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1. INTRODUCTION 

Electrostatic precipitator (ESP) [1] is commonly used in 
removing charged particles by carrying them towards the 
plate for absorption under the action of a high-voltage 
electrostatic field. The key to dust removal performance 
improvement lies in removing 0.3-1.0 μm particles in a more 
efficient manner. However, when drifting towards the dust 
collector plate, particles of this size range can be greatly 
affected by the flow field near electrode plate which is ruled 
by the electro fluid formed during needle-plate discharge. 
Actual operation is frequently accompanied by problems such 
as dust re-entrainment and cathode line swell [2-4], which is 
closely linked to the flow field distribution in the vicinity of 
the electrode plate.  

The corona phenomenon in electrostatic precipitator results 
from self-maintained discharge [5-8] in a very uneven electric 
field that is formed between plates during the electric 
discharge around the upper needle end of cathode lines. Due 
to the formation and quick motion of massive charged ions 
under the action of the electric field force, their collision with 
particles in the air triggers an air jet and further disturbs 
nearby gases, and thus the corona wind forms with the 
occurrence of a corona [9]. According to many researchers, it 
is the corona wind generated by the corona in the electrostatic 
precipitator that mainly propels particles towards the plate 

side, which has a great impact on the dust removal 
performance. To overcome this problem, some studies have 
been undertaken on measurement of corona winds, but the 
findings differ greatly from each other. For example, Hinds 
indicated that the speed of corona winds exceeded 75 m/s in 
the corona region [10]. 

Current experimental systems applied to measuring corona 
wind velocity are complicated and costly, with tracer particles 
as the medium in most cases [11]. By gauging the speed of 
tracer particles moving in the air, the corona wind velocity 
can be calculated and falls within the range of 1-10 m/s [12-
15]. 

In terms of experimentation, Zeng Yuxuan et al. [16] 
studied the relationship between input power, electrode 
spacing and ionic wind velocity by using a two-dimensional 
laser particle imaging velocimetry technique. With the semi-
empirical formula, Ling and Lin [17] obtained the mean 
speed (1.162 m/s) of the ionic corona wind between a circular 
corona electrode and an earth plate. Gong Tao [18] employed 
a multi-pin-net structure to have stable electricity discharged. 
The product of steady-velocity corona winds resulted in an 
ionic wind of certain speed. Wang Wei [19] studied the 
characteristics of thrust of corona winds generated by using 
the same structure.  Yang Lanjun et al. [20] applied PIV to 
the measurement of ionic winds of needle-plate electrodes, 
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whose results resembled the measurement data obtained 
through laser Doppler vibrometry. 

In terms of numerical simulation, Li Qing et al. [21] used 
the numerical simulation method to analyze the features of 
corona wind during wire-plate discharge, and verified their 
findings in an experiment. Dong Sik Cho [22] conducted 
numerical analysis on the influence of charged ions in the 
dielectric fluid on liquid flow, and proposed a mechanism for 
the movement of a bidirectional electric water pump. Quentin 
Lancereau [23] revealed the connection between the electric 
field and the flow field by putting forward a model of the 
electrofluid dynamic field generated in an on-line/cylindrical 
axisymmetric electrostatic precipitator under laminar flow. As 
described in the above literature, the mathematical model is 
generally simplified in various degrees by researchers on 
electrohydrodynamics. The single-ion method is the most 
frequently used simplification approach, but it involves a 
rather complex corona process and produces various types of 
ions. Since the single ion model ignores the corona process, 
the method does not apply to corona wind calculation. 

In this paper, a numerical simulation was conducted on the 
generation of corona winds on the foundation of a total-ion 
discharge model, with the establishment of a COMSOL-based 
numerical model of electro hydrodynamics. On this basis, 
constant-coefficient partial differential equations were used to 
describe the internal relationship between spatial charges, 
electric field and flow field during the formation of corona 
winds. 

2.  BOUNDARY CONDITIONS AND MATHEMATICA-

L  MODEL 

 
 

Figure 1. Schematic diagram of anode and cathode 
discharge in ESP 

 
In this paper, the geometrical structure of ESP is simplified 

as a two-dimensional needle-plate, and the solution area is 
reduced to a two-dimensional axisymmetric needle-plate 
structure with the center line of the corona pole as the axis. 
The increased distance between electrodes raises demands for 
large-value onset coronas. For the experiment’s sake, we let 
the grounded plate electrode be a positive plate with a radius 
of 10 mm, whose spacing from the corona electrode was 
designated as 10.5 mm. Solutions were found in the finite 
element [24,25]based COMSOL Multiphysics software. The 
initial flow velocity was 0, and the coronas generated from 
the corona electrode were -9 kV and-16 kV, as shown in 
Figure 1. 

The products of corona discharge included electrons, 
negative ions, positive ions [26], and neutral ions. For this 
complex physical process, most researchers sacrifice the 
accuracy of calculation for the reduction in computational 
load by using the single-ion method. In this paper, the total-
ion mathematical model was employed to describe corona 
wind [20]. 

The flow control equation: 
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where:  is the air viscosity coefficient, f is the body force 
exerted on the flow. 

Poisson equation of electrostatic field [27]: 
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where: E is the space vector of the electric field, V is the 
potential of a spatial position (x, y, z), ρ is the bulk density of 
charge volume at the spatial position (x, y, z), ε0 is the 
vacuum dielectric constant, and ne ,np and nn represent the ion 
concentrations of electrons, positive ions and negative ions, 
respectively. 

Ion diffusion equation: 
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in which De, Dp and Dn denote the diffusion coefficients of 

electrons, positive ions and negative ions, respectively; i is 
the mobility speed of each ion; α represents the impact-
ionization coefficient; η is the adhesion coefficient; ve is the 
electron drift velocity; v is the flow velocity; f is the vector of 
electric body force and ρair  is the air density. 

3. RESULTS AND DISCUSSION 

3.1 Electric field distribution 

Figure 2 shows the electric field strength of sample points 
on the edge of the corona pole during the discharge process at 
different voltages and radiuses of curvature. According to the 
calculation results, points approaching the tip of the corona 
pole had higher electric field strengths because of the 
electrodes geometric effect. Around the pole tip with a small 
radius of curvature, there was significant spatial change of 
potential distribution, which contributed to a larger bulging 
part of the spatial field strength of cathode lines. Accordingly, 
the electric field inhomogeneity was remarkable such that it 
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resulted in the occurrence of “tip discharge” or corona. As 
can be seen from the results, the field strength became larger 
at positions closer to the discharge tip. When the curvature 
radii of the corona electrodes were the same, the higher the 
corona voltage, the higher the field strength; and when the 
corona voltages were equal, the smaller the curvature radii of 
the corona electrode, the higher the field strength. High field 
strength was the predominant factor affecting corona 
generation. The relationships between the radius of curvature 
of corona tip and the electric field strength coordinated with 
the conditions in which the electric corona can occur. 
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Figure 2. The electric field strength at the edge of the 
corona pole 

 

3.2 Corona wind velocity field distribution 

 

At the curvature radius of 1 mm, Corona voltage -9 kV 

 
At the curvature radius of 1 mm, Corona voltage -16 kV 

 
At the curvature radius of 0.477 mm, Corona voltage -9 kV 

 
At the curvature radius of 0.477 mm, Corona voltage -16 kV 

 
At the curvature radius of 0.25 mm, Corona voltage -9 kV 

 
At the curvature radius of 0.25 mm, Corona voltage -16 kV 

 

Figure 3. Cloud map of corona wind velocity 
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Figure 3 shows the distributions of corona wind velocity at 
a range of curvature radiuses and discharge voltages. The 
velocity field in the needle plate facing area presents an N 
shape with higher values in the middle part. The development 
trends of corona winds at different radii of curvature were 
similar to each other. By referring to Figure 4, it can be seen 
that the smaller the absolute value of the voltage, the less the 
curvature radius responds to corona wind velocity; and the 
smaller the curvature radius of the needle end, the faster the 
corona wind becomes. The reason for this phenomenon is that 
a small curvature radius contributes to the generation of an 
uneven electric field of high strength much more easily, thus 
the body force gained by the electro fluid is greater. As a 
result, the initial force obtained by charged ions generated 
from corona maximized itself such that the acceleration was 
relatively large, which further increased the speed of the 
corona wind. From the velocity vector in the figure, we can 
see that the corona wind started from the corona pole tip, and 
moved toward the positive plate until encountering the 
blocking force against the positive plate. It then decelerated 
and spread out along the plate surface, leading to nearby gas 
flow. The trajectory of corona wind became curve-like, 
which, together with the gas flow, impedes dusts from 
gathering on the plate, thus reducing the dust removal 
efficiency. 

 

3.3 Response of corona wind speed to voltage 

 

 

Figure 4. Coordinate system of corona wind velocity field 
 
To better analyze the variation of the velocity field near the 

tip of the corona wind, the coordinate system in Figure 4 was 
constructed with the direction along the anode plate taken as 
the X-axis, the direction along the center line of the corona 
pole as the Y-axis, and the point on the anode plate directly 
opposed to the center line of the corona pole as the 
coordinate origin. 

Figure 5 shows Y-direction corona wind velocities at 
different voltages (when X=0, it refers to the central axis of 
the solution domain). The results show that under the same 
calculation conditions, areas along the Y direction are mainly 
divided into the acceleration region, stable region and 
attenuation region. The farther the wind was from the corona 
pole, the smaller the velocity. Corona wind formed at the tip 
of the corona pole. Within a short distance, the velocity 
increased from 0 to the maximum value, stabilized for a 
period, and then decreased rapidly. In addition, at different 
voltages, the larger the absolute value of corona discharge, 
the faster the corona wind; and the shorter the distance left for 
acceleration, the larger the axial scope of the steady-speed 
area. If the potential difference between plates is large, 

corona wind velocity will increase to the peak value for an 
instant. This law applies at various curvature radii of needle. 
By combining equation (2) and (7), it can be seen that the 
higher the potential difference, the larger the electric flow 
strength, which intensifies the electric field force and the 
value of the body force in equation (1). Therefore, the 
potential gradient distribution is the key to controlling the 
velocity field distribution in the corona area. As shown in 
Figure 2, the electric field strength was large near the tip of 
the corona, which decreased rapidly along the axial direction. 
Upon the occurrence of corona, charged ions were subject to 
a strong electric field force (the acceleration field force) such 
that the corona wind velocity jumped upward from 0. Then, 
these ions entered an area where the electric field strength 
was poor. Accordingly, the electric field force exerted on 
them was weakened. Meanwhile, the corona wind speed rose 
to the maximum value and then stabilized. When approaching 
the earth plate, the corona wind decelerated under the 
blocking force of the baffle plate. 
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Figure 5. Y-direction corona wind velocity at different 
voltages 
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Figure 6 shows the change of corona wind velocity in the X 
direction (when Y = 10.5 mm, it refers to the horizontal 
position of the discharge tip in the solution domain). It can be 
seen that the higher the absolute value of the discharge 
voltage, the larger the corona wind velocity in the horizontal 
direction, and the easier it is for the wind to attenuate. In 
addition, the corona wind speed was 0 at the tip of the corona 
pole, rising quickly to the peak value and then plummeting in 
the horizontal direction. This phenomenon was commonly 
seen at different voltages, and the reason is: the flow of 
corona wind occured in the corona area, whose changes in 
velocity triggered the velocity change in other positions; the 
larger the absolute value of the voltage, the larger the field 
strength, and the greater the electric field force exerted on the 
electric fluid, which in turn rendered the horizontal diffusion 
distance of charged particles small. As can be seen from 
Figure 2, the greater the absolute value of the voltage, the 
smaller the horizontal width of the high-wind-speed area. 
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Figure 6. Corona wind velocity in X direction at different 

voltages 

 

3.4 Influence of curvature radius on corona wind velocity 

Figure 7 shows Y-direction corona wind velocities at 
different radii of curvature. As can be seen, the farther the 
corona wind is from the corona pole in the X direction, the 
faster the wind speed attenuates whatever the curvature 
radius. The fact that the smaller curvature radius corresponds 
to quicker attenuation, indicates that apart from discharge 
voltage, the radius of curvature also played a contributory 
factor to the width of the high-speed corona wind area. At 
various radii of curvature, velocities approach 0, both at the 
tip of the corona pile and near anode plates, albeit the 
difference of regional velocity between electrodes. This 
phenomenon shows that curvature radius only affects the 
speed of corona wind and the boundary of high-speed corona 
wind area, but is powerless with respect to other trends of 
change. In addition, when the X value was 3 mm and 4 mm, 
the stable region was shorter. This phenomenon is also 
reflected in Figure 5. It can be inferred from the cloud map of 
corona velocity in Figure 3 that the phenomenon resulted 
from the limiting of the corona area. In negative corona 
discharge, negative ions and electrons were generated at the 
tip of the discharge electrode. Because the tip had a relatively 
high field strength, the electric field force of these charged 
ions was greater and thereby the accelerating time was 
shorter. Meanwhile, these charged ions were moving 
vertically to the anode plate when they left the tip of the 
discharge electrode. Under the action of a strong electric field 
force, it was difficult for these ions to spread in the horizontal 
direction. Therefore, the high-speed corona wind area had 
arc-shaped boundaries and mainly lay inside the corona area. 
When the X value was 3 mm or 4 mm, the vertical sampling 
line passed through only a small portion of the high-speed 
area, leading to a shorter stable region at the location. 
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Figure 7. Y-direction corona wind velocity at different radii 

of curvature 
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Figure 8 shows the X-direction corona wind velocities at 
different radii of curvature. It was found that the smaller the 
radius of curvature, the larger the corona wind velocity in the 
area where the corona is facing the earth plate, and the faster 
the horizontal speed attenuation, which was reduced to a 
similar value in the end. In addition, when the curvature 
radius changed, the horizontal width of the high-wind-speed 
area also varied. By referring to the speed field in Figure 2, 
we summarized that the smaller the curvature radius, the 
narrower the fast-wind-speed area was horizontally. The two-
dimensional asymmetrical solution domain used for 
calculation herein corresponds to the “spindle-like” high-
speed corona wind area at the three-dimensional level. This 
area allowed negatively-charged particles to quickly leave the 
corona pole, increasing the probability of positively-charged 
particles to be neutralized. The neutral particles formed 
drifted towards the plate under the action of the corona wind, 
during which they could combine with electrons and be 
absorbed on the dust collector plate resultantly. Therefore, a 
rational design of corona pole layout can improve the near-
corona dust environment by avoiding the clustering of 
massive dusts in the vicinity of the corona pole. 
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Figure 8. X-direction corona wind velocities at different 
radii of curvature 

3. CONCLUSION 

The research in this paper provides theoretical basis for the 
optimization of the flow field near the corona pole of ESP. 
The respective corona winds generated at a pair of voltages 
and three radiuses of curvature were simulated numerically. 
The main conclusions are: 

1) The corona wind mainly forms in the corona area, and 
the change of the flow field in other locations is caused by the 
corona wind; 

2) Under several corona voltages, all velocities of the 
corona wind within the corona area are accelerated first and 
then become stable, followed by reductions. At a fixed spatial 
position, the higher the absolute voltage value, the higher the 
corona wind velocity. 

3) The change of curvature radius of the corona pole within 
the corona area contributes little to the stabilized area formed 
after the attenuation of corona wind. The smaller curvature 
radius results in a rise in the velocity of the corona wind and 
the axial width of the high-speed region, as well as the 
shrinkage of its overall horizontal width. 
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