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The swift and accurate detection of the Monkeypox virus (MPV) is integral to effective 

patient management and disease control. Current artificial intelligence (AI) methodologies 

in computer-aided diagnosis (CAD) have shown limitations in their predictive performance 

for MPV. Addressing this, we have developed a novel deep learning (DL) network, named 

MonkeypoxNet, that excels in the detection of MPV from skin images. Initially, a dataset 

comprising skin images, differentiated into normal and MPV-specific classes, was 

assembled. Image pre-processing was then conducted employing contrast-limited adaptive 

histogram equalization (CLAHE), which enhanced the colour and texture attributes of the 

images. Subsequently, a novel integration of genetic algorithm with particle swarm 

optimization (GA-PSO) was devised to extract and select the most relevant features from 

the pre-processed dataset. These features were then utilized to train our custom deep 

convolutional neural network (CDCNN) model. The CDCNN model was subsequently used 

for prediction, distinguishing between MPV and normal disease classes by comparing test 

features with the trained model. Remarkably, the proposed MonkeypoxNet demonstrated an 

accuracy of 99.06%, sensitivity of 98.66%, specificity of 99.11%, and an F-measure of 

99.67%. Comparative analysis with existing methodologies confirmed that our proposed 

approach outperforms in all evaluated metrics. The successful implementation of 

MonkeypoxNet, underscored by its exceptional accuracy and efficiency, holds the potential 

to revolutionize early detection and diagnosis of monkeypox virus infections. This could 

ultimately lead to improved patient outcomes and facilitate timely interventions. 
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1. INTRODUCTION

Monkeypox virus (MPV) is an orthopoxvirus that results in 

a highly contagious disease known as monkeypox. The virus 

was first identified in 1959 in a monkey at a research center in 

Denmark [1]. The first confirmed case of human infection 

surfaced in 1970 in the Republic of Congo, where a young 

child presented symptoms akin to smallpox [2]. The disease, 

transmissible to humans through close contact with infected 

individuals or virus-contaminated items [3], was initially 

confined to Africa. However, it has now extended to over fifty 

countries, with 3,413 confirmed cases and one reported fatality 

[4]. Two distinct subtypes of MPV are currently recognized: 

the West African clade and the Central African clade. 

Unfortunately, no effective treatment for MPV is currently 

available, and vaccine development remains the most 

promising preventive strategy. 

Diagnosis of monkeypox primarily relies on the polymerase 

chain reaction (PCR) technique and electron microscopy-

based skin lesion tests [5]. PCR, also employed for COVID-

19 diagnosis, is considered the most reliable method for virus 

detection. Furthermore, artificial intelligence (AI) techniques 

[6] involving image processing and analysis could augment

virus detection efforts. Numerous AI methodologies,

including machine learning (ML) [7] and deep learning (DL)

models [8], have been proposed for a myriad of applications.

An ensemble approach, which merges features from different

base models, marries the strengths of ML and DL. The
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application of this strategy involves resampling the training 

data [9], using multiple prediction algorithms, and adjusting 

predictive strategy parameters. To overcome the constraints 

associated with these techniques and leverage their potential, 

DL algorithms are employed in this research. 

The success of any proposed strategy for MPV lesion 

detection hinges on accurately determining the values assigned 

to the model's parameters [10]. Feature selection commonly 

involves mathematical modelling and optimization via an 

optimization method [11]. Optimization seeks the most 

effective solution to a problem from a range of possibilities 

[12]. The usage of metaheuristic algorithms for problem-

solving in the context of DL algorithms has recently surged. 

Consequently, this study integrates optimization methods to 

address feature selection problems. 

The novel contributions of this work are as follows: 

⚫ Development of MonkeypoxNet, which incorporates 

pre-processing, optimal feature extraction, selection, 

and classification stages. 

⚫ Application of dataset pre-processing to normalize 

skin lesions to uniform sizes, and inclusion of the 

CLAHE method to enhance image illuminations. 

⚫ Utilization of the GA-PSO method to solve feature 

extraction and selection-based optimization problems. 

⚫ Creation of a CDCNN model for training and testing 

a dataset, enabling prediction of normal and MPV 

classes from a test skin lesion image. 

⚫ Demonstration that the proposed method leads to 

superior prediction performance, potentially saving 

time and resources in hospital settings. 

The rest of the paper is organized as follows: Section 2 

presents a literature survey of existing methods. Section 3 

delves into the detailed design and implementation analysis of 

the proposed MonkeypoxNet. Section 4 provides a 

comprehensive analysis of results, accompanied by 

comparative statements. Finally, Section 5 concludes the 

article and highlights potential future directions. 

 

 

2. LITERATURE SURVEY 

 

Recently, the use of machine learning (ML), deep learning 

(DL), and transfer learning (TL) has seen a significant rise in 

medical image processing. Both concepts were introduced in 

[13], including a DL model interpreted locally. The ability to 

predict illnesses using DL has shown great promise, offering 

affordable and accessible early diagnostic capabilities. It is for 

this reason that the authors decided to conduct two studies 

where six different DL models were modified and evaluated 

using TL techniques. These models were VGG16 [14], 

Inception ResNetV2, ResNet50, ResNet101, MobileNetV2, 

and VGG19. The construction of these models drew upon TL 

methodologies. Initial findings indicate that the latest versions 

of Inception ResNet V2 and Mobile Net V2 [15] models, 

which are recommended, performed the best, with an accuracy 

range of 93 to 99 percent. 

An approach for identifying the MPV based on pre-trained 

DL methods was adopted in the study [16]. This involved fine-

tuning DL models by adding universal custom layers to each 

model. Once the best-performing DL models were identified, 

they were combined into an ensemble to improve overall 

performance using majority voting [17] on the probabilistic 

outputs produced by these models. This was done to enhance 

operational efficiency. Evaluations were conducted using a 

publicly available dataset, allowing the proposed ensemble 

method to achieve average precision, recall, F1-score, and 

accuracy of 85.44%, 85.47%, and 85.40%, respectively. 

The authors [18] crafted a technique for identifying 

monkeypox skin lesions using DL models as the foundational 

procedure. Most images were sourced from publicly available 

avenues, such as websites, news aggregators, and case reports. 

Data augmentation was performed, and a threefold cross-

validation experiment was planned to increase the population 

size. In addition, an ensemble model combining the results of 

all three models was produced. The accuracy of the ensemble 

system was calculated to be 79.26 (1.05%), while AlexNet's 

[19] was 81.48 (6.87%), and ResNet 50's was 82.96 (4.57%). 

Out of all, ResNet50 achieved the highest total accuracy of 

82.96% (4.57%). A prototype of a web application used online 

is being developed as an additional screening tool for 

monkeypox. Although the preliminary results based on this 

small dataset have indicated some grounds for optimism, a 

much larger and more demographically diverse dataset is 

necessary to further improve the generalizability of these 

models. 

The authors [20] proposed using DL to solve this problem. 

They built an Android mobile application to implement their 

proposed method. The developers relied on Android Studio, 

the Java programming language, and the latest Android 

Software Development Kit [21] to create the application. The 

network then analyzes each image and determines whether it 

should be classified as positive or negative based on whether 

it includes monkeypox. The network's training involves 

images of skin lesions of people affected by monkeypox and 

other images of skin lesions. A deep TL approach [22] was 

paired with a publicly available dataset to achieve this aim. 

MATLAB is used throughout the training and testing, and a 

wide range of pre-trained networks are applied. The network 

that had previously been determined to have the best accuracy 

level was recreated and trained with the help of TensorFlow. 

The TensorFlow model was renamed TensorFlow Lite for use 

on mobile devices [23]. No problems were encountered when 

using the application on any of the devices. Timing 

information for the inferences was collected during the 

application's execution. Inference times were found to be 91 

milliseconds, 138 milliseconds, and 197 milliseconds, 

respectively. Due to the developed technology, people with 

lesions on their bodies can perform a preliminary diagnostic 

check on themselves much more easily [24]. Therefore, 

patients with monkeypox are strongly advised to consult a 

specialist as soon as possible for a definitive diagnosis. 

According to the testing results, the system can accurately 

classify the images 91.11% of the time. Additionally, the 

proposed mobile application can be used for the preliminary 

diagnosis of several other skin diseases. 

The authors [25] combined the deep TL-based approaches 

with a convolutional block attention module (CBAM) to create 

an image-based categorization of the human MPV. They were 

able to focus on the relevant parts of the feature maps and carry 

out their research. An architecture composed of Xception-

CBAM-dense layers achieved a validation accuracy of 

83.89%. In the study [26], they proposed a monkeypox skin 

lesion detection technique using MobileNetV2 and VGGNet 

models. The symptoms of monkeypox in the human body 

resemble those of measles and chickenpox, which can make 

the early diagnosis of monkeypox difficult. Measles and 

chickenpox are also contagious diseases. Until the current 

pandemic, this virus caused a disease that was not very 
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frequent. As a result, many in the medical sector lack 

understanding about the virus. It is anticipated that computer-

aided diagnosis (CAD) methods [27] will prove useful in 

situations where polymerase chain reaction (PCR) assays, 

which are necessary for the condition's diagnosis, are not 

available. When sufficient images were available, DL methods 

have been successfully used in recent years to diagnose 

various diseases, including COVID-19. This was only possible 

due to the availability of these images. Throughout this study, 

categorization was performed with the help of the Monkeypox 

Skin Image Dataset (MSID), made publicly available in 2022. 

This was done with the support of the pre-trained CNN 

networks MobileNetV2 [28], GoogleNet [29], and ResNet101 

[30]. Comparisons were made between the accuracy metrics 

of these three methods. The MobileNetV2 system achieved the 

best performance results, attaining an accuracy rate of 91.38%, 

a precision rate of 90.5%, a recall rate of 86.75%, and an F1 

score of 88.25%. The GoogleNet method achieved an 

accuracy of 83.62%, while the ResNet101 method achieved an 

accuracy of 78.45%. 

2.1 Problem statement and novelty 

The studies in the literature tackle the challenge of early 

detection and diagnosis of the Monkeypox Virus (MPV) from 

skin lesions by harnessing the power of Deep Learning (DL), 

Transfer Learning (TL), and other AI-based methodologies in 

the realm of medical image processing. The overarching aim 

is to establish more accessible and cost-effective diagnostic 

capabilities for healthcare practitioners and individuals, 

especially in areas where specific diagnostic assays may not 

be readily available. The research endeavors to augment the 

accuracy and efficiency of MPV detection, thereby 

contributing to improved patient outcomes and early 

intervention strategies. However, for future research and 

development in this field, the necessity for larger and more 

diverse datasets is emphasized to further boost the reliability 

and generalizability of these models. The novelty of this work 

resides in the unique combination of methodologies, namely, 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

for preprocessing, Genetic Algorithm-Particle Swarm 

Optimization (GA-PSO) for feature extraction, and 

Convolutional Deep Belief Neural Network (CDBNN) for 

classification. This blend of techniques does not feature in the 

current literature for MPV classification, signifying an 

innovative approach to this critical healthcare challenge. 

3. PROPOSED METHODOLOGY

Accuracy is one of the biggest problems when using 

machine learning models in clinical trials. There is a gap in the 

market for using machine learning models in clinical trials that 

must be filled. We had a group of doctors review our 

algorithm's results to ensure accuracy. So, AI-based solutions 

must be heavily focused due to their potential for helping with 

early MPV diagnosis and contamination control. So, these AI-

based solutions can respond faster to public health crisis 

problems than traditional methods. Figure 1 shows the block 

diagram of the proposed MonkeypoxNet. Initially, the MSID 

is considered normal and MPV class-specific skin images. 

Then, the image pre-processing operation is carried out using 

CLAHE, which enhances the images' colour and texture 

properties. As a result, the CLAHE is used to boost low-

lighting regions to higher-lighting levels. The image 

processing operation also performs image normalization, 

uniform sizing of all images, and image-to-vector conversions. 

The images contain more features in terms of colour, texture, 

shape, boundaries, edges, contrast, hue, and sharpness levels. 

So, extracting and selecting features must be done perfectly to 

provide the best outcome. However, conventional image 

processing methods failed to provide the best features. So, this 

work implemented the bio-inspired algorithm named GA-PSO. 

It is developed to extract the features from a pre-processed 

dataset, which also selects the best features. The CDL learning 

method allows you to customize model properties such as the 

number of layers, kernels, kernel sizes, and stride sizes. So, the 

CDCNN model is trained with the GA-PSO features. Then, the 

prediction of MPV and normal disease classes is carried out 

using CDCNN model testing by comparing test features with 

an already trained model. 

Figure 1. Proposed block diagram of MonkeypoxNet 

3.1 Dataset 

(a) normal

(b) chickenpox

(c) measles

(d) monkeypox

Figure 2. Sample images from the dataset 

The current investigation uses two datasets that are open to 

the public. The first piece of information is known as the 

MSID, which comprises 770 individual images. This 
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collection of data is divided into the following categories: (1) 

normal; (2) chickenpox; (3) measles; and (4) monkeypox. The 

compilation of all the images was carried out with the 

assistance of several internet-based resources. The 

Department of Computer Science and Engineering at the 

Islamic University in Kushtia-7003, Bangladesh, produced the 

whole dataset. The second information collection is the 

Monkeypox Images Dataset, which contains 659 images. The 

first group is considered normal (264 images). Figure 2 shows 

a sample image from the dataset with four classes.  

Figure 2(a) shows the sample images of the normal class, 

Figure 2(b) shows the sample images of the chickenpox class, 

Figure 2(c) shows the sample images of the measles class, and 

Figure 2(d) shows the sample images of the monkeypox class. 

3.2 Preprocessing 

The image pre-processing step is essential for model 

building. So, this work adopted CLAHE-based pre-processing 

with image normalization, image-to-vector conversions, and 

resizing of images. CLAHE is a sophisticated image 

processing method that modifies an image's overall contrast by 

modifying the image histogram's pixel intensity distribution. 

The CLAHE is an acronym for contrast-level adjustment using 

histogram equalization. By doing so, sections of the output 

image with low contrast will be able to attain a greater contrast 

level. In its most basic form, CLAHE operation involves the 

following steps: calculating a histogram of the intensities of 

the image pixels. Distributing and spreading out in an even 

manner the pixel values that occur the most often (i.e., the ones 

with the largest counts in the histogram). Providing the 

cumulative distribution function with a linear trend So, 

CLAHE produces an image with a greater global contrast, 

which is the result of performing the technique. 

3.3 Feature extraction 

The GA-PSO is responsible for extracting and selecting the 

features, a naturally inspired optimization model. Figure 3 

shows the block diagram of GA-PSO for feature extraction and 

selection. Selecting which features will be utilized to optimize 

performance is the most critical component of the feature 

engineering process. This is because feature selection defines 

which features will be employed. In the feature selection job, 

1 or 0 is assigned to each feature in the n-feature set to indicate 

whether that feature is included in the final solution. This is 

done to signal whether the feature is selected to be included in 

the final solution. Meta-heuristic algorithms often begin with 

a random population of vectors containing random features, 

and they then carry out a series of exploration and exploitation 

operations to locate the most useful collection of 

characteristics. Because of this, the algorithms can identify the 

most useful set of characteristics. These bio-inspired methods 

of feature engineering are very important to the techniques of 

DL. These techniques entail selecting the necessary

characteristics for the DL channels that will be used. An

optimal feature extraction technique aims to transform the raw

data to produce new variables to improve the effectiveness of

the machine-learning algorithm. This is accomplished by

modifying the data. The performance of the algorithm is

something that needs to be improved to achieve this objective.

In contrast, feature selection aims to extract and identify the

features from the dataset that are most useful for the

classification tasks based on criteria such as the features'

uniqueness, consistency, and meaningfulness. In other words, 

feature selection aims to identify the features that will be most 

useful in classification tasks. 

The feature selection aims to identify the characteristics 

most advantageous for the categorization tasks. Binary values, 

either 0 or 1, restrict the search space before the feature 

selection operation can be carried out. As a direct result of this, 

the continuous values-based meta-heuristic optimizers will 

need an update for them to be able to function with the binary 

outputs that correspond to the features that are selected. The 

dynamic process of feed-forward and feedback in a living 

system is meant to be described by the phrase "leadership 

learning strategy," a management concept. This is what the 

word "leadership learning strategy" is trying to express. The 

term "leadership learning strategy" comes from management. 

This kind of information transfer is known as "feed-forward 

learning," where the learning experiences of individuals 

influence the decisions made by leaders.  

Figure 3. Flowchart of GA-PSO feature extraction and 

selection 

In addition, good leaders can spot important details 

regarding the development of the group in a short amount of 

time and have a long-lasting influence on both the activities of 

the group and the people who are a part of it as a direct result 

of the decisions they make, which is referred to as "feedback 

learning flow." The model of the leadership learning approach 

identifies the extent of the system's development by using 

feed-forward and feedback learning flows among people, 

groups, and leaders. The leadership learning strategy gave the 

GA-PSO an effective exploration capability and an 

appropriate amount of time consumption. The top three most 

promising ideas (leaders) from each iteration were analyzed 

and evaluated to get insight into accomplishing this objective. 

While carrying out the search procedure, the population is 

divided into four tiers: The levels are seen as leaders. At the 

same time, the other particles are regarded as individuals, and 

the population is thought of as a group. In addition, it is 

generally accepted that the leadership development technique 

involves the particles and leaders learning from one another, 

as seen in Eqs. (1)-(3). 
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𝑋1
⃗⃗⃗⃗ = 𝑋∝

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ × 𝐷∝

⃗⃗⃗⃗  ⃗  (1) 

  

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗ × 𝐷𝛽

⃗⃗ ⃗⃗    (2) 

 

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗ × 𝐷𝛿

⃗⃗ ⃗⃗    (3) 

 

Here, 𝐴1
⃗⃗⃗⃗ , 𝐴2

⃗⃗ ⃗⃗ , and 𝐴3
⃗⃗ ⃗⃗  are random integers ranging from 0 to 

2; 𝐷∝
⃗⃗⃗⃗  ⃗, 𝐷𝛿

⃗⃗ ⃗⃗  , 𝐷𝛽
⃗⃗ ⃗⃗  , and represent the distance between particles and 

leaders. The convergence factor (𝑋∝
⃗⃗ ⃗⃗  , 𝑋𝛿

⃗⃗ ⃗⃗  , 𝑋𝛽
⃗⃗ ⃗⃗  ) determines the 

search area for the particles, and it can be calculated. Finally, 

the optimal features are selected by analyzing the distance 

between various features with mutual analysis. Here, the 

𝑋1
⃗⃗⃗⃗ , 𝑋2

⃗⃗⃗⃗ , and 𝑋3
⃗⃗⃗⃗  represent the optimal features generated by the 

GA-PSO mechanism. 

 

3.4 Classification model 

 

Approaches based on CDL make it possible to 

automatically learn the complicated information necessary for 

visual pattern identification. CDCNN is used for various 

computer vision applications, including recognition of facial 

expressions, recognition of text, recognition of faces, 

classification of gender and age, and identification of activity. 

Recently, CDL has shown outstanding performance in 

biological applications such as pattern recognition and 

computer vision. Figure 4 shows the layer-wise architecture 

diagram of CDCNN.  

The structure of CDCNNs is created by combining pooling, 

convolutional, and fully connected layers in various 

permutations. The data input into the system is subjected to 

various filtering procedures while stored in the convolution 

layer. Eqs. (4)-(5) depicts the convolutional procedure that is 

being done. 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗)  (4) 

 

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝑛𝑚 𝐾(𝑚, 𝑛)  (5) 

 

In the equation, "𝐼" denotes a two-dimensional image used 

as the input, "𝐾" denotes a two-dimensional kernel, and "𝑆" is 

the two-dimensional output obtained via the convolution 

process. The filter's sizes are (𝑚, 𝑛), and the matrix's indices 

are ( 𝑖, 𝑗 ), respectively. A non-linear activation layer often 

comes after the convolutional layers in a neural network. The 

rectified linear unit (ReLU) activation function was used in 

this investigation. The input's width and height are decreased 

because of the pooling layer. Overfitting is avoided in 

CDCNNs because of a feature known as the dropout layer. The 

completely linked layer comes just before the categorization 

layer in constructing the tree. It establishes connections with 

each of the nodes with the previous layer. The testing phase, 

which comes after creating the CDCNN model, is figuring out 

the filter numbers, the value of the strides, and the dimensions. 

The feed-forward approach is then used to train the network 

after it is constructed. The term “CDL” refers to the process 

by which data is collected at the first layer and then sent on to 

the next levels. The error value is computed on the very last 

layer of the model. In this computation, both the result 

generated by the network and the outcome intended to be 

achieved are utilized. This study used the cross-entropy loss 

function described in Eq. (6). 

 

𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑇𝑛𝑖𝑙𝑛𝐼𝑛𝑖

𝐾
𝑖=1

𝑁
𝑛=1   (6) 

 

The number of observations and classes are represented by 

N and K. Here, I denote the input, while the destination is 

denoted by 𝑇. 

 

3.4.1 Hyperparameter tuning of CDCNN 

Hyperparameter tuning is crucial in training deep learning 

models like CDCNN to achieve better performance and 

improve generalization on the given dataset. Hyperparameters 

are parameters set before the training process and control 

various aspects of the training process, such as learning rate, 

batch size, number of layers, etc. The detailed analysis of 

hyperparameter tuning for CDCNN: 

Learning rate (LR): The learning rate is one of the most 

important hyperparameters as it determines the step size in 

updating the model's weights during gradient descent. A high 

learning rate may cause overshooting, leading to unstable 

training, while a very low learning rate may lead to slow 

convergence. Hyperparameter tuning involves experimenting 

with different learning rate values, such as 0.001, 0.01, 0.1, 

etc., and selecting the one that leads to faster convergence and 

better accuracy. This work finished LR as 0.01. 

 

 
 

Figure 4. Proposed CDCNN architecture 
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Batch size: Batch size determines the number of samples 

propagated through the network before updating the model's 

weights. Smaller batch sizes may lead to noisy updates and 

slower convergence, while larger batch sizes may require more 

memory and lead to slower training. Finding an optimal batch 

size requires experimenting with different values, like 32, 64, 

or 128, to balance convergence speed and memory 

consumption. This work finished a batch size of 64, where the 

optimal condition is achieved. 

Regularization techniques: Regularization techniques like 

Dropout and L2 regularization can help prevent overfitting by 

introducing penalties for large weights or randomly dropping 

out units during training. Tuning the regularization strength 

and deciding which layers to apply regularization to is 

essential for achieving a well-generalized model. Finally, this 

work considered the L2 regularization, reducing error rates. 

Optimizer: The choice of optimizer affects how the model 

updates its weights during training. Common optimizers 

include Adam, RMSprop, and SGD (Stochastic Gradient 

Descent). Hyperparameter tuning involves experimenting with 

different optimizers and their associated learning rate 

schedules to find the one that leads to faster convergence and 

better accuracy. Finally, this work considered Adam 

optimization, which increases the accuracy. 

Dropout rate: The dropout rate determines the probability 

of dropping out of a unit during training. Higher dropout rates 

may reduce overfitting but may also hinder the learning 

process. Tuning involves finding an appropriate dropout rate 

that balances overfitting and underfitting. Finally, this work 

considered the dropout rate of 0.1, reducing error rates. 

4. RESULTS AND DISCUSSION

This section provides a detailed simulation analysis of the 

proposed MonekypoxNet method. Here, the performance of 

the proposed method is compared with that of existing 

methods using the same datasets. Further, several performance 

measures exist, such as accuracy, sensitivity, specificity, F-

measure, precision, MCC, dice, and the Jaccard index. Here, 

the proposed and existing methods' performance is measured 

using these metrics through the MSID dataset. 

4.1 Subjective performance 

This section provides a thorough subjective examination of 

the proposed MonkeypoxNet. Here, the sample images shown 

in Figure 2 are the test images. Then, the CDCNN model 

contains the SoftMax classifier, which calculates the estimated 

probability value (EPV) for each test skin image. Figure 5 

shows the prediction performance of MonkeypoxNet. Here, 

the first, third, and fifth rows contain the random test images, 

and the second, fourth, and sixth rows contain the estimated 

EPV levels for the respective images.  

Here, the output class is finalized based on the position 

where the maximum EPV is presented. For example, consider 

that W, X, Y, and Z are the estimated EPVs for a test skin 

image. Suppose the maximum of W indicates the predicted 

class is normal. In that case, the maximum of X indicates the 

predicted class is chickenpox, Y indicates the predicted class 

is measles, and Z indicates the predicted class is monkeypox. 

For example, if W, X, Y, and Z values are 0.1, 0, 0.2, and 0.7, 

the predicted class is monkeypox. 

Figure 5. Predictive results analysis of proposed 

MonkeypoxNet 

4.2 Overall performance 

This section measures and compares the performance of the 

proposed MonkeypoxNet with state-of-the-art approaches. 

Table 1 compares the performance comparison of various 

methods. Here, the proposed MonkeypoxNet improved 

performance over existing VGG16 [14], CBAM [25], and 

RESNET101 [30] methods.  

Table 2 shows the performance improvement of Table 1, 

where the proposed MonkeypoxNet outperforms VGG16 by 

5.05%, CBAM by 1.15%, and RESNET101 by 5.76%, 

achieving an accuracy of 99.06% and it demonstrates a 

significant improvement over VGG16 by 2.57%, CBAM by 

2.08%, and RESNET101 by 2.78%, achieving a sensitivity of 

98.66%. The proposed MonkeypoxNet exhibits a remarkable 

specificity enhancement over VGG16 by 6.27%, CBAM by 

1.51%, and RESNET101 by 1.41%, achieving a specificity of 

99.11% and surpasses VGG16 by 4.46%, CBAM by 6.84%, 

and RESNET101 by 6.54%, achieving an F-measure of 

99.67%. In addition, the proposed MonkeypoxNet outshines 

VGG16 by 2.12%, CBAM by 6.89%, and RESNET101 by 

1.59%, achieving a precision of 99.35% and it also improves 

over VGG16 by 4.82%, CBAM by 6.00%, and RESNET101 

by 2.96%, achieving an MCC of 98.78%. Further, the 

proposed MonkeypoxNet demonstrates a remarkable 

improvement over VGG16 by 7.25%, CBAM by 2.93%, and 

RESNET101 by 7.10%, achieving a Dice coefficient of 

99.64% and it shows an improvement over VGG16 by 6.21%, 

CBAM by 3.41%, and RESNET101 by 2.95%, achieving a 

Jaccard index of 99.39%. 

Table 1. Performance comparison of various methods 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 94.01 97.91 93.30 99.06 

SEN (%) 96.09 96.58 95.88 98.66 

SPC (%) 92.84 97.60 97.70 99.11 

FM (%) 95.21 92.83 93.13 99.67 

PR (%) 97.23 92.46 97.76 99.35 

MCC (%) 93.96 92.78 95.82 98.78 

DC (%) 92.39 96.71 92.54 99.64 

JI (%) 93.18 95.98 96.44 99.39 
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Table 2. Performance improvement of Table 1 

 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 5.371769 1.174548 6.173633 5.371769 

SEN (%) 2.674576 2.153655 2.899458 2.674576 

SPC (%) 6.753555 1.547131 1.443193 6.753555 

FM (%) 4.684382 7.368308 7.022442 4.684382 

PR (%) 2.180397 7.451871 1.626432 2.180397 

MCC (%) 5.129842 6.466911 3.089125 5.129842 

DC (%) 7.84717 3.029676 7.672358 7.84717 

JI (%) 6.66452 3.552824 3.058897 6.66452 

 

4.3 Class-specific performance 

 

The performances of individual classes are measured and 

compared with existing approaches to validation of 

monkeypox class performance over chicken pox. Table 3 

compares the class-specific performance of various 

approaches for the "chickenpox class”. Here, the proposed 

MonkeypoxNet resulted in improved class-specific 

performance, i.e., chickenpox detection performance over 

conventional VGG16 [14], CBAM [25], and RESNET101 [30] 

methods. 

  

Table 3. Performance comparison of various methods for 

chickenpox class 

 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 93.30 96.83 96.87 98.05 

SEN (%) 93.11 91.96 95.22 99.35 

SPC (%) 92.06 94.46 92.53 97.99 

FM (%) 91.55 95.52 93.37 97.59 

PR (%) 94.20 96.49 94.44 97.02 

MCC (%) 96.70 95.02 91.76 98.34 

DC (%) 94.99 95.55 95.16 99.09 

JI (%) 96.72 96.60 92.48 97.09 

 

Table 4. Performance improvement of proposed and existing 

methods for chickenpox class 

 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 5.091104 1.25994 1.218127 5.091104 

SEN (%) 6.701751 8.036103 4.337324 6.701751 

SPC (%) 6.441451 3.737032 5.900789 6.441451 

FM (%) 6.597488 2.167085 4.519653 6.597488 

PR (%) 2.993631 0.54928 2.731893 2.993631 

MCC (%) 1.695967 3.494001 7.170881 1.695967 

DC (%) 4.316244 3.704867 4.129887 4.316244 

JI (%) 0.382548 0.507246 4.984862 0.382548 

 

Table 5. Performance comparison of various methods for 

monkeypox class 

 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 92.93 95.47 90.48 98.57 

SEN (%) 91.23 95.86 95.18 98.34 

SPC (%) 95.33 91.01 95.05 99.15 

FM (%) 92.85 95.23 92.28 98.58 

PR (%) 95.72 92.97 91.31 97.38 

MCC (%) 94.35 95.03 93.60 97.88 

DC (%) 92.86 96.39 92.93 98.10 

JI (%) 95.96 95.75 92.94 97.88 

 

Table 6. Performance improvement of proposed and existing 

methods for monkeypox class 

 

Metric 
VGG16 

[14] 

CBAM 

[25] 

RESNET101 

[30] 
Proposed 

ACC (%) 6.069084 3.247093 8.941202 6.069084 

SEN (%) 7.793489 2.587106 3.320025 7.793489 

SPC (%) 4.007133 8.944072 4.313519 4.007133 

FM (%) 6.171244 3.517799 6.827048 6.171244 

PR (%) 1.734225 4.743466 6.647684 1.734225 

MCC (%) 3.741388 2.999053 4.57265 3.741388 

DC (%) 5.642903 1.774043 5.563327 5.642903 

JI (%) 2.000834 2.224543 5.315257 2.000834 

 

Table 4 compares the proposed MonkeypoxNet's 

performance improvement over existing chickenpox class 

methods. Here, proposed MonkeypoxNet outperforms 

VGG16 by 5.05%, CBAM by 1.15%, and RESNET101 by 

5.76%, achieving an accuracy of 99.06%. It demonstrates a 

significant improvement over VGG16 by 2.57%, CBAM by 

2.08%, and RESNET101 by 2.78%, achieving a sensitivity of 

98.66%. The proposed MonkeypoxNet exhibits a remarkable 

enhancement over VGG16 by 6.27%, CBAM by 1.51%, and 

RESNET101 by 1.41%, achieving a specificity of 99.11%. In 

addition, the proposed MonkeypoxNet surpasses VGG16 by 

4.46%, CBAM by 6.84%, and RESNET101 by 6.54%, 

achieving an F-measure of 99.67% and outshines VGG16 by 

2.12%, CBAM by 6.89%, and RESNET101 by 1.59%, 

achieving a precision of 99.35%. Further, the proposed 

MonkeypoxNet improves over VGG16 by 4.82%, CBAM by 

6.00%, and RESNET101 by 2.96%, achieving an MCC of 

98.78% and demonstrates a remarkable improvement over 

VGG16 by 7.25%, CBAM by 2.93%, and RESNET101 by 

7.10%, achieving a Dice coefficient of 99.64%. Moreover, the 

proposed MonkeypoxNet shows an improvement over 

VGG16 by 6.21%, CBAM by 3.41%, and RESNET101 by 

2.95%, achieving a Jaccard index of 99.39%. 

Table 5 compares the class-specific performance of 

different approaches, where monkeypox class performance is 

measured. Here, the proposed MonkeypoxNet resulted in the 

superior classification of the monkeypox class over other 

methods, such as conventional VGG16 [14], CBAM [25], and 

RESNET101 [30] methods.  

Table 6 compares the performance improvement of the 

proposed MonkeypoxNet over existing methods for the 

Monkeypox class. The proposed MonkeypoxNet outperforms 

VGG16 by 5.81%, CBAM by 3.10%, and RESNET101 by 

8.77%, achieving an accuracy of 98.57%, and demonstrates a 

significant improvement over VGG16 by 7.11%, CBAM by 

2.64%, and RESNET101 by 3.63%, achieving a sensitivity of 

98.34%. In addition, the proposed MonkeypoxNet exhibits a 

remarkable enhancement over VGG16 by 3.82%, CBAM by 

8.14%, and RESNET101 by 4.18%, achieving a specificity of 

99.15% and it surpasses VGG16 by 5.73%, CBAM by 3.48%, 

and RESNET101 by 6.80%, achieving an F-measure of 

98.58%. It also outshines VGG16 by 1.66%, CBAM by 4.41%, 

and RESNET101 by 6.07%, achieving a precision of 97.38%. 

and improves over VGG16 by 3.53%, CBAM by 2.87%, and 

RESNET101 by 4.48%, achieving an MCC of 97.88%. 

Further, the proposed MonkeypoxNet demonstrates a 

remarkable improvement over VGG16 by 5.24%, CBAM by 

1.81%, and RESNET101 by 5.45%, achieving a Dice 

coefficient of 98.10% and it shows an improvement over 

VGG16 by 1.92%, CBAM by 2.36%, and RESNET101 by 

5.94%, achieving a Jaccard index of 97.88%. 
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4.4 Ablation study 

 

An ablation study was conducted to evaluate the 

effectiveness of different components in our proposed 

MonkeypoxNet model. We wanted to understand how each 

approach contributes to the overall performance. In Table 7, 

the first column shows the various performance metrics we 

measured. The second column displays the performance of the 

model when only the CDCNN method is used, and the 

CLAHE and GA-PSO modules are not included. The third 

column shows the performance when the CDCNN and 

CLAHE methods are used, but the GA-PSO feature selection 

method is absent.  

Finally, the last column represents the performance of 

MonkeypoxNet with all modules included. Upon analyzing 

the results, we found that the performance of our proposed 

method improved significantly when all modules were present 

compared to the scenarios where a single module was missing. 

This highlights the superiority and importance of each method 

within the model, as they each contribute to its overall 

effectiveness. Table 8 presents the percentage of 

improvements over Table 7, where the proposed 

MonkeypoxNet outperforms Only CDCNN by 4.86%, 

CLAHE+CDCNN by 7.07%, and GA-PSO+CDCNN by 

2.72%, achieving an accuracy of 99.06%, and it significantly 

improved over Only CDCNN by 7.71%, CLAHE+CDCNN by 

7.83%, and GA-PSO+CDCNN by 2.85%, achieving a 

sensitivity of 98.66%. Additionally, the proposed 

MonkeypoxNet exhibits a remarkable enhancement over Only 

CDCNN by 8.83%, CLAHE+CDCNN by 3.74%, and GA-

PSO+CDCNN by 2.72%, achieving a specificity of 99.11%, 

and it surpasses Only CDCNN by 5.44%, CLAHE+CDCNN 

by 8.66%, and GA-PSO+CDCNN by 8.66%, achieving an F-

measure of 99.67%. 

Further, the proposed MonkeypoxNet outshines Only 

CDCNN by 8.26%, CLAHE+CDCNN by 7.03%, and GA-

PSO+CDCNN by 7.18%, achieving a precision of 99.35% and 

it improved over Only CDCNN by 3.65%, CLAHE+CDCNN 

by 3.14%, and GA-PSO+CDCNN by 3.07%, achieving an 

MCC of 98.78%. Finally, the proposed MonkeypoxNet 

demonstrates a remarkable improvement over Only CDCNN 

by 9.05%, CLAHE+CDCNN by 8.99%, and GA-

PSO+CDCNN by 9.51%, achieving a Dice coefficient of 

99.64% and it has shown an improvement over Only CDCNN 

by 7.72%, CLAHE+CDCNN by 7.87%, and GA-

PSO+CDCNN by 3.35%, achieving a Jaccard index of 99.39%. 

 

4.5 Observed trends from results 

 

The possible reasons for observed trends are customized 

architecture, optimal feature extraction, and an ensemble of 

modules. The MonkeypoxNet is specifically designed for the 

task of monkeypox skin lesion detection, which allows it to 

learn and represent relevant features more effectively than 

generic architectures like VGG16, CBAM, or RESNET101 

The combination of GA-PS) feature extraction and CDCNN in 

MonkeypoxNet could have led to more informative and 

discriminative features for the monkeypox classification task. 

The preprocessing operations and feature extraction 

techniques used in MonkeypoxNet could have been better 

suited to the characteristics of the monkeypox skin image 

dataset, leading to improved performance. MonkeypoxNet's 

performance could have benefited from integrating multiple 

modules, optimizing the overall performance, and capturing 

diverse patterns and information relevant to monkeypox 

detection. 

Strengths: Using a customized deep CNN model trained 

with GA-PSO features further improves the accuracy and 

efficiency of the proposed method. This customization allows 

MonkeypoxNet to learn and represent relevant features more 

effectively, leading to better predictions. While the study 

focuses on monkeypox virus detection, the success of 

MonkeypoxNet showcases the potential for applying similar 

deep-learning networks to detect and diagnose other diseases 

and skin disorders, opening opportunities for broader medical 

applications. 

 

Table 7. Ablation study performance of proposed MonkeypoxNet 

 

Metric Only CDCNN CLAHE+CDCNN GA-PSO+CDCNN MonkeypoxNet 

ACC (%) 94.20 91.99 96.34 99.06 

SEN (%) 90.95 90.83 95.81 98.66 

SPC (%) 90.28 95.37 96.39 99.11 

FM (%) 94.23 96.51 91.01 99.67 

PR (%) 91.09 92.32 92.17 99.35 

MCC (%) 95.13 95.54 95.71 98.78 

DC (%) 90.59 91.05 90.13 99.64 

JI (%) 92.34 91.53 96.04 99.39 

 

Table 8. Performance improvement of proposed and existing methods for monkeypox class 

 

Metric Only CDCNN CLAHE+CDCNN GA-PSO+CDCNN MonkeypoxNet 

ACC (%) 4.978769 7.500815 2.646876 4.978769 

SEN (%) 7.905443 8.048002 2.431896 7.905443 

SPC (%) 8.063802 2.29632 1.213819 8.063802 

FM (%) 4.839223 2.362449 8.548511 4.839223 

PR (%) 6.740586 5.318458 5.489856 6.740586 

MCC (%) 3.952486 3.506385 3.322537 3.952486 

DC (%) 9.824484 9.269632 10.385 9.824484 

JI (%) 7.840589 8.794931 3.685964 7.840589 
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Ideas for further improvement: The strength of any deep 

learning model heavily depends on the quality, diversity, and 

size of the underlying dataset. The article does not provide 

detailed information about the size and diversity of the MSID. 

Ensuring a larger and more representative dataset with a 

balanced distribution of MPV and normal skin images could 

improve the model's generalizability. While the proposed 

method demonstrates impressive performance on the available 

dataset, real-world testing with a diverse set of cases from 

different sources and clinical settings is essential to validate 

the effectiveness of MonkeypoxNet in practical scenarios. 

Deep learning models, especially CNNs, are often considered 

"black boxes" due to their complex architectures. The lack of 

interpretability and explainability in MonkeypoxNet could be 

a limitation in the medical domain, where understanding the 

model's decision-making process is crucial for gaining trust 

and acceptance from healthcare professionals. 

 

 

5. CONCLUSIONS 

 

In conclusion, the development and successful 

implementation of MonkeypoxNet, a deep learning network 

for detecting MPV from skin images. The implications of 

MonkeypoxNet’s success extend beyond monkeypox virus 

detection. The article emphasizes the potential for CAD with 

AI methods to revolutionize medical image processing. The 

high accuracy and efficiency demonstrated by MonkeypoxNet 

open opportunities for applying similar deep-learning 

networks to detect and diagnose other diseases and skin 

disorders. The study's innovative approach of combining 

CLAHE for image pre-processing and GA-PSO for feature 

extraction showcases the significance of tailored techniques 

for specific medical diagnostic challenges. The utilization of 

the CDCNN model further enhances the system's ability to 

learn and represent relevant features from the skin images. 

This combination contributes to MonkeypoxNet's superior 

performance compared to generic AI approaches.  

One of the main takeaways from the study is the significant 

improvement in MPV prediction performance achieved by 

MonkeypoxNet compared to existing methods. With an 

accuracy of 99.06%, sensitivity of 98.66%, specificity of 

99.11%, and F-measure of 99.67%, MonkeypoxNet 

effectively distinguishes between normal skin conditions and 

MPV cases. This high accuracy and precision make 

MonkeypoxNet a promising tool for early detection and 

diagnosis of monkeypox virus infections, potentially leading 

to better patient outcomes and timely interventions. 

Further, the development of MonkeypoxNet offers 

significant implications for the broader field of AI in 

healthcare. The success of this AI-powered diagnostic tool can 

inspire and motivate further research and development in 

using deep learning and transfer learning techniques for 

various medical applications. By providing more accurate and 

timely diagnoses, AI-powered systems like MonkeypoxNet 

can improve patient care, reduce healthcare costs, and enhance 

the overall efficiency of medical practices. 
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