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In this study, we will describe a novel cryptographic system leveraging a genetic crossover 

process based on a scheme specifically tailored for encrypting medical images, operating 

at the level of ribonucleic acid (RNA) sequences. Initially, an extraction of the three-color 

channels and their conversion into vectors involving confusion and diffusion is conducted, 

followed by a pseudo-random transformation into RNA notation. A genetic crossover with 

a pseudo-random vector generated from chaotic maps and controlled by a pseudo-random 

crossover table is applied to generate a new RNA gene with significantly enhanced 

performance, inheriting genetic properties from both crossed genes to address unforeseen 

attacks. A sample of diverse images randomly selected from several databases is tested 

by our cryptographic system, yielding highly promising results. 
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1. INTRODUCTION

In recent years, information and communication 

technologies have grown rapidly, becoming ubiquitous in all 

sectors. Data storage, processing, and exchange are now 

crucial components of social media [1-3]. With unsecured 

channels for the exchange of information on the Internet, data 

confidentiality is highly threatened by the risk of piracy and 

fraud. Protecting data from unauthorized users is therefore a 

major challenge for researchers. Encryption is crucial for 

fulfilling this security need However, classical ciphering 

architecture, such as DES and AES, are demonstrating 

inadequacy for encrypting images because of their elevated 

data redundancy and substantial volume [4]. 

Recently, chaotic systems have captured the attention of 

many researchers due to their remarkable capacity to induce 

significant levels of randomness in diverse cryptographic 

systems [5]. To ensure medical image security, diverse 

strategies can be utilized, encompassing both spatial and 

transformed domains. Numerous scholars have explored the 

integration of chaotic systems and DNA architectures in 

encryption methods within this field. One novel strategy 

involves leveraging the 2D logistic map coupling to bolster 

image security [6]. An alternative method suggested a dual-

domain approach, combining DNA sequences with a discrete 

wavelet transform. This method was based on the dynamics of 

a logistic map and a 3D chaotic attractor [7]. The distinctive 

characteristics of encryption in the transformed domain 

enhance its robustness in comparison to the spatial domain. As 

referenced in the paper [8], Guan et al. utilized a combination 

of DNA encoding and 4D chaotic maps to encrypt images in 

the frequency domain.  

In contrast to the double-stranded structure observed in 

DNA series, Ribonucleic acid (RNA) exhibits a structure as 

single-stranded. Despite this distinction, RNA has the 

capability to form double helices through the process of 

complementary base pairing. Exploiting this property, several 

novel image ciphering architectures have been suggested. In 

the work by Mahmud et al. [9], an image ciphering 

architecture was introduced by mixing Genetic Algorithm 

(GA) and RNA using a logistical map. Similarly, in reference 

[10], Abbasi et al have utilized a chaotic architecture designed 

by Chen in conjunction with RNA operations and imperialist 

competition method for encrypting images. However, in paper 

[11], Yadollahi et al have developed a two-stage image cipher 

architecture based on DNA and RNA mechanisms. 

Additionally, Wang et al. designed a one-dimensional (1D) 

chaotic architecture using Sine and Logistic maps integrated 

with RNA operation, and extended confusion. It is noteworthy 

that all four of these approaches primarily centralized on gray 

image ciphering. In the study of Wang and Guan [12], a color 

image experiments are referenced, wherein the architecture is 

implemented three times across RGB channels. 

In recent advancements in image encryption techniques, 

there is a growing focus among researchers on approaches 

utilizing chaotic systems. This is attributed to their 

advantageous features, including heightened sensitivity to 

initial conditions, unpredictable behavior, absence of periodic 

patterns, ease of implementation in both hardware and 

software, and compatibility with integration alongside other 

applications [13]. The frequently used traditional chaotic maps 

in ciphering architectures are the logistic and the PWLCM 

maps [14, 15]. In line with this, a revised logistic map has been 

suggested and effectively applied in the context of image 

ciphering [16]. Alternatively, a novel 4D hyperchaotic has 

been suggested based on an autonomous 3D chaotic system. 
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This innovation has demonstrated effectiveness in various 

image encryption methods [17]. Due to their impressive ability 

to generate random numbers, chaotic systems form the initial 

step for subsequent encryption procedures. Thus, to create an 

encryption architecture with high robustness, scholars 

recommend integrating DNA with chaotic systems [18]. This 

method provides advantages such as a dense information 

representation, minimal energy consumption, and a significant 

level of parallelism. Using chaotic systems and DNA amplifies 

interference and pixel ambiguity, along with enhancing 

parallelism. 

The logistic map and the PWLCM chaotic algorithms are 

among the most commonly used image encryption [19-21]. 

Due to their high-security level, we use these maps in the 

ciphering stage to generate random series that disrupt 

encrypted images. Color image encryption relies on chaotic 

systems because of their capacity to produce efficient chaotic 

series suitable for ciphering the RGB channels of color images. 

Additionally, because they are very sensitive to initial 

conditions and because of the complex dynamics inherent in 

their behavior, these techniques are particularly effective for 

securing color images through the ciphering process. 

Consequently, we include them with DNA and RNA encoding 

techniques in our encryption architecture precisely for these 

reasons. 

Almost the discussed encryption systems above are 

characterized by a weak chaining between pixels. Furthermore, 

these systems remain vulnerable to differential attacks due to 

the lack of any diffusion capabilities. So, any improvements to 

such systems must account for these points: 

• Take a large-sized key; 

• Install a chaining function; 

• Apply pseudorandom permutations. 

Our contribution will refine a new technique for encrypting 

medical images using confusion and diffusion functions, 

acting initially at the pixel level and then at the DNA level, 

concluding with the application of a pseudo-random genetic 

crossover at the RNA level controlled by a binary decision 

vector. 

Our research is structured into distinct sections. These 

include a segment dedicated to prior related work, elucidating 

assumptions and relevant research; a segment expounding on 

the theoretical framework, elucidating the foundation of 

chaotic sequences, as well as classical Vigenere and affine 

techniques; a segment outlining the proposed approach, 

unveiling the intricacies of the encryption and decryption 

processes; a segment dedicated to results and discussions, 

showcasing research findings, discussions, and comparisons 

with analogous techniques; and a segment that summarizes the 

findings while suggesting avenues for future research. 
 

 

2. RELATED WORKS 
 

Recently, an algorithm using DNA displacements to 

generate summary information as initial values for a four-

dimensional metastable hyper chaotic system was introduced 

by Liang et al. [22]. Similarly, Zhu et al. [23] proposed an 

algorithm that utilizes DNA encoding and scrambling 

operations between blocks to enhance the scrambling effect. 

Furthermore, Zhu et al. [24] proposed an algorithm based on 

parallel DNA encoding to address the limitations of popular 

DNA encoding-based image encryption algorithms. In the 

study of Yao et al. [25], the authors proposed a centered 

around DNA storage image encryption algorithm that utilizes 

the information processing mechanism of molecular biology 

for pixel replacement through genetic hybridization. This 

method achieves double diffusion using pixel diffusion and 

genetic mutations. Furthermore, Qobbi et al. [26] describes a 

new image encryption algorithm that includes obfuscation and 

genetic operations. In the study of Mansoor and Parah [27], a 

new algorithm is proposed that integrates two one-

dimensional chaotic graphs (logic graph and tent graph) to 

generate pseudo-random sequences for DNA encoding. 

Furthermore, Alawida et al. [28] introduced an algorithm that 

combines DNA computing and finite state machines (FSM) to 

design key plans with high flexibility and statistical 

randomness while achieving confusion and diffusion 

properties. Zhang et al. [29] proposed a bit-level and pixel-

level dual-arrangement image encryption scheme based on 

DNA encoding to solve the problem of complete disorder of 

adjacent pixels. Gera and Agrawal [30] proposes an algorithm 

that combines discrete 4D hyper chaotic graphs and DNA 

encoding to improve encryption performance and distribution. 

In the study of Zhang et al. [31], the DNA notation is 

conventional and used in a static manner under the control of 

a single table, employing only the XOR operator. It is 

essentially a computation within Z⁄4Z. Furthermore, this paper 

utilizes a single chaotic map (logistic), making it vulnerable to 

brute force attacks due to the calculation size being 264. 

Additionally, the authors do not specify the hash functions 

used in the RNA code. A new image encryption algorithm 

based on JRPS (Joint RNA-level permutation and substitution) 

is proposed that can resist various attacks. Furthermore, in the 

equation for constructing the new two-dimensional map, the 

author uses the bit to write, introduced an algorithm that uses 

DNA and subsequent RNA encoding to improve the security 

of biometric information [32]. Sun et al. [33] uses the hash 

function for the LS2MAP map value, and these steps are less 

clear in the paper. 
 

{
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𝑥𝑖
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The author must Demonstrate that this new map is chaotic 

and exhibits the properties of chaos or provide a reference. The 

author describes RNA using 4 nucleotides; however, RNA is 

defined by only 3 nucleotides. Proposed a chaotic image 

encryption scheme based on RNA operations and cardioid 

method. Tahbaz et al. [34] employs a hash function for the 

LS2MAP map value, and these steps are less clear in the 

proposed article. In the equation for constructing the new two-

dimensional map, the author uses the bit to write. the authors 

proposed a new hybrid approach involving Magical Chaos 

(MSC) and RNA codons for image encryption. Finally, Jarjar 

et al. [35] proposed a new satellite image encryption algorithm 

based on a seven-dimensional complex chaotic system and 

RNA calculation. 
 

 

3. THEORETICAL BACKGROUND 
 

3.1 Genetic algorithm 
 

The genetic algorithm (GA) is an optimization technique 

rooted in the principles of natural selection. This algorithm 
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operates as a population-based search method, applying the 

notion of survival of the fittest [25]. The generation of new 

populations involves the iterative application of genetic 

operators to individuals within the existing population. 

 

3.2 Genetic operator 

 

A genetic operator is an operator commonly used in genetic 

algorithms to guide towards an optimal solution. The most 

frequently used operators in the field of cryptography are 

mutation, crossover, and selection. 

1. Genetic mutation: 

It is a change in the value of one or more nucleotides within 

the same DNA gene. 

2. Genetic crossover: 

It is the fusion of two DNA genes for the reproduction of a 

new gene inheriting genetic properties from both parents. 

3. Genetic selection: 

It is the selection of one or more nucleotides within a DNA 

gene. 

In cryptography, one typically employs genetic crossover 

and mutation adapted for image encryption. 

For each equation, an example is provided to elucidate the 

process. The transition to DNA is governed by the table (AD) 

and the binary vector (BV). Figure 6 has been redesigned for 

improved clarity. 
 

 

4. OUR APPROACH 

 

Based on chaos theory [22], our method relies on two most 

commonly used chaotic maps in the field of cryptography. 

Upon completion of this study, a thorough analysis of the 

performance inherent to our approach will be conducted and 

compared to other systems within the same framework. Our 

approach revolves around the following axes: 

 

4.1 Chaotic sequences design 

 

Our algorithm utilizes the two most widely used chaotic 

maps in the field of cryptography for their ease of 

configuration and their extreme sensitivity to initial conditions, 

namely the logistic map and the PWLCM map. 

 

4.1.1 Logistic map 

The logistic map is a recurrent sequence determined by a 

second-degree elementary polynomial, given by Eq. (1). 
 

{
𝜗0 ∈ ]0,5; 1 [, 𝜂 ∈ ]3,75;  4]

𝜗𝑛+1 = 𝜂𝜗𝑛(1 − 𝜗𝑛)
 (1) 

 

where, ϑ0 is the initial condition, η is the control parameter. 

 

4.1.2 PWLCM map 

The PWLCM sequence is a piecewise linear sequence 

defined by Eq. (2): 
 

𝑡𝑛 = 𝑓(𝑡𝑛−1) =

{
 
 

 
 

𝑡0 ∈ ]0;  1[       ℎ ∈ ]0,5;  1[
𝑡𝑛−1
ℎ

              𝑖𝑓   0 ≤ 𝑡𝑛−1 ≤ ℎ

𝑡𝑛−1 − ℎ

0.5 − ℎ
          𝑖𝑓 ℎ ≤ 𝑡𝑛−1 ≤ 0.5

𝑓(1 − 𝑡𝑛−1)    𝑒𝑙𝑠𝑒

 (2) 

 

The parameters (t0) and (h) represent, respectively, the 

initial state and its control parameter. 

 

4.2 Sub keys construction 

 

For the encryption and decryption processes smooth 

execution, this technique requires the construction of several 

pseudo-random vectors to establish an algorithm capable of 

addressing any known attack. These vectors come in various 

types. 

 

4.2.1 Binary control vectors 

Our algorithm requires the presence of two chaotic vectors 

(VB₁) and (VB₂) with coefficients in (G₂). These vectors are 

generated by Algorithm 1. 

 

Algorithm 1: Control vectors generation 

For i=1 to 24 nm 

     if ϑ(i)>0.5 then 

     VB1 (i)=0 

     else 

     VB1 (i)=1 

end if 

if t(i)≤ϑ(i) then 

       VB2 (i)=0 

       else 

       VB2 (i)=1 

end if 

End if: Next i 
 

These two vectors will be used to control any image 

transformation operation and make precise decisions. 
 

4.2.2 Confusion / Diffusion pseudorandom vectors 

Our technique requires the generation of multiple random 

vectors for confusion and diffusion. These vectors are: 

·(VC1), (VC2) and (VC3) of coefficients in ring (Z/256Z) 

for confusion at pixel level; 

·(CO) in (Z⁄4Z) for nucleotide value computation; 

· (VE) in (Z⁄16Z) for reading in the nucleotide table 

(indicate the table row); 

·(VD) in (Z⁄64Z) for searching in the RNA table (TR). 

These vectors are generated by the following algorithm: 
 

Algorithm 2: Confusion pseudorandom vectors 

generation 

// Vectors((VC1), (VC2) and (VC3) in ring G256). 

For i to 12nm 

  𝑉𝐶1(𝑖) = 𝑚𝑜𝑑 (𝐸(𝑠𝑢𝑝(𝜗(𝑖); t(i) ∗ 1012)), 254) + 1 

  𝑉𝐶2(𝑖) = 𝑚𝑜𝑑 (𝐸 (
𝜗(𝑖)+𝑡(𝑖)

2
∗ 1012) , 253) + 2  

     𝑉𝐶3(𝑖) = 𝑚𝑜𝑑 (𝐸 (
𝜗(𝑖) + 3 ∗ 𝑡(𝑖)

4
∗ 1012) , 254) + 1 

     𝐶𝑂(𝑖) = 𝑚𝑜𝑑(𝑠𝑢𝑝(𝑉𝐶1(𝑖);  𝑉𝐶3(𝑖); 3) + 1 

  VE(𝑖) =  𝑚𝑜𝑑(𝑠𝑢𝑝(𝑉𝐶2(𝑖);  𝑉𝐶3(𝑖)%16) + 1) 
  VD(𝑖) =  𝑚𝑜𝑑(𝑠𝑢𝑝(𝑉𝐶2(𝑖);  𝑉𝐶3(𝑖)%63)) 
End For 

 

It is noted that due to the high sensitivity of the chaotic maps 

used to initial conditions, the slightest disturbance in these 

chaotic sequences results in different pseudo-random vectors.  

In line with Kirchhoff's guidelines, our simulations involve 

the generation of encryption parameters and pseudo-random 

vectors (including confusion/diffusion vectors and control 

vectors) using algorithms 1 and 2.
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4.3 Original image preparation 
 

Any original image must undergo modeling before entering 

the operating block to undergo a future encryption process and 

must go through the following steps: 

 

4.3.1 Original image vectoring 

After extracting the three-color channels (RGB) and 
converting them into vectors (Vr), (Vg), (Vb), each of 

dimension (1, nm), a concatenation operation controlled by the 

decision vector (𝑉𝐵₁)  is performed to generate a vector 

(VX)=(VX₁, VX₂, …, VX₃ₙₘ) of dimension (1, 3nm), as 

specified by Algorithm 3 below. 

 

Algorithm 3: Original image vectoring algorithm 

For i=1 to nm 

    𝑖𝑓 𝑉𝐵1(𝑖) = 0 𝑡ℎ𝑒𝑛 

     𝑉𝑋(3𝑖 − 2) = 𝑉𝑟(𝑖)⨁𝑉𝐶1(𝑖) 
  𝑉𝑋(3𝑖 − 1) = 𝑉𝑔(𝑖)⨁𝑉𝐶2(𝑖) 
     𝑉𝑋(3𝑖) = 𝑉𝑏(𝑖)⨁𝑉𝐶3(𝑖) 
    else 

𝑉𝑋(3𝑖 − 2) = 𝑉𝑟(𝑖)⨁𝑉𝐶3(𝑖) 
    𝑉𝑋(3𝑖 − 2) = 𝑉𝑔(𝑖)⨁𝑉𝐶1(𝑖) 
    𝑉𝑋(3𝑖 − 2) = 𝑉𝑏(𝑖)⨁𝑉𝐶2(𝑖) 
 End if 

Next i 

 

This algorithm can be seen in Figure 1. 

 

 
 

Figure 1. Original image vectoring diagram 

 

The completion of this encryption step involves the 

computation of an initialization value closely linked to the 

original image and pseudo-random vectors. 

 

4.3.2 Confusion / Diffusion process 

 

The initialization value (GI) involves the modification of 

the seed pixel's content, thus initiating the confusion/diffusion 

process. This value is calculated according to Algorithm 4 

below. 

 

Algorithm 4: Initialization value computation algorithm 

GI=0 

For i=2 to 3 nm 

       𝐺𝐼 = 𝐺𝐼⨁𝑉𝑋(𝑖) 
Next i 

 

This algorithm can be represented by (Figure 2). 

A first slight transformation of the vector (VX) into the 

vector (X) controlled by the vector (VB1) using diffusion and 

confusion operations, is given by the following algorithm: 

 

Algorithm 5: Diffusion Phase algorithm 

// 1st pixel modification 

𝑋(1) = 𝐺𝐼 ⊕ 𝑉𝑋(1)⨁𝑉𝐶1(1) 
// next pixels modification 

For i=2 to 3 nm 

    if VB1 (i)=0 then 

𝑋(𝑖) = 𝑋(𝑖 − 1) ⊕ 𝑉𝑋(𝑖)⨁𝑉𝐶2(𝑖)  
    else  

                 𝑋(𝑖) = 𝑋(𝑖 − 1) ⊕ 𝑉𝑋(𝑖)⨁𝑉𝐶3(𝑖) 
 End if 

Next i 

 

This algorithm can be illustrated by the Figure 3. 

 

 
 

Figure 2. Initialization value computation diagram 

 

 
 

Figure 3. Confusion and diffusion process diagram 

 

To increase the temporal attack complexity of our system, 

we proceed with a second round acting at the DNA level and 

then at the RNA level through well-defined algebraic 

operations. 

 

4.3.3 DNA coding 

Definition. DNA, or deoxyribonucleic acid, is the molecule 

carrying the genetic code of an individual. This genetic 

information is present in all cells of the human body. The 

genetic code is represented by a sequence of four nucleotides: 

Adenine, Cytidine, Guanine, and Thymine, symbolized 

respectively by the letters A, C, G, and T as depicted in Table 

1. 

 

Table 1. Initial natural values of DNA nucleotides 

 
Binary Chromosome DNA 

00 A 

01 C 

10 G 

11 T 

 

4.3.4 Pixels to nucleotides transformation 

A pixel is converted into 4 nucleotides, each represented by 

two bits. This transition involves the following steps: 

Transition to (Z⁄4Z). The output vector (X), with 

coefficients in (Z⁄256Z), is converted into a vector (Y) over 

204



 

(Z⁄16Z), and then into a vector (Z) over (Z⁄4Z) of size (1, 12 

nm). This phase is illustrated by the diagram below (Figure 4): 

This transition can be described by the following algorithm: 

 

Algorithm 6: Transition to Z⁄4Z 

// Transition to DNA 

For i=1 to 3nm 

     𝑥 = 𝐸 (
𝑋(𝑖)

16
) 

     𝑦 = 𝑚𝑜𝑑(𝑋(𝑖), 16) 

     𝛼 = 𝐸(
𝑥

4
) 

     β=mod(x,4) 

 𝛾 = 𝐸(
𝑦

4
) 

 δ=mod(y, 4) 

  Z(4i-3)=α 

  Z(4i-2)=β 

  Z(4i-1)=γ 

 Z(4i)=δ 

Next i 

 

 
 

Figure 4. Transition to (Z⁄4Z) 

 

Figure 5 give an example of such operation. 

 

 
 

Figure 5. Transition table to (Z⁄4Z) 

 

Transition to nucleotides. The transition from (Z⁄4Z) to 

nucleotides is a simple notation change, it can be defined by 

the following steps: 

Transition from (Z⁄4Z) to DNA. The transition from (Z⁄4Z) 

to nucleotides is a simple notation change, whose pseudo-

random selection of values for the components DNA of the 

table (AN) of size (8;4) is defined by:  

·The 1st row of the table (𝐴𝑁) is defined by the natural 

nucleotides’ 'A'=0, 'C'=1, 'G'=2, and 'T'=3. 

·Any row of rank (i)>1 is obtained by shifting the previous 

row (i-1) by a pseudo-random step defined by the vector (VC1) 

or (VC2) depending on the values of the control vector (VB1). 

Table construction (AN). The nucleotide table (AN) is 

generated by the following algorithm: 

 

Algorithm 7: DNA table creation 

// First line 

AN(1,1)=”A”; AN(1,2)=”C” ; AN(1,3)=”G”;  

AN(1,4)=”T” 

// Next lines  

For i=2 to 8 

 For j=1 to 4 

   If 𝑉𝐵1(𝑖) = 0 𝑡ℎ𝑒𝑛 

         AN(i, j) = AN(i − 1, (j + 𝑉𝐶1(𝑖)%4 + 1)%4 + 1) 
   Else 

         AN(i, j) = AN(i − 1, (j + 𝑉𝐶2(𝑖)%4 + 1)%4 + 1) 
   End if  

Next j, i 

 

An example of DNA table creation is depicted  

in Figure 6. 

 

 
Figure 6. Example of DNA table creation 

 

Nucleotides assignment. The vector (Z) will be transcribed 

into vector (XN), whose components are nucleotides read from 

the table (AN) based on the values of the control vector (VB2): 
 

Algorithm 8: DNA vector construction 

// DNA vector  

For i=1 to 3nm 

   𝑖𝑓 𝑉𝐵2(𝑖) = 0 𝑡ℎ𝑒𝑛 

     𝑋𝑁(4𝑖 − 3) = 𝐴𝑁(𝑉𝐶1(4𝑖 − 3)%8) + 1, 𝑍(𝑖) + 1) 
     𝑋𝑁(4𝑖 − 2) = 𝐴𝑁(𝑉𝐶1(4𝑖 − 2)%8) + 1, 𝑍(𝑖) + 1) 
     𝑋𝑁(4𝑖 − 1) = 𝐴𝑁(𝑉𝐶1(4𝑖 − 1)%8) + 1, 𝑍(𝑖) + 1) 
     𝑋𝑁(4𝑖) = 𝐴𝑁(𝑉𝐶1(4𝑖)%8) + 1, 𝑍(𝑖) + 1) 
  else 

    𝑋𝑁(4𝑖 − 3) = 𝐴𝑁(𝑉𝐶2(4𝑖 − 3)%8) + 1, 𝑍(𝑖) + 1) 
    𝑋𝑁(4𝑖 − 2) = 𝐴𝑁(𝑉𝐶2(4𝑖 − 2)%8) + 1, 𝑍(𝑖) + 1) 
    𝑋𝑁(4𝑖 − 1) = 𝐴𝑁(𝑉𝐶2(4𝑖 − 1)%8) + 1, 𝑍(𝑖) + 1) 
    𝑋𝑁(4𝑖) = 𝐴𝑁(𝑉𝐶2(4𝑖)%8) + 1, 𝑍(𝑖) + 1) 
 End if 

Next i 

 

Note:  

A simple perturbation to the secret key of the system results 

in the generation of a new DNA table (AN), and consequently, 

a new vector (XN). This table may have a pseudo-random 

dimension computed from the used chaotic maps. 

The transition from the initial image to DNA notation is 

described in the following Figure 7. 

Example: 

Nucleotides Complementary. Each nucleotide has a unique 

complementary counterpart in RNA duplication. Naturally, 

the complements of nucleotides are defined in the following 

table: 

In our work, the complement of a nucleotide will be 

determined by a pseudo-random table (CN) of size (16;4) 

generated through the following steps: 
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·1st line is constructed from natural complementariness. 

·The line j>1 is the shifting of the line j-1 of rank VC2 (j) 

or VC3 (j) across the VB1 (j) control value. 

The construction of the nucleotide complement (CN) table 

is described by the algorithm below. 

 

Algorithm 9: Construction of the nucleotide 

complement (CN) table 

// First line 

CN(1,1)=”T” 

CN(1,2)=”G” 

CN(1,3)=”C” 

CN(1,4)=”A” 

// next Lines  

For j=2 to 8 

  For k=1 to 4 

   If 𝑉𝐵2(𝑗) = 0 𝑡ℎ𝑒𝑛 

      CN(j, k) = CN(j − 1, (k + 𝑉𝐶3(𝑗)%4 + 1)%4 + 1) 

   Else 

      CN(j, k) = CN(j − 1, (k + 𝑉𝐶2(𝑗)%4 + 1)%4 + 1) 

   End if 

  Next k,j 

 

This algorithm can be represented by Figure 8 below. 

 

 
 

Figure 7. Transition to DNA 

 

 

 

 
 

Figure 8. Construction of table (CN) 

 

The vector (XC) of complementary nucleotides to vector 

(XN) is determined by the following algorithm: 

 

Algorithm 10: construction of Vector (XC) 

For i=1 to 12nm 

 If XN(i)=”A” then 

 Col=0 

  else 

 If 𝑋𝑁(𝑖) = ”𝐶” then 

 Col=1  

  else 

 If XN(i)=”G” then 

 Col=2  

  else 

If XN(i)=”T” then 

 Col=3  

 End if 

 if VB2 (i)=0 then 

 𝑋𝐶(𝑖) = 𝐶𝑁(𝑉𝐶1(𝑖)%16) + 1; 𝐶𝑜𝑙) 
 else 

 𝑋𝐶(𝑖) = 𝐶𝑁(𝑉𝐶2(𝑖)%16) + 1; 𝐶𝑜𝑙) 
 End if 

Next i 

 

The complementary strand forms the double helix of the 

DNA strand (Figure 9). 

Figure 10 depict an example of vector (XC) transformation 

to vector (XN). 

We observe that the location and values of the complements 

are closely related to the table (CN) and are taken in a 

pseudorandom manner. 
DNA pseudorandom vector construction. We observe that 

the location and values of the complements are closely linked 

to the table (CN) and taken in a pseudo-random manner. A 

pseudo-random vector (BD) with DNA coefficients is 

constructed to introduce confusion with vectors (XN) and (XC) 

under the control of (VB3). This construction is determined by 

the algorithm below: 

 

Algorithm 11: DNA pseudorandom vector generation 

For i=1 to 12nm 

   if ϑ(i)<0,25 then 

    BD(i)="A" 

  else 
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  if ϑ(i)<0,5 then 

   BD(i)="C" 

  else 

  if ϑ(i)<0,75 then 

   BD(i)="G" 

  else 

   BD(i)="T" 

  End if 

Next i 

 

Figure 11 depict an example of Algorithm 10 above. 

 

 
 

Figure 9. (XN) pseudorandom vector generation DNA 

 

 
 

Figure 10. Example of vector (XC) conversion to vector 

(XN) 

 

 
 

Figure 11. Example of DNA pseudorandom vector 

generation 

Genetic algebraic operator. An algebraic operator (⨂) 

between DNA values will be established under the control of 

the following table (AD). This operator is depicted  

in (Figure 12) below. 

 

 
 

Figure 12. Genetic operator 

 

The algebraic operator (⨂)  employed to link two 

nucleotides is a reversible, commutative operator that provides 

a group structure to facilitate transformations on DNA. Figure 

13 give an example of such operation. 

 

 
 

Figure 13. Algebraic operator (⨂) application example 

 

DNA genetic crossover. The vectors (XN) and (XC) undergo 

genetic crossover with the vector (BD) to generate a new 

vector (XB) with DNA components, under the control of the 

table (TB) of size (12 nm; 3). 

Construction crossover of table (TB): 

·The first column obtained by sorting in ascending order 

the 12nm values of (VC1) vector; 

·The second column obtained by sorting in ascending 

order the 12nm values of (VC2) vector; 

·The third column is the (VB1) vector. 

Description of the role of the table (TB): 

·The 1st column indicates the index of the vector (XN) or 

the vector (XC). Crossed with the following vector (BD); 

·The second column gives the index of the position in the 

vector (XB); 

·The third column indicates the choice of the vector (XN) 

or (XC) crossed with the vector (BD) through a genetic 

crossover table (AD). 

·This genetic crossover at the DNA level is described by 

the following algorithm: 

 

Algorithm 12: Genetic DNA crossover 

For i to 4nm 

  If TB(i;3)=0 then 

  𝑋𝐵(𝑇𝐵(𝑖; 2)) = 𝑋𝑁(𝑇𝐵(𝑖; 1)⨂𝐵𝐷(𝑖)) 

  Else 

  𝑋𝐵(𝑇𝐵(𝑖; 2)) = 𝑋𝐶(𝑇𝐵(𝑖; 1)⨂𝐵𝐷(𝑖)) 

Next i 

 

This passage is defined by the following diagram (Figure 

14). 

An example of such transformation is depicted in Figure 15. 
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Figure 14. DNA crossover operation 

 

 
 

Figure 15. Genetic DNA crossover transformation 

 

Transition to RNA. RNA is the concatenation of three 

nucleotides read from a gene for the formation of a protein. 

For this, the vector (XB) is subdivided into three sub-vectors 

(XB₁), (XB₂), and (XB₃) each of size (1; 4 nm). The transition 

from DNA to RNA requires the construction of the table (TR) 

of size (4 nm; 5) defined by the following process: 

·The first column is the arrangement (PR1), which is 

obtained by roughly sorting the first 4 nm values of (VC1) in 

ascending order; 

·The second column is the arrangement (PR2), which is 

obtained by roughly sorting the first 4nm values of (VC2) in 

ascending order; 

·The third column is the arrangement (PR3), which is 

obtained by roughly sorting the first 4 nm values of (VC3) in 

ascending order; 

·The fourth column is the 4 nm vector values (CO); 

·The fifth column is the vector (VE). 
Construction of (TR) table. These table construction steps 

(TR) are defined by: 

 

Algorithm 13: Construction of the (TR) transition 

table 

For 𝑖=1 to 4nm 

  𝑇𝑅(𝑖, 1) = 𝑃𝑅1(𝑖)  
  𝑇𝑅(𝑖, 2) = 𝑃𝑅2(𝑖)  
  𝑇𝑅(𝑖, 3) = 𝑃𝑅3(𝑖) 
  𝑇𝑅(𝑖, 4) = 𝐶𝑂(𝑖) 
  𝑇𝑅(𝑖, 5) = 𝑉𝐸(𝑖) 
Next i 

 

Description of the table (EN): 

·The first column gives the index of nucleotides in the sub 

vector (XB1); 

·The 2nd column gives the index of nucleotides in the sub 

vector (XB2); 

·The 3rd column gives the index of nucleotides in the sub 

vector (XB3); 

·The 4th column gives the index of the nucleotides that 

should be transcribed in complementary; 

·The 5th column gives the row in the table (CN) for 

selecting the nucleotide value. 

Figure 16 depict an example of (TR) table transition. 

 

 
 

Figure 16. Transition table (TR) example 

 

The conversion of nucleotides into RNA is given by the 

following algorithm: 

 

Algorithm 14: Construction of the (XR) vector 

For i=1 to 4nm 

x=XB1(TR(i,1)) 

y=XB2(TR(i,2)) 

z=XB3(TR(i,3)) 

if co(i)=1 then x=compl(x) 
if co(i)=2 then y=compl(y) 
if co(i)=3 then z=compl(z) 
XR(i)=x&y&z 
Next i 

 

Figure 17 depict an example of transition from nucleotides 

to codons. 

 

 
 

Figure 17. Transition from nucleotides to codons example 

 

Algebraic operation (⊠) on RNA. Using the operator table 

(AD), it is possible to combine two RNA through the following 

genetic operation: (𝑥𝑦𝑧) ⊠ (𝑢𝑣𝑤)  = (𝑥⨂𝑢)(𝑦⨂𝑣)(𝑧⨂𝑤). 
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On the other hand, the algebraic operator (⊠)used to link 

two codons is a reversible, commutative operator applied to 

RNA, dependent on (⨂). However, it is noteworthy that in the 

case of RNA, only one nucleotide at a time undergoes 

complementarity under the control of the control vector (CR). 

An example of algebraic operator (⊠) application is 

depicted in Figure 18. 

 

 
 

Figure 18. Example of algebraic operator (⊠) application 

 

We notice that the algebraic operation defined on the RNA 

is not commutative, which increases the complexity of attacks 

on our cryptographic system. 

RNA crossover. 

Construction of the reference RNA table  

In a first step, a reference RNA table (TA) of size (2; 64) is 

constructed by the following process: 

The 1st row is given by the following algorithm: 

 

Algorithm 15.1: Construction of the (TA) table 

For i=1 to 64 

 TA(1; i)=i-1 

Next i 

 

The second line includes codons whose numerical value is 

associated with the first line generated by the algorithm below: 

 

Algorithm 15.2: Construction of the (TA) table 

For i=1 to 4 

 For j=1 to 4 

  For k=1 to 4 

   TA(2;i)=TR(1;i)&TR(2;j)&TR(3;k) 

Next k, j, i 

 

This algorithm can be explained by an example depicted in 

Figure 19 below. 

 

 
 

Figure 19. Construction of the (TA) table example 

 

The construction of the reference table (TA) is closely 

related to the nucleotide table (TR). 

Generation of the pseudo-random vector (CR) with 

coefficient (RNA) 

A vector (CR) with pseudo-random component RNA taking 

values from the reference table (TA) is constructed by the 

following process: 

 

Algorithm 16: Construction of the (CR) vector 

For i=1 to 4nm 

 CR(i)=TA(2; VD(i)) 

Next i 

 

Construction of the (CR) vector is explained by an example 

depicted in Figure 20 below. 

 

 
 

Figure 20. Construction of the (CR) vector 

 

The vector (XS) obtained through genetic crossover 

between the chaotic vector (CR) and the vector (XR) at the 

RNA level is given by the following algorithm: 

 

Algorithm 17: Construction of the (XS) vector 

For i=1 to 4nm 

 XS(𝑖) = XR(i) ⊠ 𝐶𝑅(𝑖) 
Next i 

 

The vector (XS) represents the RNA-coefficient encrypted 

image using our approach. Figure 21 represents an example of 

the (XS) vector construction. 

 

 
 

Figure 21. Construction of the (XS) vector example 

 

Example:  

Reconstruction of the encrypted image 

The reconstruction of the encrypted image from the vector 

(XS) with RNA coefficient requires going through the 

following steps: 

·Transition to DNA 

The transition from RNA to DNA notation is ensured by the 

reference table (RT). 

Example: 

The transition from vector (XS) to vector (XD) in DNA is 

determined by the following algorithm: 

·Transition to (Z⁄4Z) 

We assume: ‘A’=0, ‘C’=1, ‘G’=2 et ‘T’=3 

The vector (XD) will be converted to  (𝑋𝑇)  with a 

coefficient of (Z⁄4Z): 

 

Algorithm 18: Transition to (Z⁄4Z) 

For i=1 to 12nm    if XS(i)="G" then 
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  if XS(i)="A" then 

       XT(i)=0 

 Else 

  if XS(i)="C" then 

       XT(i)=1 

 else 

       XT(i)=2 

  else 

   if XS(i)="T" then 

      XT(i)=3 

  End if  

 Next i 

 

·Transition to (Z⁄256Z) 

The vector (XT) will be converted to degree level to (XF) by 

the following process: 

 

Algorithm 19: Transition to (Z⁄256Z) 

For i=1 to 3nm 

 𝑋𝐹(𝑖) = 𝑋𝑇(4𝑖 − 3) ∗ 43  +  𝑋𝑇(4𝑖 − 2) ∗  42 +  𝑋𝑇(4𝑖 −
1) ∗ 41  +  𝑋𝑇(4𝑖) ∗ 40 

Next i 

 

An example of transition to (Z⁄256Z) is depicted in Figure 

22 below. 

 

 
 

Figure 22. Transition to (Z⁄256Z) example 

 

4.4 Decryption of the encrypted image 

 

 
 

Figure 23. Decryption scheme 

Our algorithm is characterized by a symmetric encryption 

system, involving the use of an identical key during the 

decryption process and the same encryption parameters. As 

our approach employs diffusion functions, the decryption 

procedure must start with the last encrypted block by applying 

the inverse functions of the corresponding encryption 

functions. This decryption process involves the following 

sequences: 

·Encrypted image loading; 

·Encryption key generation; 

·Encoding of the encrypted image in RNA phase;  

·Encoding of the encrypted image in DNA phase; 

·Reverse genetic crossover;  

·Transition to (Z⁄256Z); 

·Confusion section;  

·Construction of the original image. 

These steps are illustrated by the diagram (Figure 23). 

 

 

5. EXAMPLES AND SIMULATIONS  

 

All experiments were conducted using the Python 

programming language on Windows 10, with a hardware 

environment consisting of a laptop with an i5 processor, 8 GB 

of RAM, and a hard drive with a capacity of 256 GB. 

 

5.1 Analysis of brute force attack 

 

Our recent algorithm underwent an evaluation using a set of 

randomly selected reference images, and the results of 

successive simulations were recorded. 

 

5.2 Key space analysis 

 

The algorithm we have designed exploits two chaotic maps 

generated from four parameters, each coded on 32 bits.  

Hence, the overall secret key space is 128 bits, which is 

significantly larger than 100 bits, ensuring that our approach 

is safe from any brute-force attacks. 

 

5.3 Key sensitivity 

 

Our system harnesses two chaotic maps widely embraced in 

the field of cryptography due to their extreme sensitivity to 

initial conditions. This characteristic imparts a high sensitivity 

to our encryption key. This property can be visualized in the 

following diagram (Figure 24): 

 

 
 

Figure 24. Key sensitivity 
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We confirm that any slight disturbance to one of the 

parameters of the secret key results in a poor encrypted image. 

 

5.4 Visual aspect 

 

It is crucial to note that the encrypted image shows visual 

distinctions compared to the original image, as demonstrated 

in Figure 25. Furthermore, it is important to emphasize that all 

histograms of the images encrypted by our algorithm exhibit a 

uniform distribution, thus confirming effective protection 

against any attempts of statistical attacks. 

Visually, an encrypted image is completely different from a 

clear image, and it bears no resemblance to a highlight. 

 

5.5 Analysis of histograms 

 

The statistical distribution of individual pixels is depicted in 

the image's histogram. Due to the multitude of information 

contained in the raw image, it is crucial to note that the 

encrypted image manifests visual distinctions compared to the 

original image, as demonstrated in Figure 26. Furthermore, it 

should be emphasized that all histograms of images encrypted 

by our algorithm exhibit a uniform distribution, thus 

corroborating effective protection against any attempts of 

statistical attacks. 

 

 
 

Figure 25. Visual aspect 
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Figure 26. (RGB) channels histograms of encrypted images 
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Table 2. Comparison of histogram variance 

 
Image Im1 Im2 Im3 Im4 Im5 Im6 

Original 

R 123072.50 620306.75 289630.65 992034.12 129825.53 129765.98 

G 87100.83 860899.31 337863.062 1330180.12 57011.605 349251.718 

B 33522.73 790776.56 210359.812 768126.75 81373.710 537500.062 

Encrypted 

Proposed 

R 218.99 262.241 275.069 1136.54 250.867 214.759 

G 231.02 233.21 242.961 1109.79 214.998 258.798 

B 220.991 254.804 238.089 1059.99 257.959 237.997 

[28] 

R 219.513 262.265 275.095 1136.56 250.877 214.782 

G 231.052 233.211 243.858 1119.74 215.093 259.715 

B 221.119 255.813 238.196 1060.54 258.754 238.384 

[29] 

R 247.78 280.64 284.35 1070.2 282.81 232.98 

G 279.62 280.46 247.37 1231.2 254.87 279.61 

B 265.71 230.42 260.76 941.65 225.79 245.61 

 

5.6 Variances of histograms 

 

In a similar manner, by determining the histogram variance 

given in Eq. (3), we evaluated the coherence of encrypted 

images. Lower variance in an encrypted image indicates 

increased uniformity and a higher level of security for the 

contemplated image encryption algorithm [26, 27]. 

 

𝐻𝑉𝑎𝑟(𝑋) =
1

3𝑛𝑚
∑|(𝑥𝑜𝑝 − 𝑥𝑐𝑝)|

255

𝑝=1

 (3) 

 

where, xop Number of the clear pixel of value p, xcp Encrypted 

pixel count of value p. 

Table 2 displays the standard deviations associated with 

specific test images. The data in the table reveals that clear 

images exhibited disproportionately high standard deviations, 

whereas encrypted images demonstrated notably low values. 

To illustrate, the average standard deviation for the encrypted 

image (Im1) was 223.667, significantly lower than the 

corresponding clear image with a standard deviation of 

81,232.023. Additionally, the comparison presented suggests 

that, for most test images, the histogram standard deviations of 

images encrypted using the proposed algorithm were 

consistently lower than those of Alawida et al. [28] and Zhang 

et al. [29]. Based on this comparison, we can assert that our 

proposed algorithm has the ability to enhance the security of 

the encryption algorithm. 

 

5.7 Entropy analysis 

 

The entropy of an image of size (n, m) is given by Eq. (4). 

 

𝑆𝐻(𝑀𝐶) =
−1

3𝑛𝑚
∑ 𝑝(𝑖). 𝑙𝑜𝑔2(𝑝(𝑖))

3𝑛𝑚

𝑖=1

 (4) 

 

where, p(i) is the probability of the occurrence of level (𝑖) in 

the original image. Thus, as entropy approaches this reference, 

the quality of the random distribution of pixels in the image 

improves. Higher entropy ensures a significant reduction in the 

amount of recoverable information from the specific encrypted 

image. The table titled Table 3 displays the entropy values for 

our test images in comparison to existing image encryption 

algorithms. The table reveals that the values, with SH ≥ 7.996, 

are comparable to the study of Gera and Agrawal [30] and 

surpass those of Alawida et al. [28]. 

 

5.8 Correlation analysis 

 

The correlation of the image of size (n, m) is given by Eq. 

(5). 

 

𝑐𝑜𝑟𝑟 =
𝑐𝑜𝑣(𝑥, 𝑦)

√𝑣𝑎𝑟(𝑥). √𝑣𝑎𝑟(𝑦)
 (5) 

 

Table 4 presents the correlations between pixels in the 

image (Im1). A comparative analysis with previous algorithms 

reveals a lower correlation between adjacent pixels in our 

encrypted image compared to the studies of Gera and Agrawal 

[30], Zhang et al. [31], and Soltani et al. [32], although this 

correlation remains comparable to that observed in the studies 

of Alawida et al. [28], Sun et al. [33], Tahbaz et al. [34], and 

Jarjar et al. [35]. Table 3 displays correlation coefficients for 

pixels derived from images in the SIPI database and additional 

test images. The table reveals a notably high correlation within 

clear images, approaching nearly “1” for each channel. 

Conversely, images encrypted by our proposed algorithm 

exhibit significantly lower correlation based on the data 

presented in the table. These observations confirm the 

satisfactory level of security provided by our algorithm. These 

findings emphasize a notable reduction in correlation within 

the encrypted image, indicating that potential attackers are 

unable to extract information through this approach. 

The correlation measures for the images evaluated using our 

encryption system consistently approach zero. This feature 

serves as a safeguard against statistical attacks, as indicated in 

Table 5. 

 

Table 3. Entropy examination of encrypted images in 

contrast to alternative methods 

 

Algorithm Images 
Ciphered 

R G B 

Proposée 

Im1 7.9973 7.9974 7.9971 

Im2 7.9994 7.9994 7.9995 

Im3 7.9994 7.9992 7.9994 

Im4 7.9975 7.9971 7.9974 

Im5 7.9994 7.9995 7.9993 

[30] 

Im1 7.9972 7.9973 7.9970 

Im2 7.9993 7.9994 7.9994 

Im3 7.9993 7.9992 7.9993 

Im4 7.9974 7.9970 7.9974 

Im5 7.9993 7.9994 7.9993 

[28] 

Im1 7.9974 7.9974 7.9971 

Im2 7.9993 7.9994 7.9992 

Im3 7.9993 7.9992 7.9993 

Im4 7.9972 7.9971 7.9966 

Im5 7.9992 7.9994 7.9994 
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Table 4. Correlation among the pixels in the encrypted 'Im1' image 

 

Algorithm Horizontal Vertical Diagonal 

Proposed -0.002733667 0.00352 -0.002469667 

[28] -0.0042707 -0.0032498 -0.0020192 

[30] -0.0029883 0.0091357 -0.0067375 

[31] -0.0098 -0.0050 -0.0013 

[32] 0.0080 0.0098 -0.0058 

[33] -0.0023 0.0019 -0.0034 

[34] 0.0020 -0.0007 -0.0014 

[35] -0.0237 -0.0178 -0.0284 

 

Table 5. Correlation between pixels of the selected images from the database (SIP) 

 

Images 
Original image Encrypted image 

H V D H V D 

Im1 

R 0.9558 0.9648 0.9325 -0.003771 0.008149 -0.00132 

G 0.93556 0.95756 0.91902 -0.002981 0.009127 -0.006732 

B 0.90773 0.9393 0.8913 -0.001449 -0.006716 0.000643 

Im2 

R 0.98385 0.96944 0.98629 -0.0013662 -0.0018756 -0.0054082 

G 0.97883 0.98511 0.96537 -0.0010662 0.0015054 0.0023428 

B 0.99153 0.98348 0.98724 0.0048931 -0.0057105 -0.0011768 

Im3 

R 0.95175 0.96552 0.93161 0.0051302 -0.0007677 -0.0049534 

G 0.95215 0.96436 0.93066 0.0078786 -0.0007949 0.0002736 

B 0.95542 0.97086 0.94265 0.000070 0.0109689 -0.0010586 

Im4 

R 0.98681 0.99219 0.97287 -0.0043816 -0.0165139 0.0066847 

G 0.98851 0.99103 0.97352 0.0023923 0.0017955 -0.0034511 

B 0.98675 0.99049 0.97189 0.0087519 0.0057946 -0.0030269 

Im5 

R 0.95839 0.95430 0.91674 -0.0014431 -0.0019301 0.0075854 

G 0.89596 0.95015 0.87160 -0.0012697 0.0075575 -0.001531 

B 0.91304 0.93012 0.86383 -0.0014109 0.0010211 -0.0038232 

Im6 

R 0.97886 0.98012 0.96108 0.0012429 -0.0032612 0.0007536 

G 0.97749 0.97952 0.95947 -0.0007566 -0.0024509 0.0044757 

B 0.97224 0.97091 0.94729 -0.0010254 -0.0049974 0.0015236 

Im7 

R 0.98679 0.98515 0.97406 -0.0044956 -0.0014317 0.0047762 

G 0.98083 0.98077 0.96404 -0.0057874 -0.0009189 -0.0066636 

B 0.95393 0.94939 0.90846 -0.0040614 0.0012302 -0.0055081 

Im8 

R 0.97833 0.97815 0.96277 -0.0061589 0.0021684 0.002564 

G 0.99106 0.99427 0.97853 -0.0021031 0.0011387 0.0099093 

B 0.99370 0.99471 0.98813 -0.0036710 -0.0012494 0.0046701 

 

 

6. DIFFERENTIAL ANALYSIS 

 

To assess how well the algorithm performs under 

differential attacks, metrics such as the Number of Pixel 

Changes Rate (NPCR), Unified Average Change Intensity 

(UACI), and the avalanche effect are employed. 

 

6.1 NPCR constant 

 

The NPCR is determined by Eq. (6). 

 

𝑁𝑃𝐶𝑅 = (
1

3𝑛𝑚
∑ 𝐷(𝑖, 𝑗)𝑛𝑚
𝑖,𝑗=1 ) . 100  (6) 

 

where,  

 

𝐷(𝑖, 𝑗) = {
1 𝑖𝑓 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0 𝑖𝑓 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
. 

 

6.2 UACI constant 

 

The analysis of the mathematical constant 𝑈𝐴𝐶𝐼 of the 

image is given by the Eq. (7). 

 

𝑈𝐴𝐶𝐼 = (
1

255𝑛𝑚
∑ 𝐴𝐵𝑆(𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗))
𝑛𝑚
𝑖,𝑗=1 ) . 100  (7) 

 

The data in Table 6 presents the measures of NPCR and 

UACI for two images (Im1, Im2), showing that NPCR ≥ 99.6 

and UACI≥33.4. These values clearly indicate that the 

performance of the NPCR of the proposed encryption 

algorithm was comparable to that of Alawida et al. [28] and 

superior to that of Manzoor et al. [36], Alawida et al. [37], 

Teseleanu [38], Jarjar et al. [39], Ye and Huang [40], and Chen 

et al. [41], while the UACI value was comparable to those of 

others. 

 

6.3 Robustness against occlusion attacks 

 

In the field of image processing, the parameters of Mean 

Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) 

are frequently used to assess the quality of encryption. These 

metrics are the most commonly employed criteria for 

evaluating the quality of two images within a cryptographic 

system. PSNR measures the similarity between two images 

and is the complement of MSE. The Mean Squared Error 

(MSE) for the original, decrypted, and encrypted images can 

be computed using the following formula (8): 

 

𝑀𝑆𝐸 =
1

(𝑛𝑚)2
∑ |𝐼𝑚𝑜(𝑖, 𝑗) − 𝐼𝑚𝑐(𝑖, 𝑗)|2𝑛𝑚
𝑖,𝑗=1   (8) 
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In the context of image processing) "Imo" and "Imc" 

respectively represent the original and encrypted images. MSE 

corresponds to the mean squared error. (n) denotes the number 

of rows in the original image, and (m) represents the number 

of columns in the image. PSNR is evaluated in decibels and is 

inversely proportional to the mean squared error. It is 

determined by Eq. (9). 

 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10 (
(2𝐿−1)

2

𝑀𝑆𝐸
) (𝑑𝐵)  (9) 

 

where, L=8 represents the bit depth of the specific image. 

A greater PSNR signifies reduced differences between the 

original and decrypted images as represented in Table 7. When 

the original and encrypted images are identical, their PSNR 

becomes infinite. 

 

Table 6. Comparison of (NPCR) and (UACI) 

 

Algorithm 
Im1 Im2 

NPCR UACI NPCR UACI 

Proposed 99.68 33.49 99.67 33.48 

[28] 99.68 33.46 99.67 33.48 

[30] 99.60 33.49 99.61 33.46 

[36] 99.66 33.44 99.63 33.47 

[37] 99.61 33.46 99.60 33.49 

[38] 99.59 33.46 - - 

[39] 99.60 33.44 - - 

[40] 99.62 33.65 - - 

[41] 99.61 33.47 - - 

 

 

Table 7. (PSNR) (dB) between the original image, the encrypted image, and the decrypted image 

 
Algorithm PSNR Type Lena Baboon Panda Vegetables 

Proposed 
Original to decrypted ∞ ∞ ∞ ∞ 

Original to decrypted 8.1212 8.7811 8.1748 6.8800 

[28] Original to decrypted ∞ ∞ ∞ ∞ 

 Original to decrypted 8.1102 8.7776 8.1648 6.8760 

[37] Original to decrypted 8.1300 7.8569 7.7410 7.4395 

[38] Original to decrypted 8.3655 8.8532 - - 

[39] Original to decrypted 8.2522 8.8223 - - 

[40] Original to decrypted ∞ ∞ - - 

 Original to decrypted 7.0257 7.1515 - - 
 

 

7. CONCLUSIONS 

 

Cryptography has embraced chaos theory, leveraging the 

pronounced sensitivity of chaotic systems to their starting 

states. Our approach capitalizes on this attribute through the 

utilization of RNA genetic crossover. The incorporation of 

genetic crossover, guided by a pseudo-random table, imparts 

substantial value and intricacy to a novel encryption system. 

This is substantiated by the observed values of statistical and 

differential constants in simulations across a diverse set of 

images randomly selected from multiple databases. 
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NOMENCLATURE 

 

RNA Ribonucleic Acid 

DNA Deoxyribonucleic Acid 

GA Genetic Algorithm 

 

Greek symbols 

 

η Control parameter chaotic map 

ϑ0 Initial condition chaotic map 

t0 Initial condition chaotic PWLCM 

h Control parameter chaotic PWLCM 
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