstering its security against cryptanalytic 

attacks. Moreover, the simplicity of SQPM's equation 

facilitates ease of implementation, contributing significantly 

to the fast performance of the proposed MIE algorithm. 

 

 

3. SQPM-BASED MIE ALGORITHM 

 

3.1 U-shaped scanning 

 

Space-filling curves are instrumental in scanning every 

element of a 2D array precisely once, thereby facilitating the 

creation of a new 1D array. By reshaping the content of this 

1D array into another 2D array, the elements of the original 

array can be effectively scrambled. Hence, space-filling curves 

are increasingly utilized in the permutation phase of image 

encryption schemes [46]. Various space-filling curves, such as 

the Hilbert curve [47, 48], Zigzag transform [49-51], square-

wave confusion [52], Y-index curve [53], and L-shaped 

scanning [54], are employed in image encryption algorithms. 

This study introduces a novel space-filling curve named U-

shaped scanning. Unlike the Hilbert curve, which is limited to 

scanning square 2D arrays, U-shaped scanning is capable of 

scanning every element in 2D arrays of any size. This method 

can be employed to scramble the pixels of an input image. Let 

I be the input image and I′ be the scrambled image, both 

sharing identical dimensions H×W. U-shaped scanning 

traverses each element of I, creating distinct 1D sequences 

𝑈𝑖=1,2,…,⌈𝑊/2⌉, each with a length of 2(𝐻 − (𝑖 − 1)) + 2(𝑊 −

(𝑖 − 1)) − 2. The final 1D array is formed by concatenating 

these sequences in reverse order, as depicted in Eq. (2): 

 

𝑈 = [𝑈
⌈
𝑊

2
⌉
  𝑈

⌈
𝑊

2
⌉−1

⋯ 𝑈2 𝑈1]  (2) 

 

The 1D array U can be reconfigured into a 2D array I′ of 

dimension×HW. Figure 5 exemplifies the U-shaped scanning 

process. As demonstrated in the figure, this scanning approach 

navigates the outer pixels following a U-shaped trajectory, 

commencing from the pixels in the first row. U-shaped 

scanning plays a pivotal role in significantly reducing the 

correlation between adjacent elements of the input images, 

owing to its application in both permutation and diffusion 

stages of the image encryption process. 

 

3.2 The proposed algorithm 

 

The proposed encryption method encompasses two primary 

stages: permutation and diffusion. Initially, U-shaped 

scanning is employed to pre-scramble the input images. In the 

case of color images, each channel is scrambled independently 

to diminish cross-channel correlation. Subsequently, all input 

images are merged horizontally. The rows and columns of this 

composite image are then circularly shifted using chaotic 

arrays generated by SQPM. In the final stage, U-shaped 

diffusion replaces conventional methods such as row-wise or 

column-wise substitution, utilizing SQPM to generate the 

diffusion sequence. Given that SQPM is a map with three 

control parameters and possesses an extensive chaotic range, 

it is integral to both permutation and diffusion stages, thereby 

enhancing the security and keyspace of the proposed MIE 

method significantly. Figure 6 illustrates the process of the 

proposed MIE algorithm for input color images. 

Consider 𝐼1, 𝐼2, … , 𝐼𝑘  as the input images of the proposed 

MIE algorithm, each sharing the same dimension H×W. These 

images are concatenated horizontally, regardless of being 

color or grayscale. The SHA-384 hash value of the 

amalgamated image, which ensures sensitivity to the plaintext, 

is selected as the first secret key. This key is subsequently 

divided into eight subblocks, with each subblock comprising 

48 bits. 
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𝐾𝑒𝑦 = {𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8} (3) 

 

The proposed MIE procedure involves distinct steps, 

utilizing 𝐾1, 𝐾2, 𝐾3, 𝐾4 to generate permutation parameters, 

while 𝐾5, 𝐾6, 𝐾7, 𝐾8  are employed for creating the diffusion 

sequence. The procedure is outlined as follows: 

Step 1. Apply U-shaped scanning-based scrambling to each 

input image. For color images, each channel is scrambled 

individually using U-shaped scanning. 

Step 2. Merge the scrambled images or channels 

horizontally to form a new matrix 𝐼𝐶 . The dimensions of 𝐼𝐶  are 

𝐻1 × 𝑊1 ,which is equal to 𝐻 × 𝑘𝑊  or 𝐻 × 3𝑘𝑊  for the 

grayscale or color input images, respectively. 

 

 
 

Figure 5. An example of U-shaped scanning and scrambling 

 

 
 

Figure 6. The process of the proposed MIE algorithm 

 

Step 3. Iterate the SQPM 𝐻1 + 𝑊1 + 500 times to generate 

a chaotic sequence 𝑋1. The control parameters and the initial 

value of SQPM are derived from the 𝐾1, 𝐾2, 𝐾3, 𝐾4 sequences. 

These sequences are further divided into subblocks of equal 

lengths: 𝐾1 = {𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6}, 𝐾2 = {𝑙1, 𝑙2, 𝑙3, 𝑙4}, 𝐾3 =
{𝑚1, 𝑚2}. The control parameters 𝑎, 𝑏, 𝑐, as well as the initial 

value 𝑥01, are computed based on the following equations: 

 

𝑎 = 𝛼1 =  
𝑘1𝑑+𝑘2𝑑+𝑘3𝑑+𝑘4𝑑+𝑘5𝑑+𝑘6𝑑

28   (4) 

 

𝑏 = 𝛽1 =
(𝑙1⨁𝑙2)𝑑+(𝑙3⨁𝑙4)𝑑

210   (5) 

 

𝑐 = 𝛾1 = 𝑛𝑛𝑧(𝑚1⨁𝑚2) (6) 

 

103



 

𝑥01 =
𝑛𝑛𝑧(𝐾4)

𝑛𝑧(𝐾4)
𝑚𝑜𝑑 1  (7) 

 

where, subscript 𝑑  indicates the conversion from binary to 

decimal numbers, 𝑛𝑧(∙) and 𝑛𝑛𝑧(∙) find the number of zero 

and nonzero entries in their inputs, respectively. 

Step 4. The first 500 elements are removed from the 

sequence 𝑋1  and the remaining elements are divided into 

arrays 𝑋2 and 𝑋3, whose lengths are 𝐻1 and 𝑊1, respectively. 

These arrays are used to calculate the row-shifting array 𝑅 and 

the column-shifting array 𝐶 as follows. 

 

𝑅(𝑖) = {
(⌈𝑋2(𝑖) × 1015⌉ 𝑚𝑜𝑑 𝑊1) , 𝑋2(𝑖) ≥ 0

(−⌈𝑋2(𝑖) × 1015⌉ 𝑚𝑜𝑑 𝑊1), 𝑋2(𝑖) < 0
  (8) 

  

𝐶(𝑗) = {
(⌈𝑋3(𝑗) × 1015⌉ 𝑚𝑜𝑑 𝐻1) , 𝑋3(𝑗) ≥ 0

(−⌈𝑋3(𝑗) × 1015⌉ 𝑚𝑜𝑑 𝐻1), 𝑋3(𝑗) < 0
  (9) 

 

where, 𝑖 = 1,2, … , 𝐻1 and 𝑗 = 1,2, … , 𝑊1.  

Step 5. Circularly shift the elements in the rows of matrix 

𝐼𝐶  by 𝑅(𝑖) positions, moving from the first row to the last. If 

the i-th element of the chaotic sequence is positive, the shift is 

to the right; if negative, to the left. Following this, perform a 

circular shift of the elements in the columns by 𝐶(𝑗) positions, 

starting from the last column to the first. Here, columns are 

shifted upwards for negative j-th elements and downwards for 

positive ones. This concludes the permutation phase, yielding 

the resultant image referred to as 𝐼𝑃. 

Step 6. Iterate the SQPM 𝐻 × 𝑊 + 500 times to produce 

another chaotic sequence Y. The sequences 𝐾5, 𝐾6 and 𝐾7 are 

divided into subblocks of equal lengths, denoted as 𝐾5 =
{𝑛1, 𝑛2, 𝑛3, 𝑛4}, 𝐾6 = {𝑜1, 𝑜2, 𝑜3}, 𝐾7 = {𝑝1 , 𝑝2}, respectively. 

For the diffusion phase, introduce four new external secret 

keys: 𝑘𝑒𝑦1 , 𝑘𝑒𝑦2 , 𝑘𝑒𝑦3 , and 𝑘𝑒𝑦4 . Compute the control 

parameters 𝑎2, 𝑏2, 𝑐2 , and the initial value 𝑥02  of the SQPM 

using the following equations: 

 

𝑎2 = 𝛼2 + 𝑘𝑒𝑦1 =  
𝑛1𝑑+𝑛2𝑑+𝑛3𝑑+𝑛4𝑑

212 + 𝑘𝑒𝑦1  (10) 

 

𝑏2 = 𝛽2 + 𝑘𝑒𝑦2 =
(𝑜1⨁𝑜2)𝑑+𝑜3𝑑

213 + 𝑘𝑒𝑦2  (11) 

 

𝑐2 = 𝛾2 + 𝑘𝑒𝑦3 = 𝑛𝑧(𝑝1⨁𝑝2) + 𝑘𝑒𝑦3 (12) 

 

𝑥02 =
𝑛𝑧(𝐾8)

𝑛𝑛𝑧(𝐾8)
𝑚𝑜𝑑 1 − 𝑘𝑒𝑦4  (13) 

 

where, 𝑘𝑒𝑦1,2,3 ∈ [0, ∞)  and 𝑘𝑒𝑦4 ∈ (0,1) . The first 500 

elements of the sequence 𝑌 are discarded and the remaining 

elements are processed as in Eq. (14) to obtain the diffusion 

sequence 𝐷. 

 

𝐷(𝑖) = (⌈|𝑌(𝑖)| × 1010⌉ 𝑚𝑜𝑑 256) (14) 

 

where, 𝑖 = 1,2, … , 𝐻 × 𝑊. 

Step 7. The image 𝐼𝑃  is divided into 𝑡  images 

{𝐼𝑝1
, 𝐼𝑝2

, … , 𝐼𝑝𝑡
} (𝑡 = 𝑘 for grayscale images, 𝑡 = 3𝑘 for color 

images), each with a 𝐻 × 𝑊  dimension. The following 

operation called U-shaped diffusion is used to substitute the 

pixels in 𝐼𝑃.  

 

𝐸1 = 𝑈𝑠𝑐𝑎𝑛(𝐼𝑝1
)⨁𝐷 (15) 

 

𝐸𝑗 = ((𝑈𝑠𝑐𝑎𝑛 (𝐼𝑝𝑗
) ⨁𝐷) + 𝐸𝑗−1) 𝑚𝑜𝑑 256  (16) 

 

where, 𝑗 = 2,3, … , 𝑡, 𝑈𝑠𝑐𝑎𝑛  applies U-shaped scanning in its 

input and generates a 1D array of length 1 × 𝐻𝑊 as given in 

Eq. (2).  

Step 8. The sequences 𝐸1, 𝐸2, … , 𝐸𝑡  are reshaped into 

𝐻 × 𝑊  images and concatenated horizontally to form the 

encrypted image 𝐼𝐸 . If the input images are color, the 

encrypted images are obtained by combining the three 

sequential images. 

 

3.3 The decryption process 

 

The encrypted image 𝐼𝐸  and the secret keys 𝐾𝑒𝑦 , 𝑘𝑒𝑦1 , 

𝑘𝑒𝑦2 , 𝑘𝑒𝑦3 , and 𝑘𝑒𝑦4  are the inputs to the decryption 

algorithm. If the encrypted image is a color image, R, G, and 

B channels are extracted and concatenated horizontally. The 

decryption process of the proposed MIE algorithm is described 

in the following steps. 

Step 1. Using the secret keys and Eqs. (10)-(14), the 

diffusion sequence 𝐷  is obtained. The following operations 

are carried out to obtain the image 𝐼𝑃. 

 

𝐼𝑝1
= 𝑖𝑛𝑣𝑈𝑠𝑐𝑎𝑛(𝐸1⨁𝐷) (17) 

 

𝐼𝑝𝑗
= 𝑖𝑛𝑣𝑈𝑠𝑐𝑎𝑛 ((𝐸𝑗 − 𝐸𝑗−1)𝑚𝑜𝑑 256⨁𝐷)  (18) 

 

where, 𝑗 = 2,3, … , 𝑡 and 𝑖𝑛𝑣𝑈𝑠𝑐𝑎𝑛 implements the inverse U-

shaped scanning in its input and generates a 1D array. The 

sequences {𝐼𝑝1
, 𝐼𝑝2

, … , 𝐼𝑝𝑡
}  are reshaped into 𝐻 × 𝑊  images 

and concatenated horizontally to obtain 𝐼𝑃.  

Step 2. The row-shifting array 𝑅(𝑖) and the column-shifting 

array 𝐶(𝑗)  are calculated using Eqs. (4)-(9) for the de-

scrambling phase of 𝐼𝑃. Initially, the elements in the columns 

are circularly shifted downwards if 𝐶(𝑗)  is negative, and 

upwards if 𝐶(𝑗) is positive, starting from the last column to the 

first column (𝑗 = 1,2, … , 𝑊1). Subsequently, rows are shifted 

to the left if 𝑅(𝑖)  is positive, and to the right, if 𝑅(𝑖)  is 

negative starting from the first row to the last row ( 𝑖 =
1,2, … , 𝐻1). As a result, 𝐼𝐶  image is obtained.  

Step 3. 𝐼𝐶  image is divided into 𝑘 or 3𝑘 sub-images with 

dimensions of 𝐻 × 𝑊  for grayscale or color images, 

respectively. Inverse U-shaped scanning-based scrambling is 

applied to each sub-image. Descrambled sub-images are 

concatenated horizontally. If the original images are color, R, 

G, and B planes are combined to acquire the input images. 

 

 

4. SIMULATION RESULTS AND SECURITY 

ANALYSIS 
 

The security analysis of the proposed MIE algorithm was 

conducted on a PC equipped with 16 GB RAM and a 2.80 GHz 

Intel Core i7 processor, utilizing MATLAB 2020a. For the 

simulations, three distinct groups of images from the USC-

SIPI image database [55] were employed. Group 1 comprises 

the color images “Lena”, “Peppers”, “Baboon”, and “Splash”, 

each of size 512×512. Group 2 includes color images “Female” 

(4.1.04.tiff), “Couple” (4.1.02.tiff), “House” (4.1.05.tiff), and 

“Tree” (4.1.06.tiff), all of size 256×256. Group 3 consists of 

four grayscale images, namely “Lena”, “Moon”, “Clock”, and 

“Airplane”, each with dimensions of 256×256. The encryption 
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outcomes for these three groups of images are illustrated in 

Figure 7. 

 

 
 

Figure 7. Input images and encrypted versions of a) Group 1 

b) Group 2 c) Group 3 

 

4.1 Keyspace and key sensitivity analysis 

 

An MIE algorithm requires a keyspace of 2100 or larger to 

effectively resist exhaustive search attacks [56]. The proposed 

MIE scheme incorporates five secret keys: 𝐾𝑒𝑦, 𝑘𝑒𝑦1, 𝑘𝑒𝑦2, 

𝑘𝑒𝑦3 , and 𝑘𝑒𝑦4 . 𝐾𝑒𝑦  is the first 384-bit long secret key 

generated by the SHA-384 hash value of the combined input 

images. The other keys are integral in calculating the control 

parameters and the initial value for the SQPM in the diffusion 

phase. The precisions for 𝑘𝑒𝑦1 , 𝑘𝑒𝑦2 , 𝑘𝑒𝑦3 , and 𝑘𝑒𝑦4  are 

experimentally set to 10-14, 10-14, 10-14, and 10-14, respectively. 

Consequently, the total keyspace size is calculated as 

2384 × 1052 ≅ 1.67 × 2556, which far exceeds the minimum 

required keyspace. This substantial keyspace size underscores 

the robustness of the proposed MIE method against exhaustive 

search attacks. Table 1 provides a comparative analysis of the 

keyspace sizes between this study and other MIE algorithms, 

highlighting the superior performance of the proposed scheme. 

Key sensitivity implies that even a minor alteration in any 

of the secret keys during the decryption phase results in the 

inability to correctly recover the input images. To assess this, 

six key sensitivity analyses were conducted, with 

modifications as detailed in Table 2. For each analysis, a slight 

change was made to one secret key, keeping the others 

unaltered. Two key sensitivity tests were performed for each 

image group, and the decryption outcomes are presented in 

Figure 8. The results clearly illustrate that any minor deviation 

in a secret key renders the decrypted images unrecognizable, 

thereby confirming the high sensitivity of the proposed 

technique to the secret keys. 

 

Table 1. Keyspace comparison with other MIE algorithms 

 
MIE Algorithm Keyspace 

Proposed method 1.67 × 2556 

Ref. [4] 2455 

Ref. [5] 2332 

Ref. [7] 2555 

Ref. [10] 2478 

Ref. [17] 2390 

Ref. [18] 2256 + 2 

Ref. [22] 1.55 × 2526 

Ref. [23] 1.245 × 2327 

Ref. [26] 1060 ≈ 1.24 × 2199 

Ref. [30] 2332 

 

 
 

Figure 8. Decryption results. Group 1: a) 𝐾𝑒𝑦’s first bit 

flipped b) 𝐾𝑒𝑦’s last bit flipped, Group 2: c)  

𝑘𝑒𝑦1 + 10−14 d) 𝑘𝑒𝑦2 − 10−10, Group 3: e) 𝑘𝑒𝑦3 + 10−14 f) 

𝑘𝑒𝑦4 − 10−14 

 

Table 2. Key sensitivity analysis parameters 

 
Secret Key Correct Secret Keys Modification Tested Images 

𝑲𝒆𝒚 
'8387D4EC7F47E1DC9FAEADF5F7DE2D37FF50406F0C371F9 

67294D2222D97131033EA16A78D061FC7216E0569E5716C46' 

Flip first bit 
Group 1 

Flip last bit 

𝒌𝒆𝒚𝟏 0.5 add 10−14 
Group 2 

𝒌𝒆𝒚𝟐 2.5 subtract 10−10 

𝒌𝒆𝒚𝟑 5.5 add 10−14 
Group 3 

𝒌𝒆𝒚𝟒 0.5 subtract 10−14 
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4.2 Histogram analysis 

 

Histogram plots are a valuable tool for analyzing the pixel 

distribution in an image. Typically, the histogram plots of 

input images exhibit a non-uniform distribution, whereas 

encrypted images should display a uniform distribution to 

effectively resist statistical attacks. In the context of an MIE 

algorithm, particularly for color images, it is crucial that the 

histograms of the Red (R), Green (G), and Blue (B) channels 

across all images demonstrate uniform distribution. Figure 9 

showcases the histogram graphs for both input and encrypted 

images in Group 1. As evidenced in the figure, the proposed 

MIE method successfully ensures a uniform pixel distribution 

across all channels of the encrypted images. 

 

 
 

Figure 9. Histogram plots of input and encrypted images in 

Group 1: a) Lena b) Baboon c) Peppers d) Splash 

 

The uniformity of a histogram graph can be quantitatively 

assessed by calculating its variance. The variance is computed 

using the following equation: 

 

𝑣𝑎𝑟 =
1

2562
∑ ∑

(𝑥𝑖−𝑥𝑗)
2

2

256
𝑗=1

256
𝑖=1   (19) 

 

where, 𝑥𝑖 and 𝑥𝑗 represent the total numbers of the i-th and j-

th pixels, respectively. To effectively resist statistical attacks, 

the histogram variance values of encrypted images should be 

substantially lower than those of the input images. This 

principle is exemplified in the proposed MIE algorithm, which 

demonstrates a significant reduction in the histogram variance 

values for the input images, as detailed in Table 3. For the 

tested input images, there is an average reduction in variance 

value by 99.9%. This substantial decrease in variance values 

strongly indicates the method’s capacity to resist statistical 

attacks. 

 

Table 3. Histogram variance values 

 

Group Image Channel 
Input 

Image 

Encrypted 

Image 

Group 1 

Lena 

R 1017335 1093 

G 455719 1861 

B 1377356 1110 

Peppers 

R 884298 943 

G 803422 1157 

B 2450373 1041 

Baboon 

R 331359 1093 

G 571232 1091 

B 319770 1095 

Splash 

R 2422651 1035 

G 3083896 1302 

B 5916965 893 

Group 2 

Female 

R 66969 242 

G 64435 497 

B 113044 303 

Couple 

R 210365 276 

G 337858 241 

B 289636 260 

House 

R 258577 240 

G 299159 243 

B 394039 269 

Tree 

R 81371 282 

G 57009 234 

B 129824 248 

Group 3 

Lena - 30666 293 

Moon - 135688 420 

Clock - 282062 249 

Airplane - 220849 248 

Overall Average 807355 652 

 

4.3 Correlation analysis 

 

To evaluate resistance against statistical attacks, it is crucial 

to conduct correlation analysis in tandem with histogram 

analysis. Input images typically exhibit strong correlations 

between adjacent pixels in horizontal (H), vertical (V), and 

diagonal (D) directions. Additionally, in the case of color 

images, there exists a cross-channel correlation among the R, 

G, and B planes [57, 58]. A proficient MIE algorithm should 

effectively reduce both types of correlations to safeguard 

against potential statistical attacks. Figure 10 displays the 

distribution of adjacent pixels in the original and encrypted 

images from Group 3, along the horizontal, vertical, and 

diagonal directions. As evidenced in the figure, the proposed 

MIE algorithm successfully decorrelates the adjacent pixels in 

all three directions for all images. The correlation between 

neighboring pixels is quantified using a metric known as the 

correlation coefficient (𝑟𝑎,𝑏), which is defined in Eq. (20). 

 

𝑟𝑎,𝑏 =
∑ (𝑎𝑖−𝐸(𝑎))(𝑏𝑖−𝐸(𝑏))𝐾

𝑖=1

√∑ (𝑎𝑖−𝐸(𝑎))
2𝐾

𝑖=1
√∑ (𝑏𝑖−𝐸(𝑏))

2𝐾
𝑖=1

  (20) 

 

where, 𝑎𝑖 and 𝑏𝑖 represent the values of adjacent pixels, while 

K denotes the number of randomly selected pixel pairs. 

Additionally, 𝐸(𝑎)  and 𝐸(𝑏)  are the means of 𝑎𝑖  and 𝑏𝑖 , 
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respectively. For the purpose of calculating the correlation 

coefficient values, 10,000 unique pixel pairs were randomly 

chosen in all directions from both the tested input images and 

their corresponding encrypted images. The correlation 

coefficient values thus obtained are presented in Table 4. 

Notably, the correlation coefficients of the input images are 

close to 1, indicating a strong correlation. However, the 

coefficients for the encrypted images are very close to 0, 

signifying a successful disruption of the horizontal, vertical, 

and diagonal correlations between neighboring pixels. This 

disruption is consistently achieved across all channels of the 

input images by the proposed MIE algorithm. 
 

Table 4. Correlation coefficient values 
 

Group Image Channel 
Input Image Encrypted Image 

H V D H V D 

Group 1 

Lena 

R 0.9795 0.9899 0.9680 -0.0076 -0.0085 0.0013 

G 0.9686 0.9814 0.9562 0.0063 -0.0141 0.0172 

B 0.9293 0.9574 0.9176 0.0120 0.0005 -0.0119 

Peppers 

R 0.9562 0.9608 0.9152 -0.0062 -0.0074 0.0121 

G 0.9841 0.9797 0.9669 -0.0009 -0.0105 -0.0111 

B 0.9701 0.9704 0.9333 0.0013 0.0062 -0.0044 

Baboon 

R 0.9241 0.8687 0.8534 0.0031 0.0108 -0.0044 

G 0.8632 0.7636 0.7499 -0.0094 0.0017 0.0075 

B 0.9011 0.8773 0.8433 -0.0056 0.0148 0.0063 

Splash 

R 0.9933 0.9949 0.9892 0.0031 0.0028 -0.0005 

G 0.9830 0.9884 0.9714 0.0011 -0.0049 0.0017 

B 0.9823 0.9773 0.9645 -0.0034 -0.0030 0.0016 

Group 2 

Female 

R 0.9780 0.9870 0.9669 0.0218 -0.0042 0.0239 

G 0.9661 0.9807 0.9508 0.0067 0.0066 -0.0011 

B 0.9530 0.9732 0.9278 -0.0023 0.0083 0.0092 

Couple 

R 0.9448 0.9553 0.9174 0.0061 -0.0101 0.0047 

G 0.9268 0.9524 0.9038 0.0171 0.0021 -0.0096 

B 0.9167 0.9391 0.8880 0.0108 0.0037 0.0119 

House 

R 0.9657 0.9379 0.9142 -0.0107 -0.0090 0.0001 

G 0.9817 0.9482 0.9353 -0.0055 0.0020 0.0002 

B 0.9825 0.9740 0.9634 0.0030 0.0072 -0.0091 

Tree 

R 0.9590 0.9376 0.9131 0.0161 -0.0023 -0.0070 

G 0.9690 0.9467 0.9332 -0.0084 -0.0064 0.0014 

B 0.9602 0.9408 0.9230 0.0030 0.0059 0.0115 

Group 3 

Lena - 0.9405 0.9690 0.9175 -0.0001 0.0001 -0.0030 

Moon - 0.9020 0.9356 0.9045 0.0065 0.0119 0.0169 

Clock - 0.9533 0.9734 0.9441 -0.0145 0.0035 0.0004 

Airplane - 0.9569 0.9393 0.8905 0.0102 -0.0028 0.0053 
 

Table 5. Information entropy values 
 

Group Image Channel Input Image Encrypted Image 

Group 1 

Lena 

R 7.2531 7.9992 

G 7.5940 7.9987 

B 6.9684 7.9992 

Peppers 

R 7.3316 7.9994 

G 7.5605 7.9992 

B 7.0196 7.9993 

Baboon 

R 7.7067 7.9992 

G 7.4744 7.9992 

B 7.7522 7.9992 

Splash 

R 6.9481 7.9993 

G 6.8845 7.9991 

B 6.1265 7.9994 

Group 2 

Female 

R 7.2549 7.9973 

G 7.2704 7.9945 

B 6.7825 7.9967 

Couple 

R 6.2499 7.9970 

G 5.9642 7.9973 

B 5.9309 7.9971 

House 

R 6.4311 7.9974 

G 6.5389 7.9973 

B 6.2320 7.9970 

Tree 

R 7.2104 7.9969 

G 7.4136 7.9974 

B 6.9207 7.9973 

Group 3 

Lena - 7.5683 7.9968 

Moon - 6.7093 7.9954 

Clock - 6.7057 7.9973 

Airplane - 6.4523 7.9973 
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Figure 10. The distribution of adjacent pixels of the input 

and encrypted images in Group 3: a) Lena b) Moon c) Clock 

d) Airplane 

 

Table 6. Information entropy (average) comparison 

 
MIE Algorithm Information Entropy 

Proposed method 

Ref. [2] 

Ref. [4] 

Ref. [12] 

Ref. [17] 

Ref. [23] 

7.9993 

7.9992 

7.99929 

7.9993 

7.9993 

7.9993 

 

4.4 Information entropy analysis 

 

In accordance with information theory, random systems 

inherently contain more information than deterministic 

systems. Consequently, the information entropy value of an 

encrypted image should exceed that of its corresponding input 

image. For a pixel represented by 8 bits, the information 

entropy (𝐼) of a grayscale image or a single channel can be 

computed using the formula: 

 

𝐼 = ∑ 𝑃(𝑠𝑖)
1

log2 𝑃(𝑠𝑖)
28−1
𝑖=0   (21) 

 

where, 𝑠𝑖=0,1,..,255 is equal to the total number of pixels, and the 

values of i and P(si) can be calculated by dividing si by the 

total number of pixels in an image. Theoretically, when the 𝐼 

value is equal to 8, a random image is obtained. An effective 

MIE method should yield encrypted images with information 

entropy values nearing this theoretical maximum. As shown in 

Table 5, the information entropy values of the encrypted 

images are greater than 7.99, indicating that the proposed MIE 

method successfully generates multiple random 

images/channels. Furthermore, Table 6 compares average 

information entropy values of the proposed method with 

several recent MIE algorithms for images of size 512×512. 

This comparison reveals that the proposed method exhibits 

similar or superior performance in terms of resisting 

information entropy attacks compared to other methods in the 

MIE literature. 

 

4.5 Known-plaintext and chosen-plaintext attack analyses 

 

In scenarios involving known-plaintext attacks (KPAs) and 

chosen-plaintext attacks (CPAs), an attacker's primary 

objective is to decipher the secret keys. To counteract these 

types of attacks, the proposed MIE algorithm incorporates the 

SHA-384 hash value of the combined input images. 

Consequently, even if an attacker gains access to both the 

plaintext and ciphertext, they cannot derive meaningful 

information from the cryptosystem. The resistance of the 

proposed MIE method to KPAs and CPAs was evaluated by 

encrypting five all-black and five all-white images, each 

100 × 200 in size, as illustrated in Figure 11. An attacker 

would be unable to extract any valuable information from the 

encrypted all-black or all-white images, as these encrypted 

outputs resemble noise-like, meaningless patterns. 

 

 
 

Figure 11. Input images and encrypted versions. a) all-black 

b) all-white 

 

4.6 Differential attack analysis 

 

Differential attacks focus on uncovering details about the 

secret key or the plaintext image by analyzing the variations 

between the input and encrypted output images. For an MIE 

algorithm to be deemed resistant to differential attacks, it must 

exhibit a complete change in the output images when any pixel 

in the input images or channels is altered. To evaluate a 

cryptosystem's resilience against such attacks, metrics like the 

Number of Pixel Change Rate (NPCR) and Unified Average 

Changing Intensity (UACI) are utilized, as defined in the 

following equations: 

 

𝑁𝑃𝐶𝑅 =
1

𝐻×𝑊
∑ ∑ 𝐷(𝑖, 𝑗)𝐻

𝑖=1  × 100 %𝑊
𝑗=1   (22) 

 

𝑈𝐴𝐶𝐼 =
1

𝐻×𝑊
∑ ∑

|𝐸1(𝑖,𝑗)−𝐸2(𝑖,𝑗)|

255

𝐻
𝑖=1  × 100 %𝑊

𝑗=1   (23) 
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𝐷(𝑖, 𝑗) = {
1, 𝐸1(𝑖, 𝑗) ≠ 𝐸2(𝑖, 𝑗)

0, 𝐸1(𝑖, 𝑗) = 𝐸2(𝑖, 𝑗)
  (24) 

 

where, 𝐸1  and 𝐸2  represent two ciphertext images derived 

from input images that are identical except for a single pixel 

variation. As demonstrated in Table 7, an arbitrary input image 

or channel is selected, and the value of a randomly chosen 

pixel is slightly altered. Remarkably, even a minor change—

such as increasing or decreasing the value of just one pixel in 

an input image—leads to significant alterations in a large 

proportion of pixels across all output images in the proposed 

method. The overall average values of the NPCR and UACI 

for the tested input images are 99.6002% and 33.4526%, 

respectively. These averages closely align with the expected 

NPCR and UACI values of 99.61% and 33.46% [59], thereby 

confirming the proposed MIE technique's ability to resist 

differential attacks. Furthermore, Table 8 compares the 

average NPCR and UACI values of the proposed method with 

other state-of-the-art MIE algorithms. This comparison 

demonstrates that the proposed method performs comparably 

to the leading algorithms in the literature in terms of resisting 

differential attacks. 

 

Table 7. NPCR and UACI values 

 
Group Image Channel NPCR (%) UACI (%) 

Group 1 

Lena 

R 99.6090 33.5530 

G 99.6185 33.5717 

B 99.5960 33.4648 

Peppers 

R 99.5895 33.5072 

G 99.6006 33.4976 

B 99.5831 33.5054 

Baboon 

R 99.6147 33.4679 

G 99.6025 33.4904 

B 99.6265 33.3661 

Splash 

R 99.5972 33.5185 

G 99.6147 33.4855 

B 99.6025 33.5051 

Group 2 

Female 

R 99.5804 33.4232 

G 99.6078 32.6229 

B 99.6094 33.2586 

Couple 

R 99.6139 33.5591 

G 99.6002 33.4241 

B 99.6063 33.6143 

House 

R 99.6338 33.4167 

G 99.6033 33.5439 

B 99.5773 33.4453 

Tree 

R 99.5651 33.3014 

G 99.5788 33.6294 

B 99.6032 33.4561 

Group 3 

Lena - 99.6002 33.5026 

Moon - 99.5667 33.5814 

Clock - 99.5956 33.4971 

Airplane - 99.6078 33.4639 

 

Table 8. NPCR and UACI (average) comparison 

 

MIE algorithm NPCR (%) UACI (%) 

Proposed method 

Ref. [4] 

Ref. [7] 

Ref. [8] 

Ref. [12] 

Ref. [13] 

Ref. [18] 

99.6002 

99.6052 

99.6085 

99.6143 

99.6142 

99.6060 

99.6289 

33.4526 

33.4572 

33.4634 

33.4681 

33.4656 

33.5126 

33.5006 

 

 

4.7 Data loss and noise attack analysis 

 

During the transmission of multiple images, it is possible 

that parts of the encrypted image might be cropped or the 

image could become contaminated with noise. In such 

scenarios, a robust MIE scheme should ensure that the 

decrypted images remain visually recognizable. For the 

images in Groups 2 and 3, decryption results are displayed in 

Figure 12, where it is assumed that 25% of the data is lost from 

different corners. The simulation results clearly demonstrate 

that the decrypted images are identifiable, despite the data loss. 

Additionally, to simulate potential noise attacks, salt and 

pepper noise (SPN) with densities of 0.1 and 0.3 is added to 

the encrypted images across all groups. As evidenced in Figure 

13, all decrypted images remain recognizable, though the 

amount of visual information diminishes with increasing noise 

density. Consequently, these results affirm that the proposed 

MIE algorithm is capable of effectively resisting both data loss 

and noise attacks.  

 

 
 

Figure 12. Data loss analysis. a), b) 25% data loss for images 

in group 2. c), d) 25% data loss for images in group 3 

109



 

 
 

Figure 13. Noise attack analysis. a), b) 0.1 and 0.3 SPN for 

images in group 1. c), d) 0.1 and 0.3 SPN for images in group 

2. e), f) 0.1 and 0.3 SPN for images in group 3 

 

4.8 Encryption and decryption time analysis 

 

Table 9. Encryption and decryption times (in seconds) 

 
Image Type 

Image Size 

Encryption 

Time 

Decryption 

Time 

4 color images 

512×512 
0.5618 0.4323 

4 color images 

256×256 
0.2615 0.1068 

4 grayscale images 

256×256 
0.1927 0.0615 

 

The suitability of an MIE algorithm for real-time 

applications can be gauged by assessing the time it takes for 

encryption and decryption. Table 9 presents the average 

encryption and decryption times recorded for the proposed 

method when applied to the tested images. Additionally, Table 

10 compares the encryption times of this work with those of 

various other MIE algorithms. It is important to note that 

encryption time is influenced not only by the algorithm itself 

but also by the hardware and software specifications, which 

are duly listed in the table for a comprehensive understanding. 

The proposed MIE algorithm demonstrates relatively rapid 

performance, capable of encrypting four color images of size 

512×512 in approximately 0.56 seconds. Hence, its speed 

makes it a potentially attractive option for real-time 

applications. 

 

4.9 Future work 

 

The MIE algorithm introduced in this study is designed to 

encrypt images of identical sizes. Furthermore, it requires that 

all images within a group be of the same type, either all 

grayscale or all color. Future research endeavors will focus on 

developing new algorithms capable of encrypting images of 

varying types and sizes within a single group, thereby 

enhancing versatility and applicability. 

 

Table 10. Encryption time (in seconds) comparison 

 

Algorithm Hardware Software 
Image Type 

Image Size 

Encryption 

Time 

This work 
2.80 GHz Intel Core i7 

16 GB RAM 
MATLAB 2020a 

4 color images 

512×512 
0.5618 

4 color images 

256×256 
0.2615 

4 grayscale images 

256×256 
0.1927 

Ref. [4] 
2.80 GHz Intel Core i7 

16 GB RAM 
MATLAB 2017b 

4 grayscale images 

256×256 
0.7551 

Ref. [8] 
2.60 GHz Intel Core i7 

16 GB RAM 
MATLAB 2016a 

4 grayscale images 

256×256 
0.540 

Ref. [13] 
M-5Y71@1.20 GHz CPU 

8 GB RAM 
MATLAB 2016a 

4 grayscale images 

512×512 
1.71 

Ref. [18] N/A MATLAB 2017 
3 grayscale images 

256×256 
0.9375 

Ref. [21] 
3.60 GHz Intel Xeon W-2133 CPU 

32 GB RAM 

Wolfram 

Mathematica 

8 color images 

512×512 
1.78 

 

 

5. CONCLUSION 

 

This study introduces a MIE algorithm, anchored in the 

newly developed chaotic SQPM and the innovative U-shaped 

scanning space-filling curve. The chaotic and complex 

behavior of SQPM is extensively validated through phase 

diagrams, Lyapunov exponents, bifurcation diagrams, and 

approximate entropy results, demonstrating its effectiveness 

over a broad range. U-shaped scanning is ingeniously applied 

for scrambling input images and scanning pixels during the 
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diffusion phase. The algorithm is adept at encrypting an 

arbitrary number of color or grayscale images. 

A notable enhancement in keyspace is achieved through the 

integration of SQPM, ensuring substantial resistance to brute-

force attacks. Moreover, the algorithm exhibits high 

sensitivity to secret keys, bolstering its security credentials. 

Rigorous histogram and correlation analyses further affirm the 

algorithm's capability to effectively counteract statistical 

attacks. Furthermore, resistance to differential attacks is 

evidenced by the proximity of average Number of Pixel 

Change Rate (NPCR) and UACI values to their theoretical 

counterparts. Analysis under conditions of data loss and noise 

addition during image transmission reveals that decrypted 

images remain easily recognizable, highlighting the 

algorithm's robustness in practical scenarios. Additionally, the 

speed of encryption and decryption positions this method as a 

viable candidate for real-time applications. 

Future research will focus on extending the algorithm's 

versatility to encompass encryption of images of diverse types 

and sizes within the same group, addressing the current 

limitation of requiring uniform image sizes and types. 
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